/* * Copyright 2015-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/refcount.h" #include "crypto/ecx.h" /* * Don't free up md_ctx->pctx in EVP_MD_CTX_reset, use the reserved flag * values in evp.h */ #define EVP_MD_CTX_FLAG_KEEP_PKEY_CTX 0x0400 struct evp_pkey_ctx_st { /* Actual operation */ int operation; /* * Library context, property query, keytype and keymgmt associated with * this context */ OPENSSL_CTX *libctx; const char *propquery; const char *keytype; EVP_KEYMGMT *keymgmt; union { struct { void *genctx; } keymgmt; struct { EVP_KEYEXCH *exchange; void *exchprovctx; } kex; struct { EVP_SIGNATURE *signature; void *sigprovctx; } sig; struct { EVP_ASYM_CIPHER *cipher; void *ciphprovctx; } ciph; } op; /* * Cached parameters. Inits of operations that depend on these should * call evp_pkey_ctx_use_delayed_data() when the operation has been set * up properly. */ struct { /* Distinguishing Identifier, ISO/IEC 15946-3, FIPS 196 */ char *dist_id_name; /* The name used with EVP_PKEY_CTX_ctrl_str() */ void *dist_id; /* The distinguishing ID itself */ size_t dist_id_len; /* The length of the distinguishing ID */ /* Indicators of what has been set. Keep them together! */ unsigned int dist_id_set : 1; } cached_parameters; /* Application specific data, usually used by the callback */ void *app_data; /* Keygen callback */ EVP_PKEY_gen_cb *pkey_gencb; /* implementation specific keygen data */ int *keygen_info; int keygen_info_count; /* Legacy fields below */ /* EVP_PKEY identity */ int legacy_keytype; /* Method associated with this operation */ const EVP_PKEY_METHOD *pmeth; /* Engine that implements this method or NULL if builtin */ ENGINE *engine; /* Key: may be NULL */ EVP_PKEY *pkey; /* Peer key for key agreement, may be NULL */ EVP_PKEY *peerkey; /* Algorithm specific data */ void *data; /* Indicator if digest_custom needs to be called */ unsigned int flag_call_digest_custom:1; } /* EVP_PKEY_CTX */ ; #define EVP_PKEY_FLAG_DYNAMIC 1 struct evp_pkey_method_st { int pkey_id; int flags; int (*init) (EVP_PKEY_CTX *ctx); int (*copy) (EVP_PKEY_CTX *dst, const EVP_PKEY_CTX *src); void (*cleanup) (EVP_PKEY_CTX *ctx); int (*paramgen_init) (EVP_PKEY_CTX *ctx); int (*paramgen) (EVP_PKEY_CTX *ctx, EVP_PKEY *pkey); int (*keygen_init) (EVP_PKEY_CTX *ctx); int (*keygen) (EVP_PKEY_CTX *ctx, EVP_PKEY *pkey); int (*sign_init) (EVP_PKEY_CTX *ctx); int (*sign) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen); int (*verify_init) (EVP_PKEY_CTX *ctx); int (*verify) (EVP_PKEY_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen); int (*verify_recover_init) (EVP_PKEY_CTX *ctx); int (*verify_recover) (EVP_PKEY_CTX *ctx, unsigned char *rout, size_t *routlen, const unsigned char *sig, size_t siglen); int (*signctx_init) (EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx); int (*signctx) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, EVP_MD_CTX *mctx); int (*verifyctx_init) (EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx); int (*verifyctx) (EVP_PKEY_CTX *ctx, const unsigned char *sig, int siglen, EVP_MD_CTX *mctx); int (*encrypt_init) (EVP_PKEY_CTX *ctx); int (*encrypt) (EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen); int (*decrypt_init) (EVP_PKEY_CTX *ctx); int (*decrypt) (EVP_PKEY_CTX *ctx, unsigned char *out, size_t *outlen, const unsigned char *in, size_t inlen); int (*derive_init) (EVP_PKEY_CTX *ctx); int (*derive) (EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen); int (*ctrl) (EVP_PKEY_CTX *ctx, int type, int p1, void *p2); int (*ctrl_str) (EVP_PKEY_CTX *ctx, const char *type, const char *value); int (*digestsign) (EVP_MD_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen); int (*digestverify) (EVP_MD_CTX *ctx, const unsigned char *sig, size_t siglen, const unsigned char *tbs, size_t tbslen); int (*check) (EVP_PKEY *pkey); int (*public_check) (EVP_PKEY *pkey); int (*param_check) (EVP_PKEY *pkey); int (*digest_custom) (EVP_PKEY_CTX *ctx, EVP_MD_CTX *mctx); } /* EVP_PKEY_METHOD */ ; DEFINE_STACK_OF_CONST(EVP_PKEY_METHOD) void evp_pkey_set_cb_translate(BN_GENCB *cb, EVP_PKEY_CTX *ctx); const EVP_PKEY_METHOD *dh_pkey_method(void); const EVP_PKEY_METHOD *dhx_pkey_method(void); const EVP_PKEY_METHOD *dsa_pkey_method(void); const EVP_PKEY_METHOD *ec_pkey_method(void); const EVP_PKEY_METHOD *sm2_pkey_method(void); const EVP_PKEY_METHOD *ecx25519_pkey_method(void); const EVP_PKEY_METHOD *ecx448_pkey_method(void); const EVP_PKEY_METHOD *ed25519_pkey_method(void); const EVP_PKEY_METHOD *ed448_pkey_method(void); const EVP_PKEY_METHOD *rsa_pkey_method(void); const EVP_PKEY_METHOD *rsa_pss_pkey_method(void); struct evp_mac_st { OSSL_PROVIDER *prov; int name_id; CRYPTO_REF_COUNT refcnt; CRYPTO_RWLOCK *lock; OSSL_FUNC_mac_newctx_fn *newctx; OSSL_FUNC_mac_dupctx_fn *dupctx; OSSL_FUNC_mac_freectx_fn *freectx; OSSL_FUNC_mac_size_fn *size; OSSL_FUNC_mac_init_fn *init; OSSL_FUNC_mac_update_fn *update; OSSL_FUNC_mac_final_fn *final; OSSL_FUNC_mac_gettable_params_fn *gettable_params; OSSL_FUNC_mac_gettable_ctx_params_fn *gettable_ctx_params; OSSL_FUNC_mac_settable_ctx_params_fn *settable_ctx_params; OSSL_FUNC_mac_get_params_fn *get_params; OSSL_FUNC_mac_get_ctx_params_fn *get_ctx_params; OSSL_FUNC_mac_set_ctx_params_fn *set_ctx_params; }; struct evp_kdf_st { OSSL_PROVIDER *prov; int name_id; CRYPTO_REF_COUNT refcnt; CRYPTO_RWLOCK *lock; OSSL_FUNC_kdf_newctx_fn *newctx; OSSL_FUNC_kdf_dupctx_fn *dupctx; OSSL_FUNC_kdf_freectx_fn *freectx; OSSL_FUNC_kdf_reset_fn *reset; OSSL_FUNC_kdf_derive_fn *derive; OSSL_FUNC_kdf_gettable_params_fn *gettable_params; OSSL_FUNC_kdf_gettable_ctx_params_fn *gettable_ctx_params; OSSL_FUNC_kdf_settable_ctx_params_fn *settable_ctx_params; OSSL_FUNC_kdf_get_params_fn *get_params; OSSL_FUNC_kdf_get_ctx_params_fn *get_ctx_params; OSSL_FUNC_kdf_set_ctx_params_fn *set_ctx_params; }; struct evp_md_st { /* nid */ int type; /* Legacy structure members */ /* TODO(3.0): Remove these */ int pkey_type; int md_size; unsigned long flags; int (*init) (EVP_MD_CTX *ctx); int (*update) (EVP_MD_CTX *ctx, const void *data, size_t count); int (*final) (EVP_MD_CTX *ctx, unsigned char *md); int (*copy) (EVP_MD_CTX *to, const EVP_MD_CTX *from); int (*cleanup) (EVP_MD_CTX *ctx); int block_size; int ctx_size; /* how big does the ctx->md_data need to be */ /* control function */ int (*md_ctrl) (EVP_MD_CTX *ctx, int cmd, int p1, void *p2); /* New structure members */ /* TODO(3.0): Remove above comment when legacy has gone */ int name_id; OSSL_PROVIDER *prov; CRYPTO_REF_COUNT refcnt; CRYPTO_RWLOCK *lock; OSSL_FUNC_digest_newctx_fn *newctx; OSSL_FUNC_digest_init_fn *dinit; OSSL_FUNC_digest_update_fn *dupdate; OSSL_FUNC_digest_final_fn *dfinal; OSSL_FUNC_digest_digest_fn *digest; OSSL_FUNC_digest_freectx_fn *freectx; OSSL_FUNC_digest_dupctx_fn *dupctx; OSSL_FUNC_digest_get_params_fn *get_params; OSSL_FUNC_digest_set_ctx_params_fn *set_ctx_params; OSSL_FUNC_digest_get_ctx_params_fn *get_ctx_params; OSSL_FUNC_digest_gettable_params_fn *gettable_params; OSSL_FUNC_digest_settable_ctx_params_fn *settable_ctx_params; OSSL_FUNC_digest_gettable_ctx_params_fn *gettable_ctx_params; } /* EVP_MD */ ; struct evp_cipher_st { int nid; int block_size; /* Default value for variable length ciphers */ int key_len; int iv_len; /* Legacy structure members */ /* TODO(3.0): Remove these */ /* Various flags */ unsigned long flags; /* init key */ int (*init) (EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); /* encrypt/decrypt data */ int (*do_cipher) (EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl); /* cleanup ctx */ int (*cleanup) (EVP_CIPHER_CTX *); /* how big ctx->cipher_data needs to be */ int ctx_size; /* Populate a ASN1_TYPE with parameters */ int (*set_asn1_parameters) (EVP_CIPHER_CTX *, ASN1_TYPE *); /* Get parameters from a ASN1_TYPE */ int (*get_asn1_parameters) (EVP_CIPHER_CTX *, ASN1_TYPE *); /* Miscellaneous operations */ int (*ctrl) (EVP_CIPHER_CTX *, int type, int arg, void *ptr); /* Application data */ void *app_data; /* New structure members */ /* TODO(3.0): Remove above comment when legacy has gone */ int name_id; OSSL_PROVIDER *prov; CRYPTO_REF_COUNT refcnt; CRYPTO_RWLOCK *lock; OSSL_FUNC_cipher_newctx_fn *newctx; OSSL_FUNC_cipher_encrypt_init_fn *einit; OSSL_FUNC_cipher_decrypt_init_fn *dinit; OSSL_FUNC_cipher_update_fn *cupdate; OSSL_FUNC_cipher_final_fn *cfinal; OSSL_FUNC_cipher_cipher_fn *ccipher; OSSL_FUNC_cipher_freectx_fn *freectx; OSSL_FUNC_cipher_dupctx_fn *dupctx; OSSL_FUNC_cipher_get_params_fn *get_params; OSSL_FUNC_cipher_get_ctx_params_fn *get_ctx_params; OSSL_FUNC_cipher_set_ctx_params_fn *set_ctx_params; OSSL_FUNC_cipher_gettable_params_fn *gettable_params; OSSL_FUNC_cipher_gettable_ctx_params_fn *gettable_ctx_params; OSSL_FUNC_cipher_settable_ctx_params_fn *settable_ctx_params; } /* EVP_CIPHER */ ; /* Macros to code block cipher wrappers */ /* Wrapper functions for each cipher mode */ #define EVP_C_DATA(kstruct, ctx) \ ((kstruct *)EVP_CIPHER_CTX_get_cipher_data(ctx)) #define BLOCK_CIPHER_ecb_loop() \ size_t i, bl; \ bl = EVP_CIPHER_CTX_cipher(ctx)->block_size; \ if (inl < bl) return 1;\ inl -= bl; \ for (i=0; i <= inl; i+=bl) #define BLOCK_CIPHER_func_ecb(cname, cprefix, kstruct, ksched) \ static int cname##_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) \ {\ BLOCK_CIPHER_ecb_loop() \ cprefix##_ecb_encrypt(in + i, out + i, &EVP_C_DATA(kstruct,ctx)->ksched, EVP_CIPHER_CTX_encrypting(ctx)); \ return 1;\ } #define EVP_MAXCHUNK ((size_t)1<<(sizeof(long)*8-2)) #define BLOCK_CIPHER_func_ofb(cname, cprefix, cbits, kstruct, ksched) \ static int cname##_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) \ {\ while(inl>=EVP_MAXCHUNK) {\ int num = EVP_CIPHER_CTX_num(ctx);\ cprefix##_ofb##cbits##_encrypt(in, out, (long)EVP_MAXCHUNK, &EVP_C_DATA(kstruct,ctx)->ksched, ctx->iv, &num); \ EVP_CIPHER_CTX_set_num(ctx, num);\ inl-=EVP_MAXCHUNK;\ in +=EVP_MAXCHUNK;\ out+=EVP_MAXCHUNK;\ }\ if (inl) {\ int num = EVP_CIPHER_CTX_num(ctx);\ cprefix##_ofb##cbits##_encrypt(in, out, (long)inl, &EVP_C_DATA(kstruct,ctx)->ksched, ctx->iv, &num); \ EVP_CIPHER_CTX_set_num(ctx, num);\ }\ return 1;\ } #define BLOCK_CIPHER_func_cbc(cname, cprefix, kstruct, ksched) \ static int cname##_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) \ {\ while(inl>=EVP_MAXCHUNK) \ {\ cprefix##_cbc_encrypt(in, out, (long)EVP_MAXCHUNK, &EVP_C_DATA(kstruct,ctx)->ksched, ctx->iv, EVP_CIPHER_CTX_encrypting(ctx));\ inl-=EVP_MAXCHUNK;\ in +=EVP_MAXCHUNK;\ out+=EVP_MAXCHUNK;\ }\ if (inl)\ cprefix##_cbc_encrypt(in, out, (long)inl, &EVP_C_DATA(kstruct,ctx)->ksched, ctx->iv, EVP_CIPHER_CTX_encrypting(ctx));\ return 1;\ } #define BLOCK_CIPHER_func_cfb(cname, cprefix, cbits, kstruct, ksched) \ static int cname##_cfb##cbits##_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inl) \ {\ size_t chunk = EVP_MAXCHUNK;\ if (cbits == 1) chunk >>= 3;\ if (inl < chunk) chunk = inl;\ while (inl && inl >= chunk)\ {\ int num = EVP_CIPHER_CTX_num(ctx);\ cprefix##_cfb##cbits##_encrypt(in, out, (long) \ ((cbits == 1) \ && !EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS) \ ? chunk*8 : chunk), \ &EVP_C_DATA(kstruct, ctx)->ksched, ctx->iv,\ &num, EVP_CIPHER_CTX_encrypting(ctx));\ EVP_CIPHER_CTX_set_num(ctx, num);\ inl -= chunk;\ in += chunk;\ out += chunk;\ if (inl < chunk) chunk = inl;\ }\ return 1;\ } #define BLOCK_CIPHER_all_funcs(cname, cprefix, cbits, kstruct, ksched) \ BLOCK_CIPHER_func_cbc(cname, cprefix, kstruct, ksched) \ BLOCK_CIPHER_func_cfb(cname, cprefix, cbits, kstruct, ksched) \ BLOCK_CIPHER_func_ecb(cname, cprefix, kstruct, ksched) \ BLOCK_CIPHER_func_ofb(cname, cprefix, cbits, kstruct, ksched) #define BLOCK_CIPHER_def1(cname, nmode, mode, MODE, kstruct, nid, block_size, \ key_len, iv_len, flags, init_key, cleanup, \ set_asn1, get_asn1, ctrl) \ static const EVP_CIPHER cname##_##mode = { \ nid##_##nmode, block_size, key_len, iv_len, \ flags | EVP_CIPH_##MODE##_MODE, \ init_key, \ cname##_##mode##_cipher, \ cleanup, \ sizeof(kstruct), \ set_asn1, get_asn1,\ ctrl, \ NULL \ }; \ const EVP_CIPHER *EVP_##cname##_##mode(void) { return &cname##_##mode; } #define BLOCK_CIPHER_def_cbc(cname, kstruct, nid, block_size, key_len, \ iv_len, flags, init_key, cleanup, set_asn1, \ get_asn1, ctrl) \ BLOCK_CIPHER_def1(cname, cbc, cbc, CBC, kstruct, nid, block_size, key_len, \ iv_len, flags, init_key, cleanup, set_asn1, get_asn1, ctrl) #define BLOCK_CIPHER_def_cfb(cname, kstruct, nid, key_len, \ iv_len, cbits, flags, init_key, cleanup, \ set_asn1, get_asn1, ctrl) \ BLOCK_CIPHER_def1(cname, cfb##cbits, cfb##cbits, CFB, kstruct, nid, 1, \ key_len, iv_len, flags, init_key, cleanup, set_asn1, \ get_asn1, ctrl) #define BLOCK_CIPHER_def_ofb(cname, kstruct, nid, key_len, \ iv_len, cbits, flags, init_key, cleanup, \ set_asn1, get_asn1, ctrl) \ BLOCK_CIPHER_def1(cname, ofb##cbits, ofb, OFB, kstruct, nid, 1, \ key_len, iv_len, flags, init_key, cleanup, set_asn1, \ get_asn1, ctrl) #define