/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. * * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to. The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code. The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). * * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * "This product includes cryptographic software written by * Eric Young (eay@cryptsoft.com)" * The word 'cryptographic' can be left out if the rouines from the library * being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from * the apps directory (application code) you must include an acknowledgement: * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" * * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed. i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */ /* ==================================================================== * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. * * Portions of the attached software ("Contribution") are developed by * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. * * The Contribution is licensed pursuant to the Eric Young open source * license provided above. * * The binary polynomial arithmetic software is originally written by * Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories. * */ #include #include #include #include "e_os.h" #include #include #include #include #include #include "../crypto/bn/bn_lcl.h" static const int num0 = 100; /* number of tests */ static const int num1 = 50; /* additional tests for some functions */ static const int num2 = 5; /* number of tests for slow functions */ int test_add(BIO *bp); int test_sub(BIO *bp); int test_lshift1(BIO *bp); int test_lshift(BIO *bp, BN_CTX *ctx, BIGNUM *a_); int test_rshift1(BIO *bp); int test_rshift(BIO *bp, BN_CTX *ctx); int test_div(BIO *bp, BN_CTX *ctx); int test_div_word(BIO *bp); int test_div_recp(BIO *bp, BN_CTX *ctx); int test_mul(BIO *bp); int test_sqr(BIO *bp, BN_CTX *ctx); int test_mont(BIO *bp, BN_CTX *ctx); int test_mod(BIO *bp, BN_CTX *ctx); int test_mod_mul(BIO *bp, BN_CTX *ctx); int test_mod_exp(BIO *bp, BN_CTX *ctx); int test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx); int test_mod_exp_mont5(BIO *bp, BN_CTX *ctx); int test_exp(BIO *bp, BN_CTX *ctx); int test_gf2m_add(BIO *bp); int test_gf2m_mod(BIO *bp); int test_gf2m_mod_mul(BIO *bp, BN_CTX *ctx); int test_gf2m_mod_sqr(BIO *bp, BN_CTX *ctx); int test_gf2m_mod_inv(BIO *bp, BN_CTX *ctx); int test_gf2m_mod_div(BIO *bp, BN_CTX *ctx); int test_gf2m_mod_exp(BIO *bp, BN_CTX *ctx); int test_gf2m_mod_sqrt(BIO *bp, BN_CTX *ctx); int test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx); int test_kron(BIO *bp, BN_CTX *ctx); int test_sqrt(BIO *bp, BN_CTX *ctx); int test_small_prime(BIO *bp, BN_CTX *ctx); int rand_neg(void); static int results = 0; static unsigned char lst[] = "\xC6\x4F\x43\x04\x2A\xEA\xCA\x6E\x58\x36\x80\x5B\xE8\xC9" "\x9B\x04\x5D\x48\x36\xC2\xFD\x16\xC9\x64\xF0"; static const char rnd_seed[] = "string to make the random number generator think it has entropy"; static void message(BIO *out, char *m) { fprintf(stderr, "test %s\n", m); BIO_puts(out, "print \"test "); BIO_puts(out, m); BIO_puts(out, "\\n\"\n"); } int main(int argc, char *argv[]) { BN_CTX *ctx; BIO *out; char *outfile = NULL; results = 0; RAND_seed(rnd_seed, sizeof rnd_seed); /* or BN_generate_prime may fail */ argc--; argv++; while (argc >= 1) { if (strcmp(*argv, "-results") == 0) results = 1; else if (strcmp(*argv, "-out") == 0) { if (--argc < 1) break; outfile = *(++argv); } argc--; argv++; } ctx = BN_CTX_new(); if (ctx == NULL) EXIT(1); out = BIO_new(BIO_s_file()); if (out == NULL) EXIT(1); if (outfile == NULL) { BIO_set_fp(out, stdout, BIO_NOCLOSE | BIO_FP_TEXT); } else { if (!BIO_write_filename(out, outfile)) { perror(outfile); EXIT(1); } } #ifdef OPENSSL_SYS_VMS { BIO *tmpbio = BIO_new(BIO_f_linebuffer()); out = BIO_push(tmpbio, out); } #endif if (!results) BIO_puts(out, "obase=16\nibase=16\n"); message(out, "BN_add"); if (!test_add(out)) goto err; (void)BIO_flush(out); message(out, "BN_sub"); if (!test_sub(out)) goto err; (void)BIO_flush(out); message(out, "BN_lshift1"); if (!test_lshift1(out)) goto err; (void)BIO_flush(out); message(out, "BN_lshift (fixed)"); if (!test_lshift(out, ctx, BN_bin2bn(lst, sizeof(lst) - 1, NULL))) goto err; (void)BIO_flush(out); message(out, "BN_lshift"); if (!test_lshift(out, ctx, NULL)) goto err; (void)BIO_flush(out); message(out, "BN_rshift1"); if (!test_rshift1(out)) goto err; (void)BIO_flush(out); message(out, "BN_rshift"); if (!test_rshift(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_sqr"); if (!test_sqr(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_mul"); if (!test_mul(out)) goto err; (void)BIO_flush(out); message(out, "BN_div"); if (!test_div(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_div_word"); if (!test_div_word(out)) goto err; (void)BIO_flush(out); message(out, "BN_div_recp"); if (!test_div_recp(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_mod"); if (!test_mod(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_mod_mul"); if (!test_mod_mul(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_mont"); if (!test_mont(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_mod_exp"); if (!test_mod_exp(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_mod_exp_mont_consttime"); if (!test_mod_exp_mont_consttime(out, ctx)) goto err; if (!test_mod_exp_mont5(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_exp"); if (!test_exp(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_kronecker"); if (!test_kron(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_mod_sqrt"); if (!test_sqrt(out, ctx)) goto err; (void)BIO_flush(out); message(out, "Small prime generation"); if (!test_small_prime(out, ctx)) goto err; (void)BIO_flush(out); #ifndef OPENSSL_NO_EC2M message(out, "BN_GF2m_add"); if (!test_gf2m_add(out)) goto err; (void)BIO_flush(out); message(out, "BN_GF2m_mod"); if (!test_gf2m_mod(out)) goto err; (void)BIO_flush(out); message(out, "BN_GF2m_mod_mul"); if (!test_gf2m_mod_mul(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_GF2m_mod_sqr"); if (!test_gf2m_mod_sqr(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_GF2m_mod_inv"); if (!test_gf2m_mod_inv(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_GF2m_mod_div"); if (!test_gf2m_mod_div(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_GF2m_mod_exp"); if (!test_gf2m_mod_exp(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_GF2m_mod_sqrt"); if (!test_gf2m_mod_sqrt(out, ctx)) goto err; (void)BIO_flush(out); message(out, "BN_GF2m_mod_solve_quad"); if (!test_gf2m_mod_solve_quad(out, ctx)) goto err; (void)BIO_flush(out); #endif BN_CTX_free(ctx); BIO_free(out); EXIT(0); err: BIO_puts(out, "1\n"); /* make sure the Perl script fed by bc * notices the failure, see test_bn in * test/Makefile.ssl */ (void)BIO_flush(out); ERR_load_crypto_strings(); ERR_print_errors_fp(stderr); EXIT(1); } int test_add(BIO *bp) { BIGNUM *a, *b, *c; int i; a = BN_new(); b = BN_new(); c = BN_new(); BN_bntest_rand(a, 512, 0, 0); for (i = 0; i < num0; i++) { BN_bntest_rand(b, 450 + i, 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); BN_add(c, a, b); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " + "); BN_print(bp, b); BIO_puts(bp, " - "); } BN_print(bp, c); BIO_puts(bp, "\n"); } a->neg = !a->neg; b->neg = !b->neg; BN_add(c, c, b); BN_add(c, c, a); if (!BN_is_zero(c)) { fprintf(stderr, "Add test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); return (1); } int test_sub(BIO *bp) { BIGNUM *a, *b, *c; int i; a = BN_new(); b = BN_new(); c = BN_new(); for (i = 0; i < num0 + num1; i++) { if (i < num1) { BN_bntest_rand(a, 512, 0, 0); BN_copy(b, a); if (BN_set_bit(a, i) == 0) return (0); BN_add_word(b, i); } else { BN_bntest_rand(b, 400 + i - num1, 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); } BN_sub(c, a, b); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " - "); BN_print(bp, b); BIO_puts(bp, " - "); } BN_print(bp, c); BIO_puts(bp, "\n"); } BN_add(c, c, b); BN_sub(c, c, a); if (!BN_is_zero(c)) { fprintf(stderr, "Subtract test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); return (1); } int test_div(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b, *c, *d, *e; int i; a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_one(a); BN_zero(b); if (BN_div(d, c, a, b, ctx)) { fprintf(stderr, "Division by zero succeeded!