/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* We need to use some deprecated APIs */ #define OPENSSL_SUPPRESS_DEPRECATED #include #include #include #include #include #include #include #include #include #include "apps.h" #include "app_params.h" #include "progs.h" #include "opt.h" #include "names.h" DEFINE_STACK_OF_CSTRING() static int verbose = 0; static void legacy_cipher_fn(const EVP_CIPHER *c, const char *from, const char *to, void *arg) { if (c != NULL) { BIO_printf(arg, " %s\n", EVP_CIPHER_name(c)); } else { if (from == NULL) from = ""; if (to == NULL) to = ""; BIO_printf(arg, " %s => %s\n", from, to); } } DEFINE_STACK_OF(EVP_CIPHER) static int cipher_cmp(const EVP_CIPHER * const *a, const EVP_CIPHER * const *b) { int ret = EVP_CIPHER_number(*a) - EVP_CIPHER_number(*b); if (ret == 0) ret = strcmp(OSSL_PROVIDER_name(EVP_CIPHER_provider(*a)), OSSL_PROVIDER_name(EVP_CIPHER_provider(*b))); return ret; } static void collect_ciphers(EVP_CIPHER *cipher, void *stack) { STACK_OF(EVP_CIPHER) *cipher_stack = stack; if (sk_EVP_CIPHER_push(cipher_stack, cipher) > 0) EVP_CIPHER_up_ref(cipher); } static void list_ciphers(void) { STACK_OF(EVP_CIPHER) *ciphers = sk_EVP_CIPHER_new(cipher_cmp); int i; if (ciphers == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Legacy:\n"); EVP_CIPHER_do_all_sorted(legacy_cipher_fn, bio_out); BIO_printf(bio_out, "Provided:\n"); EVP_CIPHER_do_all_provided(NULL, collect_ciphers, ciphers); sk_EVP_CIPHER_sort(ciphers); for (i = 0; i < sk_EVP_CIPHER_num(ciphers); i++) { const EVP_CIPHER *c = sk_EVP_CIPHER_value(ciphers, i); STACK_OF(OPENSSL_CSTRING) *names = sk_OPENSSL_CSTRING_new(name_cmp); EVP_CIPHER_names_do_all(c, collect_names, names); BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_CIPHER_provider(c))); sk_OPENSSL_CSTRING_free(names); if (verbose) { print_param_types("retrievable algorithm parameters", EVP_CIPHER_gettable_params(c), 4); print_param_types("retrievable operation parameters", EVP_CIPHER_gettable_ctx_params(c), 4); print_param_types("settable operation parameters", EVP_CIPHER_settable_ctx_params(c), 4); } } sk_EVP_CIPHER_pop_free(ciphers, EVP_CIPHER_free); } static void list_md_fn(const EVP_MD *m, const char *from, const char *to, void *arg) { if (m != NULL) { BIO_printf(arg, " %s\n", EVP_MD_name(m)); } else { if (from == NULL) from = ""; if (to == NULL) to = ""; BIO_printf((BIO *)arg, " %s => %s\n", from, to); } } DEFINE_STACK_OF(EVP_MD) static int md_cmp(const EVP_MD * const *a, const EVP_MD * const *b) { int ret = EVP_MD_number(*a) - EVP_MD_number(*b); if (ret == 0) ret = strcmp(OSSL_PROVIDER_name(EVP_MD_provider(*a)), OSSL_PROVIDER_name(EVP_MD_provider(*b))); return ret; } static void collect_digests(EVP_MD *md, void *stack) { STACK_OF(EVP_MD) *digest_stack = stack; if (sk_EVP_MD_push(digest_stack, md) > 0) EVP_MD_up_ref(md); } static void list_digests(void) { STACK_OF(EVP_MD) *digests = sk_EVP_MD_new(md_cmp); int