BLOCK_CIPHER_def_ecb(cname, kstruct, nid, block_size, key_len, \ flags, init_key, cleanup, set_asn1, \ get_asn1, ctrl) \ BLOCK_CIPHER_def1(cname, ecb, ecb, ECB, kstruct, nid, block_size, key_len, \ 0, flags, init_key, cleanup, set_asn1, get_asn1, ctrl) #define BLOCK_CIPHER_defs(cname, kstruct, \ nid, block_size, key_len, iv_len, cbits, flags, \ init_key, cleanup, set_asn1, get_asn1, ctrl) \ BLOCK_CIPHER_def_cbc(cname, kstruct, nid, block_size, key_len, iv_len, flags, \ init_key, cleanup, set_asn1, get_asn1, ctrl) \ BLOCK_CIPHER_def_cfb(cname, kstruct, nid, key_len, iv_len, cbits, \ flags, init_key, cleanup, set_asn1, get_asn1, ctrl) \ BLOCK_CIPHER_def_ofb(cname, kstruct, nid, key_len, iv_len, cbits, \ flags, init_key, cleanup, set_asn1, get_asn1, ctrl) \ BLOCK_CIPHER_def_ecb(cname, kstruct, nid, block_size, key_len, flags, \ init_key, cleanup, set_asn1, get_asn1, ctrl) /*- #define BLOCK_CIPHER_defs(cname, kstruct, \ nid, block_size, key_len, iv_len, flags,\ init_key, cleanup, set_asn1, get_asn1, ctrl)\ static const EVP_CIPHER cname##_cbc = {\ nid##_cbc, block_size, key_len, iv_len, \ flags | EVP_CIPH_CBC_MODE,\ init_key,\ cname##_cbc_cipher,\ cleanup,\ sizeof(EVP_CIPHER_CTX)-sizeof((((EVP_CIPHER_CTX *)NULL)->c))+\ sizeof((((EVP_CIPHER_CTX *)NULL)->c.kstruct)),\ set_asn1, get_asn1,\ ctrl, \ NULL \ };\ const EVP_CIPHER *EVP_##cname##_cbc(void) { return &cname##_cbc; }\ static const EVP_CIPHER cname##_cfb = {\ nid##_cfb64, 1, key_len, iv_len, \ flags | EVP_CIPH_CFB_MODE,\ init_key,\ cname##_cfb_cipher,\ cleanup,\ sizeof(EVP_CIPHER_CTX)-sizeof((((EVP_CIPHER_CTX *)NULL)->c))+\ sizeof((((EVP_CIPHER_CTX *)NULL)->c.kstruct)),\ set_asn1, get_asn1,\ ctrl,\ NULL \ };\ const EVP_CIPHER *EVP_##cname##_cfb(void) { return &cname##_cfb; }\ static const EVP_CIPHER cname##_ofb = {\ nid##_ofb64, 1, key_len, iv_len, \ flags | EVP_CIPH_OFB_MODE,\ init_key,\ cname##_ofb_cipher,\ cleanup,\ sizeof(EVP_CIPHER_CTX)-sizeof((((EVP_CIPHER_CTX *)NULL)->c))+\ sizeof((((EVP_CIPHER_CTX *)NULL)->c.kstruct)),\ set_asn1, get_asn1,\ ctrl,\ NULL \ };\ const EVP_CIPHER *EVP_##cname##_ofb(void) { return &cname##_ofb; }\ static const EVP_CIPHER cname##_ecb = {\ nid##_ecb, block_size, key_len, iv_len, \ flags | EVP_CIPH_ECB_MODE,\ init_key,\ cname##_ecb_cipher,\ cleanup,\ sizeof(EVP_CIPHER_CTX)-sizeof((((EVP_CIPHER_CTX *)NULL)->c))+\ sizeof((((EVP_CIPHER_CTX *)NULL)->c.kstruct)),\ set_asn1, get_asn1,\ ctrl,\ NULL \ };\ const EVP_CIPHER *EVP_##cname##_ecb(void) { return &cname##_ecb; } */ #define IMPLEMENT_BLOCK_CIPHER(cname, ksched, cprefix, kstruct, nid, \ block_size, key_len, iv_len, cbits, \ flags, init_key, \ cleanup, set_asn1, get_asn1, ctrl) \ BLOCK_CIPHER_all_funcs(cname, cprefix, cbits, kstruct, ksched) \ BLOCK_CIPHER_defs(cname, kstruct, nid, block_size, key_len, iv_len, \ cbits, flags, init_key, cleanup, set_asn1, \ get_asn1, ctrl) #define IMPLEMENT_CFBR(cipher,cprefix,kstruct,ksched,keysize,cbits,iv_len,fl) \ BLOCK_CIPHER_func_cfb(cipher##_##keysize,cprefix,cbits,kstruct,ksched) \ BLOCK_CIPHER_def_cfb(cipher##_##keysize,kstruct, \ NID_##cipher##_##keysize, keysize/8, iv_len, cbits, \ (fl)|EVP_CIPH_FLAG_DEFAULT_ASN1, \ cipher##_init_key, NULL, NULL, NULL, NULL) typedef struct { unsigned char