\n"); return 0; } for (i = 0; i < num0 + num1; i++) { if (i < num1) { BN_bntest_rand(a, 400, 0, 0); BN_copy(b, a); BN_lshift(a, a, i); BN_add_word(a, i); } else BN_bntest_rand(b, 50 + 3 * (i - num1), 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); BN_div(d, c, a, b, ctx); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " / "); BN_print(bp, b); BIO_puts(bp, " - "); } BN_print(bp, d); BIO_puts(bp, "\n"); if (!results) { BN_print(bp, a); BIO_puts(bp, " % "); BN_print(bp, b); BIO_puts(bp, " - "); } BN_print(bp, c); BIO_puts(bp, "\n"); } BN_mul(e, d, b, ctx); BN_add(d, e, c); BN_sub(d, d, a); if (!BN_is_zero(d)) { fprintf(stderr, "Division test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); return (1); } static void print_word(BIO *bp, BN_ULONG w) { int i = sizeof(w) * 8; char *fmt = NULL; unsigned char byte; do { i -= 8; byte = (unsigned char)(w >> i); if (fmt == NULL) fmt = byte ? "%X" : NULL; else fmt = "%02X"; if (fmt != NULL) BIO_printf(bp, fmt, byte); } while (i); /* If we haven't printed anything, at least print a zero! */ if (fmt == NULL) BIO_printf(bp, "0"); } int test_div_word(BIO *bp) { BIGNUM *a, *b; BN_ULONG r, s; int i; a = BN_new(); b = BN_new(); for (i = 0; i < num0; i++) { do { BN_bntest_rand(a, 512, -1, 0); BN_bntest_rand(b, BN_BITS2, -1, 0); } while (BN_is_zero(b)); s = b->d[0]; BN_copy(b, a); r = BN_div_word(b, s); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " / "); print_word(bp, s); BIO_puts(bp, " - "); } BN_print(bp, b); BIO_puts(bp, "\n"); if (!results) { BN_print(bp, a); BIO_puts(bp, " % "); print_word(bp, s); BIO_puts(bp, " - "); } print_word(bp, r); BIO_puts(bp, "\n"); } BN_mul_word(b, s); BN_add_word(b, r); BN_sub(b, a, b); if (!BN_is_zero(b)) { fprintf(stderr, "Division (word) test failed!\n"); return 0; } } BN_free(a); BN_free(b); return (1); } int test_div_recp(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b, *c, *d, *e; BN_RECP_CTX *recp; int i; recp = BN_RECP_CTX_new(); a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); for (i = 0; i < num0 + num1; i++) { if (i < num1) { BN_bntest_rand(a, 400, 0, 0); BN_copy(b, a); BN_lshift(a, a, i); BN_add_word(a, i); } else BN_bntest_rand(b, 50 + 3 * (i - num1), 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); BN_RECP_CTX_set(recp, b, ctx); BN_div_recp(d, c, a, recp, ctx); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " / "); BN_print(bp, b); BIO_puts(bp, " - "); } BN_print(bp, d); BIO_puts(bp, "\n"); if (!results) { BN_print(bp, a); BIO_puts(bp, " % "); BN_print(bp, b); BIO_puts(bp, " - "); } BN_print(bp, c); BIO_puts(bp, "\n"); } BN_mul(e, d, b, ctx); BN_add(d, e, c); BN_sub(d, d, a); if (!BN_is_zero(d)) { fprintf(stderr, "Reciprocal division test failed!\n"); fprintf(stderr, "a="); BN_print_fp(stderr, a); fprintf(stderr, "\nb="); BN_print_fp(stderr, b); fprintf(stderr, "\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); BN_RECP_CTX_free(recp); return (1); } int test_mul(BIO *bp) { BIGNUM *a, *b, *c, *d, *e; int i; BN_CTX *ctx; ctx = BN_CTX_new(); if (ctx == NULL) EXIT(1); a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); for (i = 0; i < num0 + num1; i++) { if (i <= num1) { BN_bntest_rand(a, 100, 0, 0); BN_bntest_rand(b, 100, 0, 0); } else BN_bntest_rand(b, i - num1, 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); BN_mul(c, a, b, ctx); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " * "); BN_print(bp, b); BIO_puts(bp, " - "); } BN_print(bp, c); BIO_puts(bp, "\n"); } BN_div(d, e, c, a, ctx); BN_sub(d, d, b); if (!BN_is_zero(d) || !BN_is_zero(e)) { fprintf(stderr, "Multiplication test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); BN_CTX_free(ctx); return (1); } int test_sqr(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *c, *d, *e; int i, ret = 0; a = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); if (a == NULL || c == NULL || d == NULL || e == NULL) { goto err; } for (i = 0; i < num0; i++) { BN_bntest_rand(a, 40 + i * 10, 0, 0); a->neg = rand_neg(); BN_sqr(c, a, ctx); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " * "); BN_print(bp, a); BIO_puts(bp, " - "); } BN_print(bp, c); BIO_puts(bp, "\n"); } BN_div(d, e, c, a, ctx); BN_sub(d, d, a); if (!BN_is_zero(d) || !BN_is_zero(e)) { fprintf(stderr, "Square test failed!\n"); goto err; } } /* Regression test for a BN_sqr overflow bug. */ BN_hex2bn(&a, "80000000000000008000000000000001" "FFFFFFFFFFFFFFFE0000000000000000"); BN_sqr(c, a, ctx); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " * "); BN_print(bp, a); BIO_puts(bp, " - "); } BN_print(bp, c); BIO_puts(bp, "\n"); } BN_mul(d, a, a, ctx); if (BN_cmp(c, d)) { fprintf(stderr, "Square test failed: BN_sqr and BN_mul produce " "different results!