i; if (digests == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Legacy:\n"); EVP_MD_do_all_sorted(list_md_fn, bio_out); BIO_printf(bio_out, "Provided:\n"); EVP_MD_do_all_provided(NULL, collect_digests, digests); sk_EVP_MD_sort(digests); for (i = 0; i < sk_EVP_MD_num(digests); i++) { const EVP_MD *m = sk_EVP_MD_value(digests, i); STACK_OF(OPENSSL_CSTRING) *names = sk_OPENSSL_CSTRING_new(name_cmp); EVP_MD_names_do_all(m, collect_names, names); BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_MD_provider(m))); sk_OPENSSL_CSTRING_free(names); if (verbose) { print_param_types("retrievable algorithm parameters", EVP_MD_gettable_params(m), 4); print_param_types("retrievable operation parameters", EVP_MD_gettable_ctx_params(m), 4); print_param_types("settable operation parameters", EVP_MD_settable_ctx_params(m), 4); } } sk_EVP_MD_pop_free(digests, EVP_MD_free); } DEFINE_STACK_OF(EVP_MAC) static int mac_cmp(const EVP_MAC * const *a, const EVP_MAC * const *b) { int ret = EVP_MAC_number(*a) - EVP_MAC_number(*b); if (ret == 0) ret = strcmp(OSSL_PROVIDER_name(EVP_MAC_provider(*a)), OSSL_PROVIDER_name(EVP_MAC_provider(*b))); return ret; } static void collect_macs(EVP_MAC *mac, void *stack) { STACK_OF(EVP_MAC) *mac_stack = stack; if (sk_EVP_MAC_push(mac_stack, mac) > 0) EVP_MAC_up_ref(mac); } static void list_macs(void) { STACK_OF(EVP_MAC) *macs = sk_EVP_MAC_new(mac_cmp); int i; if (macs == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided MACs:\n"); EVP_MAC_do_all_provided(NULL, collect_macs, macs); sk_EVP_MAC_sort(macs); for (i = 0; i < sk_EVP_MAC_num(macs); i++) { const EVP_MAC *m = sk_EVP_MAC_value(macs, i); STACK_OF(OPENSSL_CSTRING) *names = sk_OPENSSL_CSTRING_new(name_cmp); EVP_MAC_names_do_all(m, collect_names, names); BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_MAC_provider(m))); sk_OPENSSL_CSTRING_free(names); if (verbose) { print_param_types("retrievable algorithm parameters", EVP_MAC_gettable_params(m), 4); print_param_types("retrievable operation parameters", EVP_MAC_gettable_ctx_params(m), 4); print_param_types("settable operation parameters", EVP_MAC_settable_ctx_params(m), 4); } } sk_EVP_MAC_pop_free(macs, EVP_MAC_free); } /* * KDFs and PRFs */ DEFINE_STACK_OF(EVP_KDF) static int kdf_cmp(const EVP_KDF * const *a, const EVP_KDF * const *b) { int ret = EVP_KDF_number(*a) - EVP_KDF_number(*b); if (ret == 0) ret = strcmp(OSSL_PROVIDER_name(EVP_KDF_provider(*a)), OSSL_PROVIDER_name(EVP_KDF_provider(*b))); return ret; } static void collect_kdfs(EVP_KDF *kdf, void *stack) { STACK_OF(EVP_KDF) *kdf_stack = stack; sk_EVP_KDF_push(kdf_stack, kdf); EVP_KDF_up_ref(kdf); } static void list_kdfs(void) { STACK_OF(EVP_KDF) *kdfs = sk_EVP_KDF_new(kdf_cmp); int i; if (kdfs == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided KDFs and PDFs:\n"); EVP_KDF_do_all_provided(NULL, collect_kdfs, kdfs); sk_EVP_KDF_sort(kdfs); for (i = 0; i < sk_EVP_KDF_num(kdfs); i++) { const EVP_KDF *k = sk_EVP_KDF_value(kdfs, i); STACK_OF(OPENSSL_CSTRING) *names = sk_OPENSSL_CSTRING_new(name_cmp); EVP_KDF_names_do_all(k, collect_names, names); BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_KDF_provider(k))); sk_OPENSSL_CSTRING_free(names); if (verbose) { print_param_types("retrievable algorithm parameters", EVP_KDF_gettable_params(k), 4); print_param_types("retrievable operation parameters", EVP_KDF_gettable_ctx_params(k), 4); print_param_types("settable operation parameters", EVP_KDF_settable_ctx_params(k), 4); } } sk_EVP_KDF_pop_free(kdfs, EVP_KDF_free); } /* * RANDs */ DEFINE_STACK_OF(EVP_RAND) static int rand_cmp(const EVP_RAND * const *a, const EVP_RAND * const *b) { int ret = strcasecmp(EVP_RAND_name(*a), EVP_RAND_name(*b)); if (ret == 0) ret = strcmp(OSSL_PROVIDER_name(EVP_RAND_provider(*a)), OSSL_PROVIDER_name(EVP_RAND_provider(*b))); return ret; } static void collect_rands(EVP_RAND *rand, void *stack) { STACK_OF(EVP_RAND) *rand_stack = stack; sk_EVP_RAND_push(rand_stack, rand); EVP_RAND_up_ref(rand); } static void list_random_generators(void) { STACK_OF(EVP_RAND) *rands = sk_EVP_RAND_new(rand_cmp); int i; if (rands == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided RNGs and seed sources:\n"); EVP_RAND_do_all_provided(NULL, collect_rands, rands); sk_EVP_RAND_sort(rands); for (i = 0; i < sk_EVP_RAND_num(rands); i++) { const EVP_RAND *m = sk_EVP_RAND_value(rands, i); BIO_printf(bio_out, " %s", EVP_RAND_name(m)); BIO_printf(bio_out, " @ %s\n", OSSL_PROVIDER_name(EVP_RAND_provider(m))); if (verbose) { print_param_types("retrievable algorithm parameters", EVP_RAND_gettable_params(m), 4); print_param_types("retrievable operation parameters", EVP_RAND_gettable_ctx_params(m), 4); print_param_types("settable operation parameters", EVP_RAND_settable_ctx_params(m), 4); } } sk_EVP_RAND_pop_free(rands, EVP_RAND_free); } /* * Serializers */ DEFINE_STACK_OF(OSSL_SERIALIZER) static int serializer_cmp(const OSSL_SERIALIZER * const *a, const OSSL_SERIALIZER * const *b) { int ret = OSSL_SERIALIZER_number(*a) - OSSL_SERIALIZER_number(*b); if (ret == 0) ret = strcmp(OSSL_PROVIDER_name(OSSL_SERIALIZER_provider(*a)), OSSL_PROVIDER_name(OSSL_SERIALIZER_provider(*b))); return ret; } static void collect_serializers(OSSL_SERIALIZER *serializer, void *stack) { STACK_OF(OSSL_SERIALIZER) *serializer_stack = stack; sk_OSSL_SERIALIZER_push(serializer_stack, serializer); OSSL_SERIALIZER_up_ref(serializer); } static void list_serializers(void) { STACK_OF(OSSL_SERIALIZER) *serializers; int i; serializers = sk_OSSL_SERIALIZER_new(serializer_cmp); if (serializers == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided SERIALIZERs:\n"); OSSL_SERIALIZER_do_all_provided(NULL, collect_serializers, serializers); sk_OSSL_SERIALIZER_sort(serializers); for (i = 0; i < sk_OSSL_SERIALIZER_num(serializers); i++) { OSSL_SERIALIZER *k = sk_OSSL_SERIALIZER_value(serializers, i); STACK_OF(OPENSSL_CSTRING) *names = sk_OPENSSL_CSTRING_new(name_cmp); OSSL_SERIALIZER_names_do_all(k, collect_names, names); BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s (%s)\n", OSSL_PROVIDER_name(OSSL_SERIALIZER_provider(k)), OSSL_SERIALIZER_properties(k)); sk_OPENSSL_CSTRING_free(names); if (verbose) { print_param_types("settable operation parameters", OSSL_SERIALIZER_settable_ctx_params(k), 4); } } sk_OSSL_SERIALIZER_pop_free(serializers, OSSL_SERIALIZER_free); } /* * Deserializers */ DEFINE_STACK_OF(OSSL_DESERIALIZER) static int deserializer_cmp(const OSSL_DESERIALIZER * const *a, const OSSL_DESERIALIZER * const *b) { int ret = OSSL_DESERIALIZER_number(*a) - OSSL_DESERIALIZER_number(*b); if (ret == 0) ret = strcmp(OSSL_PROVIDER_name(OSSL_DESERIALIZER_provider(*a)), OSSL_PROVIDER_name(OSSL_DESERIALIZER_provider(*b))); return ret; } static void collect_deserializers(OSSL_DESERIALIZER *deserializer, void *stack) { STACK_OF(OSSL_DESERIALIZER) *deserializer_stack = stack; sk_OSSL_DESERIALIZER_push(deserializer_stack, deserializer); OSSL_DESERIALIZER_up_ref(deserializer); } static void list_deserializers(void) { STACK_OF(OSSL_DESERIALIZER) *deserializers; int i; deserializers = sk_OSSL_DESERIALIZER_new(deserializer_cmp); if (deserializers == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); return; } BIO_printf(bio_out, "Provided DESERIALIZERs:\n"); OSSL_DESERIALIZER_do_all_provided(NULL, collect_deserializers, deserializers); sk_OSSL_DESERIALIZER_sort(deserializers); for (i = 0; i < sk_OSSL_DESERIALIZER_num(deserializers); i++) { OSSL_DESERIALIZER *k = sk_OSSL_DESERIALIZER_value(deserializers, i); STACK_OF(OPENSSL_CSTRING) *names = sk_OPENSSL_CSTRING_new(name_cmp); OSSL_DESERIALIZER_names_do_all(k, collect_names, names); BIO_printf(bio_out, " "); print_names(bio_out, names); BIO_printf(bio_out, " @ %s (%s)\n", OSSL_PROVIDER_name(OSSL_DESERIALIZER_provider(k)), OSSL_DESERIALIZER_properties(k)); sk_OPENSSL_CSTRING_free(names); if (verbose) { print_param_types("settable operation parameters", OSSL_DESERIALIZER_settable_ctx_params(k), 4); } } sk_OSSL_DESERIALIZER_pop_free(deserializers, OSSL_DESERIALIZER_free); } static void list_missing_help(void) { const FUNCTION *fp; const OPTIONS *o; for (fp = functions; fp->name != NULL; fp++) { if ((o = fp->help) != NULL) { /* If there is help, list what flags are not documented. */ for ( ; o->name != NULL; o++) { if (o->helpstr == NULL) BIO_printf(bio_out, "%s %s\n", fp->name, o->name); } } else if (fp->func != dgst_main) { /* If not aliased to the dgst command, */ BIO_printf(bio_out, "%s *\n", fp->name); } } } static void list_objects(void) { int max_nid = OBJ_new_nid(0); int i; char *oid_buf = NULL; int oid_size = 0; /* Skip 0, since that's NID_undef */ for (i = 1; i < max_nid; i++) { const ASN1_OBJECT *obj = OBJ_nid2obj(i); const char *sn = OBJ_nid2sn(i); const char *ln = OBJ_nid2ln(i); int