iv[EVP_MAX_IV_LENGTH]; unsigned int iv_len; unsigned int tag_len; } evp_cipher_aead_asn1_params; int evp_cipher_param_to_asn1_ex(EVP_CIPHER_CTX *c, ASN1_TYPE *type, evp_cipher_aead_asn1_params *params); int evp_cipher_asn1_to_param_ex(EVP_CIPHER_CTX *c, ASN1_TYPE *type, evp_cipher_aead_asn1_params *params); /* * An EVP_PKEY can have the following states: * * untyped & empty: * * type == EVP_PKEY_NONE && keymgmt == NULL * * typed & empty: * * (type != EVP_PKEY_NONE && pkey.ptr == NULL) ## legacy (libcrypto only) * || (keymgmt != NULL && keydata == NULL) ## provider side * * fully assigned: * * (type != EVP_PKEY_NONE && pkey.ptr != NULL) ## legacy (libcrypto only) * || (keymgmt != NULL && keydata != NULL) ## provider side * * The easiest way to detect a legacy key is: * * keymgmt == NULL && type != EVP_PKEY_NONE * * The easiest way to detect a provider side key is: * * keymgmt != NULL */ #define evp_pkey_is_blank(pk) \ ((pk)->type == EVP_PKEY_NONE && (pk)->keymgmt == NULL) #define evp_pkey_is_typed(pk) \ ((pk)->type != EVP_PKEY_NONE || (pk)->keymgmt != NULL) #define evp_pkey_is_assigned(pk) \ ((pk)->pkey.ptr != NULL || (pk)->keydata != NULL) #define evp_pkey_is_legacy(pk) \ ((pk)->type != EVP_PKEY_NONE && (pk)->keymgmt == NULL) #define evp_pkey_is_provided(pk) \ ((pk)->keymgmt != NULL) struct evp_pkey_st { /* == Legacy attributes == */ int type; int save_type; # ifndef FIPS_MODULE /* * Legacy key "origin" is composed of a pointer to an EVP_PKEY_ASN1_METHOD, * a pointer to a low level key and possibly a pointer to an engine. */ const EVP_PKEY_ASN1_METHOD *ameth; ENGINE *engine; ENGINE *pmeth_engine; /* If not NULL public key ENGINE to use */ union { void *ptr; # ifndef OPENSSL_NO_RSA struct rsa_st *rsa; /* RSA */ # endif # ifndef OPENSSL_NO_DSA struct dsa_st *dsa; /* DSA */ # endif # ifndef OPENSSL_NO_DH struct dh_st *dh; /* DH */ # endif # ifndef OPENSSL_NO_EC struct ec_key_st *ec; /* ECC */ ECX_KEY *ecx; /* X25519, X448, Ed25519, Ed448 */ # endif } pkey; # endif /* == Common attributes == */ /* If these are modified, so must evp_pkey_downgrade() */ CRYPTO_REF_COUNT references; CRYPTO_RWLOCK *lock; STACK_OF(X509_ATTRIBUTE) *attributes; /* [ 0 ] */ int save_parameters; #ifndef FIPS_MODULE CRYPTO_EX_DATA ex_data; #endif /* == Provider attributes == */ /* * Provider keydata "origin" is composed of a pointer to an EVP_KEYMGMT * and a pointer to the provider side key data. This is never used at * the same time as the legacy key data above. */ EVP_KEYMGMT *keymgmt; void *keydata; /* * If any libcrypto code does anything that may modify the keydata * contents, this dirty counter must be incremented. */ size_t dirty_cnt; /* * To support transparent execution of operation in backends other * than the "origin" key, we support transparent export/import to * those providers, and maintain a cache of the imported keydata, * so we don't need to redo the export/import every time we perform * the same operation in that same provider. * This requires that the "origin" backend (whether it's a legacy or a * provider "origin") implements exports, and that the target provider * has an EVP_KEYMGMT that implements import. * * The cache limit is set at 10 different providers using the same * "origin". It's