\n"); goto err; } /* Regression test for a BN_sqr overflow bug. */ BN_hex2bn(&a, "80000000000000000000000080000001" "FFFFFFFE000000000000000000000000"); BN_sqr(c, a, ctx); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " * "); BN_print(bp, a); BIO_puts(bp, " - "); } BN_print(bp, c); BIO_puts(bp, "\n"); } BN_mul(d, a, a, ctx); if (BN_cmp(c, d)) { fprintf(stderr, "Square test failed: BN_sqr and BN_mul produce " "different results!\n"); goto err; } ret = 1; err: BN_free(a); BN_free(c); BN_free(d); BN_free(e); return ret; } int test_mont(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b, *c, *d, *A, *B; BIGNUM *n; int i; BN_MONT_CTX *mont; a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); A = BN_new(); B = BN_new(); n = BN_new(); mont = BN_MONT_CTX_new(); if (mont == NULL) return 0; BN_zero(n); if (BN_MONT_CTX_set(mont, n, ctx)) { fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n"); return 0; } BN_set_word(n, 16); if (BN_MONT_CTX_set(mont, n, ctx)) { fprintf(stderr, "BN_MONT_CTX_set succeeded for even modulus!\n"); return 0; } BN_bntest_rand(a, 100, 0, 0); BN_bntest_rand(b, 100, 0, 0); for (i = 0; i < num2; i++) { int bits = (200 * (i + 1)) / num2; if (bits == 0) continue; BN_bntest_rand(n, bits, 0, 1); BN_MONT_CTX_set(mont, n, ctx); BN_nnmod(a, a, n, ctx); BN_nnmod(b, b, n, ctx); BN_to_montgomery(A, a, mont, ctx); BN_to_montgomery(B, b, mont, ctx); BN_mod_mul_montgomery(c, A, B, mont, ctx); BN_from_montgomery(A, c, mont, ctx); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " * "); BN_print(bp, b); BIO_puts(bp, " % "); BN_print(bp, &mont->N); BIO_puts(bp, " - "); } BN_print(bp, A); BIO_puts(bp, "\n"); } BN_mod_mul(d, a, b, n, ctx); BN_sub(d, d, A); if (!BN_is_zero(d)) { fprintf(stderr, "Montgomery multiplication test failed!\n"); return 0; } } BN_MONT_CTX_free(mont); BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(A); BN_free(B); BN_free(n); return (1); } int test_mod(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b, *c, *d, *e; int i; a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_bntest_rand(a, 1024, 0, 0); for (i = 0; i < num0; i++) { BN_bntest_rand(b, 450 + i * 10, 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); BN_mod(c, a, b, ctx); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " % "); BN_print(bp, b); BIO_puts(bp, " - "); } BN_print(bp, c); BIO_puts(bp, "\n"); } BN_div(d, e, a, b, ctx); BN_sub(e, e, c); if (!BN_is_zero(e)) { fprintf(stderr, "Modulo test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); return (1); } int test_mod_mul(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b, *c, *d, *e; int i, j; a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_one(a); BN_one(b); BN_zero(c); if (BN_mod_mul(e, a, b, c, ctx)) { fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n"); return 0; } for (j = 0; j < 3; j++) { BN_bntest_rand(c, 1024, 0, 0); for (i = 0; i < num0; i++) { BN_bntest_rand(a, 475 + i * 10, 0, 0); BN_bntest_rand(b, 425 + i * 11, 0, 0); a->neg = rand_neg(); b->neg = rand_neg(); if (!BN_mod_mul(e, a, b, c, ctx)) { unsigned long l; while ((l = ERR_get_error())) fprintf(stderr, "ERROR:%s\n", ERR_error_string(l, NULL)); EXIT(1); } if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " * "); BN_print(bp, b); BIO_puts(bp, " % "); BN_print(bp, c); if ((a->neg ^ b->neg) && !BN_is_zero(e)) { /* * If (a*b) % c is negative, c must be added in order * to obtain the normalized remainder (new with * OpenSSL 0.9.7, previous versions of BN_mod_mul * could generate negative results) */ BIO_puts(bp, " + "); BN_print(bp, c); } BIO_puts(bp, " - "); } BN_print(bp, e); BIO_puts(bp, "\n"); } BN_mul(d, a, b, ctx); BN_sub(d, d, e); BN_div(a, b, d, c, ctx); if (!BN_is_zero(b)) { fprintf(stderr, "Modulo multiply test failed!