n = 0; /* * If one of the retrieved objects somehow generated an error, * we ignore it. The check for NID_undef below will detect the * error and simply skip to the next NID. */ ERR_clear_error(); if (OBJ_obj2nid(obj) == NID_undef) continue; if ((n = OBJ_obj2txt(NULL, 0, obj, 1)) == 0) { BIO_printf(bio_out, "# None-OID object: %s, %s\n", sn, ln); continue; } if (n < 0) break; /* Error */ if (n > oid_size) { oid_buf = OPENSSL_realloc(oid_buf, n + 1); if (oid_buf == NULL) { BIO_printf(bio_err, "ERROR: Memory allocation\n"); break; /* Error */ } oid_size = n + 1; } if (OBJ_obj2txt(oid_buf, oid_size, obj, 1) < 0) break; /* Error */ if (ln == NULL || strcmp(sn, ln) == 0) BIO_printf(bio_out, "%s = %s\n", sn, oid_buf); else BIO_printf(bio_out, "%s = %s, %s\n", sn, ln, oid_buf); } OPENSSL_free(oid_buf); } static void list_options_for_command(const char *command) { const FUNCTION *fp; const OPTIONS *o; for (fp = functions; fp->name != NULL; fp++) if (strcmp(fp->name, command) == 0) break; if (fp->name == NULL) { BIO_printf(bio_err, "Invalid command '%s'; type \"help\" for a list.\n", command); return; } if ((o = fp->help) == NULL) return; for ( ; o->name != NULL; o++) { char c = o->valtype; if (o->name == OPT_PARAM_STR) break; if (o->name == OPT_HELP_STR || o->name == OPT_MORE_STR || o->name == OPT_SECTION_STR || o->name[0] == '\0') continue; BIO_printf(bio_out, "%s %c\n", o->name, c == '\0' ? '-' : c); } /* Always output the -- marker since it is sometimes documented. */ BIO_printf(bio_out, "- -\n"); } static void list_type(FUNC_TYPE ft, int one) { FUNCTION *fp; int i = 0; DISPLAY_COLUMNS dc; memset(&dc, 0, sizeof(dc)); if (!one) calculate_columns(functions, &dc); for (fp = functions; fp->name != NULL; fp++) { if (fp->type != ft) continue; if (one) { BIO_printf(bio_out, "%s\n", fp->name); } else { if (i % dc.columns == 0 && i > 0) BIO_printf(bio_out, "\n"); BIO_printf(bio_out, "%-*s", dc.width, fp->name); i++; } } if (!one) BIO_printf(bio_out, "\n\n"); } static void list_pkey(void) { int i; for (i = 0; i < EVP_PKEY_asn1_get_count(); i++) { const EVP_PKEY_ASN1_METHOD *ameth; int pkey_id, pkey_base_id, pkey_flags; const char *pinfo, *pem_str; ameth = EVP_PKEY_asn1_get0(i); EVP_PKEY_asn1_get0_info(&pkey_id, &pkey_base_id, &pkey_flags, &pinfo, &pem_str, ameth); if (pkey_flags & ASN1_PKEY_ALIAS) { BIO_printf(bio_out, "Name: %s\n", OBJ_nid2ln(pkey_id)); BIO_printf(bio_out, "\tAlias for: %s\n", OBJ_nid2ln(pkey_base_id)); } else { BIO_printf(bio_out, "Name: %s\n", pinfo); BIO_printf(bio_out, "\tType: %s Algorithm\n", pkey_flags & ASN1_PKEY_DYNAMIC ? "External" : "Builtin"); BIO_printf(bio_out, "\tOID: %s\n", OBJ_nid2ln(pkey_id)); if (pem_str == NULL) pem_str = "(none)"; BIO_printf(bio_out, "\tPEM string: %s\n", pem_str); } } } #ifndef OPENSSL_NO_DEPRECATED_3_0 static void list_pkey_meth(void) { size_t i; size_t meth_count = EVP_PKEY_meth_get_count(); for (i = 0; i < meth_count; i++) { const EVP_PKEY_METHOD *pmeth = EVP_PKEY_meth_get0(i); int pkey_id, pkey_flags; EVP_PKEY_meth_get0_info(&pkey_id, &pkey_flags, pmeth); BIO_printf(bio_out, "%s\n", OBJ_nid2ln(pkey_id)); BIO_printf(bio_out, "\tType: %s Algorithm\n", pkey_flags & ASN1_PKEY_DYNAMIC ? "External" : "Builtin"); } } #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 static void list_engines(void) { # ifndef OPENSSL_NO_ENGINE ENGINE *e; BIO_puts(bio_out, "Engines:\n"); e = ENGINE_get_first(); while (e) { BIO_printf(bio_out, "%s\n", ENGINE_get_id(e)); e = ENGINE_get_next(e); } # else BIO_puts(bio_out, "Engine support is disabled.\n"); # endif } #endif static void list_disabled(void) { BIO_puts(bio_out, "Disabled algorithms:\n"); #ifdef OPENSSL_NO_ARIA BIO_puts(bio_out, "ARIA\n"); #endif #ifdef OPENSSL_NO_BF BIO_puts(bio_out, "BF\n"); #endif #ifdef OPENSSL_NO_BLAKE2 BIO_puts(bio_out, "BLAKE2\n"); #endif #ifdef OPENSSL_NO_CAMELLIA BIO_puts(bio_out, "CAMELLIA\n"); #endif #ifdef OPENSSL_NO_CAST BIO_puts(bio_out, "CAST\n"); #endif #ifdef OPENSSL_NO_CMAC BIO_puts(bio_out, "CMAC\n"); #endif #ifdef OPENSSL_NO_CMS BIO_puts(bio_out, "CMS\n"); #endif #ifdef OPENSSL_NO_COMP BIO_puts(bio_out, "COMP\n"); #endif #ifdef OPENSSL_NO_DES BIO_puts(bio_out, "DES\n"); #endif #ifdef OPENSSL_NO_DGRAM BIO_puts(bio_out, "DGRAM\n"); #endif #ifdef OPENSSL_NO_DH BIO_puts(bio_out, "DH\n"); #endif #ifdef OPENSSL_NO_DSA BIO_puts(bio_out, "DSA\n"); #endif #if defined(OPENSSL_NO_DTLS) BIO_puts(bio_out, "DTLS\n"); #endif #if defined(OPENSSL_NO_DTLS1) BIO_puts(bio_out, "DTLS1\n"); #endif #if defined(OPENSSL_NO_DTLS1_2) BIO_puts(bio_out, "DTLS1_2\n"); #endif #ifdef OPENSSL_NO_EC BIO_puts(bio_out, "EC\n"); #endif #ifdef OPENSSL_NO_EC2M BIO_puts(bio_out, "EC2M\n"); #endif #if defined(OPENSSL_NO_ENGINE) && !defined(OPENSSL_NO_DEPRECATED_3_0) BIO_puts(bio_out, "ENGINE\n"); #endif #ifdef OPENSSL_NO_GOST BIO_puts(bio_out, "GOST\n"); #endif #ifdef OPENSSL_NO_IDEA BIO_puts(bio_out, "IDEA\n"); #endif #ifdef OPENSSL_NO_MD2 BIO_puts(bio_out, "MD2\n"); #endif #ifdef OPENSSL_NO_MD4 BIO_puts(bio_out, "MD4\n"); #endif #ifdef OPENSSL_NO_MD5 BIO_puts(bio_out, "MD5\n"); #endif #ifdef OPENSSL_NO_MDC2 BIO_puts(bio_out, "MDC2\n"); #endif #ifdef OPENSSL_NO_OCB BIO_puts(bio_out, "OCB\n"); #endif #ifdef OPENSSL_NO_OCSP BIO_puts(bio_out, "OCSP\n"); #endif #ifdef OPENSSL_NO_PSK BIO_puts(bio_out, "PSK\n"); #endif #ifdef OPENSSL_NO_RC2 BIO_puts(bio_out, "RC2\n"); #endif #ifdef OPENSSL_NO_RC4 BIO_puts(bio_out, "RC4\n"); #endif #ifdef OPENSSL_NO_RC5 BIO_puts(bio_out, "RC5\n"); #endif #ifdef OPENSSL_NO_RMD160 BIO_puts(bio_out, "RMD160\n"); #endif #ifdef OPENSSL_NO_RSA BIO_puts(bio_out, "RSA\n"); #endif #ifdef OPENSSL_NO_SCRYPT BIO_puts(bio_out, "SCRYPT\n"); #endif #ifdef OPENSSL_NO_SCTP BIO_puts(bio_out, "SCTP\n"); #endif #ifdef OPENSSL_NO_SEED BIO_puts(bio_out, "SEED\n"); #endif #ifdef OPENSSL_NO_SM2 BIO_puts(bio_out, "SM2\n"); #endif #ifdef