probably over the top, but is preferable to too * few. */ struct { EVP_KEYMGMT *keymgmt; void *keydata; } operation_cache[10]; /* * We keep a copy of that "origin"'s dirty count, so we know if the * operation cache needs flushing. */ size_t dirty_cnt_copy; /* Cache of key object information */ struct { int bits; int security_bits; int size; } cache; } /* EVP_PKEY */ ; #define EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx) \ ((ctx)->operation == EVP_PKEY_OP_SIGN \ || (ctx)->operation == EVP_PKEY_OP_SIGNCTX \ || (ctx)->operation == EVP_PKEY_OP_VERIFY \ || (ctx)->operation == EVP_PKEY_OP_VERIFYCTX \ || (ctx)->operation == EVP_PKEY_OP_VERIFYRECOVER) #define EVP_PKEY_CTX_IS_DERIVE_OP(ctx) \ ((ctx)->operation == EVP_PKEY_OP_DERIVE) #define EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx) \ ((ctx)->operation == EVP_PKEY_OP_ENCRYPT \ || (ctx)->operation == EVP_PKEY_OP_DECRYPT) #define EVP_PKEY_CTX_IS_GEN_OP(ctx) \ ((ctx)->operation == EVP_PKEY_OP_PARAMGEN \ || (ctx)->operation == EVP_PKEY_OP_KEYGEN) void openssl_add_all_ciphers_int(void); void openssl_add_all_digests_int(void); void evp_cleanup_int(void); void evp_app_cleanup_int(void); void *evp_pkey_export_to_provider(EVP_PKEY *pk, OPENSSL_CTX *libctx, EVP_KEYMGMT **keymgmt, const char *propquery); #ifndef FIPS_MODULE int evp_pkey_copy_downgraded(EVP_PKEY **dest, const EVP_PKEY *src); int evp_pkey_downgrade(EVP_PKEY *pk); void evp_pkey_free_legacy(EVP_PKEY *x); #endif /* * KEYMGMT utility functions */ /* * Key import structure and helper function, to be used as an export callback */ struct evp_keymgmt_util_try_import_data_st { EVP_KEYMGMT *keymgmt; void *keydata; int selection; }; int evp_keymgmt_util_try_import(const OSSL_PARAM params[], void *arg); int evp_keymgmt_util_assign_pkey(EVP_PKEY *pkey, EVP_KEYMGMT *keymgmt, void *keydata); EVP_PKEY *evp_keymgmt_util_make_pkey(EVP_KEYMGMT *keymgmt, void *keydata); void *evp_keymgmt_util_export_to_provider(EVP_PKEY *pk, EVP_KEYMGMT *keymgmt); size_t evp_keymgmt_util_find_operation_cache_index(EVP_PKEY *pk, EVP_KEYMGMT *keymgmt); void evp_keymgmt_util_clear_operation_cache(EVP_PKEY *pk); int evp_keymgmt_util_cache_keydata(EVP_PKEY *pk, size_t index, EVP_KEYMGMT *keymgmt, void *keydata); void evp_keymgmt_util_cache_keyinfo(EVP_PKEY *pk); void *evp_keymgmt_util_fromdata(EVP_PKEY *target, EVP_KEYMGMT *keymgmt, int selection, const OSSL_PARAM params[]); int evp_keymgmt_util_has(EVP_PKEY *pk, int selection); int evp_keymgmt_util_match(EVP_PKEY *pk1, EVP_PKEY *pk2, int selection); int evp_keymgmt_util_copy(EVP_PKEY *to, EVP_PKEY *from, int selection); void *evp_keymgmt_util_gen(EVP_PKEY *target, EVP_KEYMGMT *keymgmt, void *genctx, OSSL_CALLBACK *cb, void *cbarg); int evp_keymgmt_util_get_deflt_digest_name(EVP_KEYMGMT *keymgmt, void *keydata, char *mdname, size_t mdname_sz); /* * KEYMGMT provider interface functions */ void *evp_keymgmt_newdata(const EVP_KEYMGMT *keymgmt); void evp_keymgmt_freedata(const EVP_KEYMGMT *keymgmt, void *keyddata); int evp_keymgmt_get_params(const EVP_KEYMGMT *keymgmt, void *keydata, OSSL_PARAM params[]); int evp_keymgmt_set_params(const EVP_KEYMGMT *keymgmt, void *keydata, const OSSL_PARAM params[]); void *evp_keymgmt_gen_init(const