\n"); ERR_print_errors_fp(stderr); return 0; } } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); return (1); } int test_mod_exp(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b, *c, *d, *e; int i; a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_one(a); BN_one(b); BN_zero(c); if (BN_mod_exp(d, a, b, c, ctx)) { fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n"); return 0; } BN_bntest_rand(c, 30, 0, 1); /* must be odd for montgomery */ for (i = 0; i < num2; i++) { BN_bntest_rand(a, 20 + i * 5, 0, 0); BN_bntest_rand(b, 2 + i, 0, 0); if (!BN_mod_exp(d, a, b, c, ctx)) return (0); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " ^ "); BN_print(bp, b); BIO_puts(bp, " % "); BN_print(bp, c); BIO_puts(bp, " - "); } BN_print(bp, d); BIO_puts(bp, "\n"); } BN_exp(e, a, b, ctx); BN_sub(e, e, d); BN_div(a, b, e, c, ctx); if (!BN_is_zero(b)) { fprintf(stderr, "Modulo exponentiation test failed!\n"); return 0; } } /* Regression test for carry propagation bug in sqr8x_reduction */ BN_hex2bn(&a, "050505050505"); BN_hex2bn(&b, "02"); BN_hex2bn(&c, "4141414141414141414141274141414141414141414141414141414141414141" "4141414141414141414141414141414141414141414141414141414141414141" "4141414141414141414141800000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000000000000" "0000000000000000000000000000000000000000000000000000000001"); BN_mod_exp(d, a, b, c, ctx); BN_mul(e, a, a, ctx); if (BN_cmp(d, e)) { fprintf(stderr, "BN_mod_exp and BN_mul produce different results!\n"); return 0; } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); return (1); } int test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b, *c, *d, *e; int i; a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_one(a); BN_one(b); BN_zero(c); if (BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont_consttime with zero modulus " "succeeded\n"); return 0; } BN_set_word(c, 16); if (BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) { fprintf(stderr, "BN_mod_exp_mont_consttime with even modulus " "succeeded\n"); return 0; } BN_bntest_rand(c, 30, 0, 1); /* must be odd for montgomery */ for (i = 0; i < num2; i++) { BN_bntest_rand(a, 20 + i * 5, 0, 0); BN_bntest_rand(b, 2 + i, 0, 0); if (!BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) return (00); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " ^ "); BN_print(bp, b); BIO_puts(bp, " % "); BN_print(bp, c); BIO_puts(bp, " - "); } BN_print(bp, d); BIO_puts(bp, "\n"); } BN_exp(e, a, b, ctx); BN_sub(e, e, d); BN_div(a, b, e, c, ctx); if (!BN_is_zero(b)) { fprintf(stderr, "Modulo exponentiation test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); return (1); } /* * Test constant-time modular exponentiation with 1024-bit inputs, which on * x86_64 cause a different code branch to be taken. */ int test_mod_exp_mont5(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *p, *m, *d, *e; BN_MONT_CTX *mont; a = BN_new(); p = BN_new(); m = BN_new(); d = BN_new(); e = BN_new(); mont = BN_MONT_CTX_new(); BN_bntest_rand(m, 1024, 0, 1); /* must be odd for montgomery */ /* Zero exponent */ BN_bntest_rand(a, 1024, 0, 0); BN_zero(p); if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL)) return 0; if (!BN_is_one(d)) { fprintf(stderr, "Modular exponentiation test failed!\n"); return 0; } /* Zero input */ BN_bntest_rand(p, 1024, 0, 0); BN_zero(a); if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL)) return 0; if (!BN_is_zero(d)) { fprintf(stderr, "Modular exponentiation test failed!\n"); return 0; } /* * Craft an input whose Montgomery representation is 1, i.e., shorter * than the modulus m, in order to test the const time precomputation * scattering/gathering. */ BN_one(a); BN_MONT_CTX_set(mont, m, ctx); if (!BN_from_montgomery(e, a, mont, ctx)) return 0; if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL)) return 0; if (!BN_mod_exp_simple(a, e, p, m, ctx)) return 0; if (BN_cmp(a, d) != 0) { fprintf(stderr, "Modular exponentiation test failed!\n"); return 0; } /* Finally, some regular test vectors. */ BN_bntest_rand(e, 1024, 0, 0); if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL)) return 0; if (!BN_mod_exp_simple(a, e, p, m, ctx)) return 0; if (BN_cmp(a, d) != 0) { fprintf(stderr, "Modular exponentiation test failed!