OPENSSL_NO_SM3 BIO_puts(bio_out, "SM3\n"); #endif #ifdef OPENSSL_NO_SM4 BIO_puts(bio_out, "SM4\n"); #endif #ifdef OPENSSL_NO_SOCK BIO_puts(bio_out, "SOCK\n"); #endif #ifdef OPENSSL_NO_SRP BIO_puts(bio_out, "SRP\n"); #endif #ifdef OPENSSL_NO_SRTP BIO_puts(bio_out, "SRTP\n"); #endif #ifdef OPENSSL_NO_SSL3 BIO_puts(bio_out, "SSL3\n"); #endif #ifdef OPENSSL_NO_TLS1 BIO_puts(bio_out, "TLS1\n"); #endif #ifdef OPENSSL_NO_TLS1_1 BIO_puts(bio_out, "TLS1_1\n"); #endif #ifdef OPENSSL_NO_TLS1_2 BIO_puts(bio_out, "TLS1_2\n"); #endif #ifdef OPENSSL_NO_WHIRLPOOL BIO_puts(bio_out, "WHIRLPOOL\n"); #endif #ifndef ZLIB BIO_puts(bio_out, "ZLIB\n"); #endif } /* Unified enum for help and list commands. */ typedef enum HELPLIST_CHOICE { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ONE, OPT_VERBOSE, OPT_COMMANDS, OPT_DIGEST_COMMANDS, OPT_MAC_ALGORITHMS, OPT_OPTIONS, OPT_DIGEST_ALGORITHMS, OPT_CIPHER_COMMANDS, OPT_CIPHER_ALGORITHMS, OPT_PK_ALGORITHMS, OPT_PK_METHOD, OPT_DISABLED, OPT_KDF_ALGORITHMS, OPT_RANDOM_GENERATORS, OPT_SERIALIZERS, OPT_DESERIALIZERS, OPT_MISSING_HELP, OPT_OBJECTS, #ifndef OPENSSL_NO_DEPRECATED_3_0 OPT_ENGINES, #endif OPT_PROV_ENUM } HELPLIST_CHOICE; const OPTIONS list_options[] = { OPT_SECTION("General"), {"help", OPT_HELP, '-', "Display this summary"}, OPT_SECTION("Output"), {"1", OPT_ONE, '-', "List in one column"}, {"verbose", OPT_VERBOSE, '-', "Verbose listing"}, {"commands", OPT_COMMANDS, '-', "List of standard commands"}, {"standard-commands", OPT_COMMANDS, '-', "List of standard commands"}, {"digest-commands", OPT_DIGEST_COMMANDS, '-', "List of message digest commands"}, {"digest-algorithms", OPT_DIGEST_ALGORITHMS, '-', "List of message digest algorithms"}, {"kdf-algorithms", OPT_KDF_ALGORITHMS, '-', "List of key derivation and pseudo random function algorithms"}, {"random-generators", OPT_RANDOM_GENERATORS, '-', "List of random number generators"}, {"mac-algorithms", OPT_MAC_ALGORITHMS, '-', "List of message authentication code algorithms"}, {"cipher-commands", OPT_CIPHER_COMMANDS, '-', "List of cipher commands"}, {"cipher-algorithms", OPT_CIPHER_ALGORITHMS, '-', "List of cipher algorithms"}, {"serializers", OPT_SERIALIZERS, '-', "List of serialization methods" }, {"deserializers", OPT_DESERIALIZERS, '-', "List of deserialization methods" }, {"public-key-algorithms", OPT_PK_ALGORITHMS, '-', "List of public key algorithms"}, #ifndef OPENSSL_NO_DEPRECATED_3_0 {"public-key-methods", OPT_PK_METHOD, '-', "List of public key methods"}, {"engines", OPT_ENGINES, '-', "List of loaded engines"}, #endif {"disabled", OPT_DISABLED, '-', "List of disabled features"}, {"missing-help", OPT_MISSING_HELP, '-', "List missing detailed help strings"}, {"options", OPT_OPTIONS, 's', "List options for specified command"}, {"objects", OPT_OBJECTS, '-', "List built in objects (OID<->name mappings)"}, OPT_PROV_OPTIONS, {NULL} }; int list_main(int argc, char **argv) { char *prog; HELPLIST_CHOICE