EVP_KEYMGMT *keymgmt, int selection); int evp_keymgmt_gen_set_template(const EVP_KEYMGMT *keymgmt, void *genctx, void *template); int evp_keymgmt_gen_set_params(const EVP_KEYMGMT *keymgmt, void *genctx, const OSSL_PARAM params[]); void *evp_keymgmt_gen(const EVP_KEYMGMT *keymgmt, void *genctx, OSSL_CALLBACK *cb, void *cbarg); void evp_keymgmt_gen_cleanup(const EVP_KEYMGMT *keymgmt, void *genctx); void *evp_keymgmt_load(const EVP_KEYMGMT *keymgmt, const void *objref, size_t objref_sz); int evp_keymgmt_has(const EVP_KEYMGMT *keymgmt, void *keyddata, int selection); int evp_keymgmt_validate(const EVP_KEYMGMT *keymgmt, void *keydata, int selection); int evp_keymgmt_match(const EVP_KEYMGMT *keymgmt, const void *keydata1, const void *keydata2, int selection); int evp_keymgmt_import(const EVP_KEYMGMT *keymgmt, void *keydata, int selection, const OSSL_PARAM params[]); const OSSL_PARAM *evp_keymgmt_import_types(const EVP_KEYMGMT *keymgmt, int selection); int evp_keymgmt_export(const EVP_KEYMGMT *keymgmt, void *keydata, int selection, OSSL_CALLBACK *param_cb, void *cbarg); const OSSL_PARAM *evp_keymgmt_export_types(const EVP_KEYMGMT *keymgmt, int selection); int evp_keymgmt_copy(const EVP_KEYMGMT *keymgmt, void *keydata_to, const void *keydata_from, int selection); /* Pulling defines out of C source files */ #define EVP_RC4_KEY_SIZE 16 #ifndef TLS1_1_VERSION # define TLS1_1_VERSION 0x0302 #endif void evp_encode_ctx_set_flags(EVP_ENCODE_CTX *ctx, unsigned int flags); /* EVP_ENCODE_CTX flags */ /* Don't generate new lines when encoding */ #define EVP_ENCODE_CTX_NO_NEWLINES 1 /* Use the SRP base64 alphabet instead of the standard one */ #define EVP_ENCODE_CTX_USE_SRP_ALPHABET 2 const EVP_CIPHER *evp_get_cipherbyname_ex(OPENSSL_CTX *libctx, const char *name); const EVP_MD *evp_get_digestbyname_ex(OPENSSL_CTX *libctx, const char *name); int pkcs5_pbkdf2_hmac_with_libctx(const char *pass, int passlen, const unsigned char *salt, int saltlen, int iter, const EVP_MD *digest, int keylen, unsigned char *out, OPENSSL_CTX *libctx, const char *propq); #ifndef FIPS_MODULE /* * Internal helpers for stricter EVP_PKEY_CTX_{set,get}_params(). * * Return 1 on success, 0 or negative for errors. * * In particular they return -2 if any of the params is not supported. * * They are not available in FIPS_MODULE as they depend on * - EVP_PKEY_CTX_{get,set}_params() * - EVP_PKEY_CTX_{gettable,settable}_params() * */ int evp_pkey_ctx_set_params_strict(EVP_PKEY_CTX *ctx, OSSL_PARAM *params); int evp_pkey_ctx_get_params_strict(EVP_PKEY_CTX *ctx, OSSL_PARAM *params); EVP_MD_CTX *evp_md_ctx_new_with_libctx(EVP_PKEY *pkey, const ASN1_OCTET_STRING *id, OPENSSL_CTX *libctx, const char *propq); int evp_pkey_name2type(const char *name); int evp_pkey_ctx_set1_id_prov(EVP_PKEY_CTX *ctx, const void *id, int len); int evp_pkey_ctx_get1_id_prov(EVP_PKEY_CTX *ctx, void *id); int evp_pkey_ctx_get1_id_len_prov(EVP_PKEY_CTX *ctx, size_t *id_len); int evp_pkey_ctx_use_cached_data(EVP_PKEY_CTX *ctx); #endif /* !defined(FIPS_MODULE) */ void evp_method_store_flush(OPENSSL_CTX *libctx); int evp_set_default_properties_int(OPENSSL_CTX *libctx, const char *propq, int loadconfig); void evp_md_ctx_clear_digest(EVP_MD_CTX *ctx, int force);