\n"); return 0; } BN_MONT_CTX_free(mont); BN_free(a); BN_free(p); BN_free(m); BN_free(d); BN_free(e); return (1); } int test_exp(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b, *d, *e, *one; int i; a = BN_new(); b = BN_new(); d = BN_new(); e = BN_new(); one = BN_new(); BN_one(one); for (i = 0; i < num2; i++) { BN_bntest_rand(a, 20 + i * 5, 0, 0); BN_bntest_rand(b, 2 + i, 0, 0); if (BN_exp(d, a, b, ctx) <= 0) return (0); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " ^ "); BN_print(bp, b); BIO_puts(bp, " - "); } BN_print(bp, d); BIO_puts(bp, "\n"); } BN_one(e); for (; !BN_is_zero(b); BN_sub(b, b, one)) BN_mul(e, e, a, ctx); BN_sub(e, e, d); if (!BN_is_zero(e)) { fprintf(stderr, "Exponentiation test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(d); BN_free(e); BN_free(one); return (1); } #ifndef OPENSSL_NO_EC2M int test_gf2m_add(BIO *bp) { BIGNUM *a, *b, *c; int i, ret = 0; a = BN_new(); b = BN_new(); c = BN_new(); for (i = 0; i < num0; i++) { BN_rand(a, 512, 0, 0); BN_copy(b, BN_value_one()); a->neg = rand_neg(); b->neg = rand_neg(); BN_GF2m_add(c, a, b); /* Test that two added values have the correct parity. */ if ((BN_is_odd(a) && BN_is_odd(c)) || (!BN_is_odd(a) && !BN_is_odd(c))) { fprintf(stderr, "GF(2^m) addition test (a) failed!\n"); goto err; } BN_GF2m_add(c, c, c); /* Test that c + c = 0. */ if (!BN_is_zero(c)) { fprintf(stderr, "GF(2^m) addition test (b) failed!\n"); goto err; } } ret = 1; err: BN_free(a); BN_free(b); BN_free(c); return ret; } int test_gf2m_mod(BIO *bp) { BIGNUM *a, *b[2], *c, *d, *e; int i, j, ret = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < num0; i++) { BN_bntest_rand(a, 1024, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod(c, a, b[j]); BN_GF2m_add(d, a, c); BN_GF2m_mod(e, d, b[j]); /* Test that a + (a mod p) mod p == 0. */ if (!BN_is_zero(e)) { fprintf(stderr, "GF(2^m) modulo test failed!\n"); goto err; } } } ret = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); return ret; } int test_gf2m_mod_mul(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e, *f, *g, *h; int i, j, ret = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); f = BN_new(); g = BN_new(); h = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < num0; i++) { BN_bntest_rand(a, 1024, 0, 0); BN_bntest_rand(c, 1024, 0, 0); BN_bntest_rand(d, 1024, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_mul(e, a, c, b[j], ctx); BN_GF2m_add(f, a, d); BN_GF2m_mod_mul(g, f, c, b[j], ctx); BN_GF2m_mod_mul(h, d, c, b[j], ctx); BN_GF2m_add(f, e, g); BN_GF2m_add(f, f, h); /* Test that (a+d)*c = a*c + d*c. */ if (!BN_is_zero(f)) { fprintf(stderr, "GF(2^m) modular multiplication test failed!\n"); goto err; } } } ret = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); BN_free(f); BN_free(g); BN_free(h); return ret; } int test_gf2m_mod_sqr(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d; int i, j, ret = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < num0; i++) { BN_bntest_rand(a, 1024, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_sqr(c, a, b[j], ctx); BN_copy(d, a); BN_GF2m_mod_mul(d, a, d, b[j], ctx); BN_GF2m_add(d, c, d); /* Test that a*a = a^2. */ if (!BN_is_zero(d)) { fprintf(stderr, "GF(2^m) modular squaring test failed!\n"); goto err; } } } ret = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); return ret; } int test_gf2m_mod_inv(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d; int i, j, ret = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < num0; i++) { BN_bntest_rand(a, 512, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_inv(c, a, b[j], ctx); BN_GF2m_mod_mul(d, a, c, b[j], ctx); /* Test that ((1/a)*a) = 1. */ if (!BN_is_one(d)) { fprintf(stderr, "GF(2^m) modular inversion test failed!\n"); goto err; } } } ret = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); return ret; } int test_gf2m_mod_div(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e, *f; int i, j, ret = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); f = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < num0; i++) { BN_bntest_rand(a, 512, 0, 0); BN_bntest_rand(c, 512, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_div(d, a, c, b[j], ctx); BN_GF2m_mod_mul(e, d, c, b[j], ctx); BN_GF2m_mod_div(f, a, e, b[j], ctx); /* Test that ((a/c)*c)/a = 1. */ if (!BN_is_one(f)) { fprintf(stderr, "GF(2^m) modular division test failed!\n"); goto err; } } } ret = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); BN_free(f); return ret; } int test_gf2m_mod_exp(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e, *f; int i, j, ret = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); f = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < num0; i++) { BN_bntest_rand(a, 512, 0, 0); BN_bntest_rand(c, 512, 0, 0); BN_bntest_rand(d, 512, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod_exp(e, a, c, b[j], ctx); BN_GF2m_mod_exp(f, a, d, b[j], ctx); BN_GF2m_mod_mul(e, e, f, b[j], ctx); BN_add(f, c, d); BN_GF2m_mod_exp(f, a, f, b[j], ctx); BN_GF2m_add(f, e, f); /* Test that a^(c+d)=a^c*a^d. */ if (!BN_is_zero(f)) { fprintf(stderr, "GF(2^m) modular exponentiation test failed!