o; int one = 0, done = 0; struct { unsigned int commands:1; unsigned int random_generators:1; unsigned int digest_commands:1; unsigned int digest_algorithms:1; unsigned int kdf_algorithms:1; unsigned int mac_algorithms:1; unsigned int cipher_commands:1; unsigned int cipher_algorithms:1; unsigned int serializer_algorithms:1; unsigned int deserializer_algorithms:1; unsigned int pk_algorithms:1; unsigned int pk_method:1; #ifndef OPENSSL_NO_DEPRECATED_3_0 unsigned int engines:1; #endif unsigned int disabled:1; unsigned int missing_help:1; unsigned int objects:1; unsigned int options:1; } todo = { 0, }; verbose = 0; /* Clear a possible previous call */ prog = opt_init(argc, argv, list_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: /* Never hit, but suppresses warning */ case OPT_ERR: opthelp: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); return 1; case OPT_HELP: opt_help(list_options); break; case OPT_ONE: one = 1; break; case OPT_COMMANDS: todo.commands = 1; break; case OPT_DIGEST_COMMANDS: todo.digest_commands = 1; break; case OPT_DIGEST_ALGORITHMS: todo.digest_algorithms = 1; break; case OPT_KDF_ALGORITHMS: todo.kdf_algorithms = 1; break; case OPT_RANDOM_GENERATORS: todo.random_generators = 1; break; case OPT_MAC_ALGORITHMS: todo.mac_algorithms = 1; break; case OPT_CIPHER_COMMANDS: todo.cipher_commands = 1; break; case OPT_CIPHER_ALGORITHMS: todo.cipher_algorithms = 1; break; case OPT_SERIALIZERS: todo.serializer_algorithms = 1; break; case OPT_DESERIALIZERS: todo.deserializer_algorithms = 1; break; case OPT_PK_ALGORITHMS: todo.pk_algorithms = 1; break; case OPT_PK_METHOD: todo.pk_method = 1; break; #ifndef OPENSSL_NO_DEPRECATED_3_0 case OPT_ENGINES: todo.engines = 1; break; #endif case OPT_DISABLED: todo.disabled = 1; break; case OPT_MISSING_HELP: todo.missing_help = 1; break; case OPT_OBJECTS: todo.objects = 1; break; case OPT_OPTIONS: list_options_for_command(opt_arg()); break; case OPT_VERBOSE: verbose = 1; break; case OPT_PROV_CASES: if (!opt_provider(o)) return 1; break; } done = 1; } if (opt_num_rest() != 0) { BIO_printf(bio_err, "Extra arguments given.\n"); goto opthelp; } if (todo.commands) list_type(FT_general, one); if (todo.random_generators) list_random_generators(); if (todo.digest_commands) list_type(FT_md, one); if (todo.digest_algorithms) list_digests(); if (todo.kdf_algorithms) list_kdfs(); if (todo.mac_algorithms) list_macs(); if (todo.cipher_commands) list_type(FT_cipher, one); if (todo.cipher_algorithms) list_ciphers(); if (todo.serializer_algorithms) list_serializers(); if (todo.deserializer_algorithms) list_deserializers(); if (todo.pk_algorithms) list_pkey(); #ifndef OPENSSL_NO_DEPRECATED_3_0 if (todo.pk_method) list_pkey_meth(); if (todo.engines) list_engines(); #endif if (todo.disabled) list_disabled(); if (todo.missing_help) list_missing_help(); if (todo.objects) list_objects(); if (!done) goto opthelp; return 0; }