\n"); goto err; } } } ret = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); BN_free(f); return ret; } int test_gf2m_mod_sqrt(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e, *f; int i, j, ret = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); f = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < num0; i++) { BN_bntest_rand(a, 512, 0, 0); for (j = 0; j < 2; j++) { BN_GF2m_mod(c, a, b[j]); BN_GF2m_mod_sqrt(d, a, b[j], ctx); BN_GF2m_mod_sqr(e, d, b[j], ctx); BN_GF2m_add(f, c, e); /* Test that d^2 = a, where d = sqrt(a). */ if (!BN_is_zero(f)) { fprintf(stderr, "GF(2^m) modular square root test failed!\n"); goto err; } } } ret = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); BN_free(f); return ret; } int test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b[2], *c, *d, *e; int i, j, s = 0, t, ret = 0; int p0[] = { 163, 7, 6, 3, 0, -1 }; int p1[] = { 193, 15, 0, -1 }; a = BN_new(); b[0] = BN_new(); b[1] = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_GF2m_arr2poly(p0, b[0]); BN_GF2m_arr2poly(p1, b[1]); for (i = 0; i < num0; i++) { BN_bntest_rand(a, 512, 0, 0); for (j = 0; j < 2; j++) { t = BN_GF2m_mod_solve_quad(c, a, b[j], ctx); if (t) { s++; BN_GF2m_mod_sqr(d, c, b[j], ctx); BN_GF2m_add(d, c, d); BN_GF2m_mod(e, a, b[j]); BN_GF2m_add(e, e, d); /* * Test that solution of quadratic c satisfies c^2 + c = a. */ if (!BN_is_zero(e)) { fprintf(stderr, "GF(2^m) modular solve quadratic test failed!\n"); goto err; } } } } if (s == 0) { fprintf(stderr, "All %i tests of GF(2^m) modular solve quadratic resulted in no roots;\n", num0); fprintf(stderr, "this is very unlikely and probably indicates an error.\n"); goto err; } ret = 1; err: BN_free(a); BN_free(b[0]); BN_free(b[1]); BN_free(c); BN_free(d); BN_free(e); return ret; } #endif static int genprime_cb(int p, int n, BN_GENCB *arg) { char c = '*'; if (p == 0) c = '.'; if (p == 1) c = '+'; if (p == 2) c = '*'; if (p == 3) c = '\n'; putc(c, stderr); fflush(stderr); return 1; } int test_kron(BIO *bp, BN_CTX *ctx) { BN_GENCB cb; BIGNUM *a, *b, *r, *t; int i; int legendre, kronecker; int ret = 0; a = BN_new(); b = BN_new(); r = BN_new(); t = BN_new(); if (a == NULL || b == NULL || r == NULL || t == NULL) goto err; BN_GENCB_set(&cb, genprime_cb, NULL); /* * We test BN_kronecker(a, b, ctx) just for b odd (Jacobi symbol). In * this case we know that if b is prime, then BN_kronecker(a, b, ctx) is * congruent to $a^{(b-1)/2}$, modulo $b$ (Legendre symbol). So we * generate a random prime b and compare these values for a number of * random a's. (That is, we run the Solovay-Strassen primality test to * confirm that b is prime, except that we don't want to test whether b * is prime but whether BN_kronecker works.) */ if (!BN_generate_prime_ex(b, 512, 0, NULL, NULL, &cb)) goto err; b->neg = rand_neg(); putc('\n', stderr); for (i = 0; i < num0; i++) { if (!BN_bntest_rand(a, 512, 0, 0)) goto err; a->neg = rand_neg(); /* t := (|b|-1)/2 (note that b is odd) */ if (!BN_copy(t, b)) goto err; t->neg = 0; if (!BN_sub_word(t, 1)) goto err; if (!BN_rshift1(t, t)) goto err; /* r := a^t mod b */ b->neg = 0; if (!BN_mod_exp_recp(r, a, t, b, ctx)) goto err; b->neg = 1; if (BN_is_word(r, 1)) legendre = 1; else if (BN_is_zero(r)) legendre = 0; else { if (!BN_add_word(r, 1)) goto err; if (0 != BN_ucmp(r, b)) { fprintf(stderr, "Legendre symbol computation failed\n"); goto err; } legendre = -1; } kronecker = BN_kronecker(a, b, ctx); if (kronecker < -1) goto err; /* we actually need BN_kronecker(a, |b|) */ if (a->neg && b->neg) kronecker = -kronecker; if (legendre != kronecker) { fprintf(stderr, "legendre != kronecker; a = "); BN_print_fp(stderr, a); fprintf(stderr, ", b = "); BN_print_fp(stderr, b); fprintf(stderr, "\n"); goto err; } putc('.', stderr); fflush(stderr); } putc('\n', stderr); fflush(stderr); ret = 1; err: BN_free(a); BN_free(b); BN_free(r); BN_free(t); return ret; } int test_sqrt(BIO *bp, BN_CTX *ctx) { BN_GENCB cb; BIGNUM *a, *p, *r; int i, j; int ret = 0; a = BN_new(); p = BN_new(); r = BN_new(); if (a == NULL || p == NULL || r == NULL) goto err; BN_GENCB_set(&cb, genprime_cb, NULL); for (i = 0; i < 16; i++) { if (i < 8) { unsigned primes[8] = { 2, 3, 5, 7, 11, 13, 17, 19 }; if (!BN_set_word(p, primes[i])) goto err; } else { if (!BN_set_word(a, 32)) goto err; if (!BN_set_word(r, 2 * i + 1)) goto err; if (!BN_generate_prime_ex(p, 256, 0, a, r, &cb)) goto err; putc('\n', stderr); } p->neg = rand_neg(); for (j = 0; j < num2; j++) { /* * construct 'a' such that it is a square modulo p, but in * general not a proper square and not reduced modulo p */ if (!BN_bntest_rand(r, 256, 0, 3)) goto err; if (!BN_nnmod(r, r, p, ctx)) goto err; if (!BN_mod_sqr(r, r, p, ctx)) goto err; if (!BN_bntest_rand(a, 256, 0, 3)) goto err; if (!BN_nnmod(a, a, p, ctx)) goto err; if (!BN_mod_sqr(a, a, p, ctx)) goto err; if (!BN_mul(a, a, r, ctx)) goto err; if (rand_neg()) if (!BN_sub(a, a, p)) goto err; if (!BN_mod_sqrt(r, a, p, ctx)) goto err; if (!BN_mod_sqr(r, r, p, ctx)) goto err; if (!BN_nnmod(a, a, p, ctx)) goto err; if (BN_cmp(a, r) != 0) { fprintf(stderr, "BN_mod_sqrt failed: a = "); BN_print_fp(stderr, a); fprintf(stderr, ", r = "); BN_print_fp(stderr, r); fprintf(stderr, ", p = "); BN_print_fp(stderr, p); fprintf(stderr, "\n"); goto err; } putc('.', stderr); fflush(stderr); } putc('\n', stderr); fflush(stderr); } ret = 1; err: BN_free(a); BN_free(p); BN_free(r); return ret; } int test_small_prime(BIO *bp, BN_CTX *ctx) { static const int bits = 10; int ret = 0; BIGNUM *r; r = BN_new(); if (!BN_generate_prime_ex(r, bits, 0, NULL, NULL, NULL)) goto err; if (BN_num_bits(r) != bits) { BIO_printf(bp, "Expected %d bit prime, got %d bit number\n", bits, BN_num_bits(r)); goto err; } ret = 1; err: BN_clear_free(r); return ret; } int test_lshift(BIO *bp, BN_CTX *ctx, BIGNUM *a_) { BIGNUM *a, *b, *c, *d; int i; b = BN_new(); c = BN_new(); d = BN_new(); BN_one(c); if (a_) a = a_; else { a = BN_new(); BN_bntest_rand(a, 200, 0, 0); a->neg = rand_neg(); } for (i = 0; i < num0; i++) { BN_lshift(b, a, i + 1); BN_add(c, c, c); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " * "); BN_print(bp, c); BIO_puts(bp, " - "); } BN_print(bp, b); BIO_puts(bp, "\n"); } BN_mul(d, a, c, ctx); BN_sub(d, d, b); if (!BN_is_zero(d)) { fprintf(stderr, "Left shift test failed!\n"); fprintf(stderr, "a="); BN_print_fp(stderr, a); fprintf(stderr, "\nb="); BN_print_fp(stderr, b); fprintf(stderr, "\nc="); BN_print_fp(stderr, c); fprintf(stderr, "\nd="); BN_print_fp(stderr, d); fprintf(stderr, "\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); return (1); } int test_lshift1(BIO *bp) { BIGNUM *a, *b, *c; int i; a = BN_new(); b = BN_new(); c = BN_new(); BN_bntest_rand(a, 200, 0, 0); a->neg = rand_neg(); for (i = 0; i < num0; i++) { BN_lshift1(b, a); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " * 2"); BIO_puts(bp, " - "); } BN_print(bp, b); BIO_puts(bp, "\n"); } BN_add(c, a, a); BN_sub(a, b, c); if (!BN_is_zero(a)) { fprintf(stderr, "Left shift one test failed!\n"); return 0; } BN_copy(a, b); } BN_free(a); BN_free(b); BN_free(c); return (1); } int test_rshift(BIO *bp, BN_CTX *ctx) { BIGNUM *a, *b, *c, *d, *e; int i; a = BN_new(); b = BN_new(); c = BN_new(); d = BN_new(); e = BN_new(); BN_one(c); BN_bntest_rand(a, 200, 0, 0); a->neg = rand_neg(); for (i = 0; i < num0; i++) { BN_rshift(b, a, i + 1); BN_add(c, c, c); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " / "); BN_print(bp, c); BIO_puts(bp, " - "); } BN_print(bp, b); BIO_puts(bp, "\n"); } BN_div(d, e, a, c, ctx); BN_sub(d, d, b); if (!BN_is_zero(d)) { fprintf(stderr, "Right shift test failed!\n"); return 0; } } BN_free(a); BN_free(b); BN_free(c); BN_free(d); BN_free(e); return (1); } int test_rshift1(BIO *bp) { BIGNUM *a, *b, *c; int i; a = BN_new(); b = BN_new(); c = BN_new(); BN_bntest_rand(a, 200, 0, 0); a->neg = rand_neg(); for (i = 0; i < num0; i++) { BN_rshift1(b, a); if (bp != NULL) { if (!results) { BN_print(bp, a); BIO_puts(bp, " / 2"); BIO_puts(bp, " - "); } BN_print(bp, b); BIO_puts(bp, "\n"); } BN_sub(c, a, b); BN_sub(c, c, b); if (!BN_is_zero(c) && !BN_abs_is_word(c, 1)) { fprintf(stderr, "Right shift one test failed!\n"); return 0; } BN_copy(a, b); } BN_free(a); BN_free(b); BN_free(c); return (1); } int rand_neg(void) { static unsigned int neg = 0; static int sign[8] = { 0, 0, 0, 1, 1, 0, 1, 1 }; return (sign[(neg++) % 8]); }