# Copyright 2020 The OpenSSL Project Authors. All Rights Reserved. # Copyright (c) 2020, Intel Corporation. All Rights Reserved. # # Licensed under the Apache License 2.0 (the "License"). You may not use # this file except in compliance with the License. You can obtain a copy # in the file LICENSE in the source distribution or at # https://www.openssl.org/source/license.html # # # Originally written by Ilya Albrekht, Sergey Kirillov and Andrey Matyukov # Intel Corporation # # December 2020 # # Initial release. # # Implementation utilizes 256-bit (ymm) registers to avoid frequency scaling issues. # # IceLake-Client @ 1.3GHz # |---------+----------------------+--------------+-------------| # | | OpenSSL 3.0.0-alpha9 | this | Unit | # |---------+----------------------+--------------+-------------| # | rsa2048 | 2 127 659 | 1 015 625 | cycles/sign | # | | 611 | 1280 / +109% | sign/s | # |---------+----------------------+--------------+-------------| # # $output is the last argument if it looks like a file (it has an extension) # $flavour is the first argument if it doesn't look like a file $output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef; $flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef; $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); $avx512ifma=0; $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or die "can't locate x86_64-xlate.pl"; if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1` =~ /GNU assembler version ([2-9]\.[0-9]+)/) { $avx512ifma = ($1>=2.26); } if (!$avx512 && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) && `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)(?:\.([0-9]+))?/) { $avx512ifma = ($1==2.11 && $2>=8) + ($1>=2.12); } if (!$avx512 && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) { $avx512ifma = ($2>=6.0); } open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"" or die "can't call $xlate: $!"; *STDOUT=*OUT; if ($avx512ifma>0) {{{ @_6_args_universal_ABI = ("%rdi","%rsi","%rdx","%rcx","%r8","%r9"); $code.=<<___; .extern OPENSSL_ia32cap_P .globl rsaz_avx512ifma_eligible .type rsaz_avx512ifma_eligible,\@abi-omnipotent .align 32 rsaz_avx512ifma_eligible: mov OPENSSL_ia32cap_P+8(%rip), %ecx xor %eax,%eax and \$`1<<31|1<<21|1<<17|1<<16`, %ecx # avx512vl + avx512ifma + avx512dq + avx512f cmp \$`1<<31|1<<21|1<<17|1<<16`, %ecx cmove %ecx,%eax ret .size rsaz_avx512ifma_eligible, .-rsaz_avx512ifma_eligible ___ ############################################################################### # Almost Montgomery Multiplication (AMM) for 20-digit number in radix 2^52. # # AMM is defined as presented in the paper # "Efficient Software Implementations of Modular Exponentiation" by Shay Gueron. # # The input and output are presented in 2^52 radix domain, i.e. # |res|, |a|, |b|, |m| are arrays of 20 64-bit qwords with 12 high bits zeroed. # |k0| is a Montgomery coefficient, which is here k0 = -1/m mod 2^64 # (note, the implementation counts only 52 bits from it). # # NB: the AMM implementation does not perform "conditional" subtraction step as # specified in the original algorithm as according to the paper "Enhanced Montgomery # Multiplication" by Shay Gueron (see Lemma 1), the result will be always < 2*2^1024 # and can be used as a direct input to the next AMM iteration. # This post-condition is true, provided the correct parameter |s| is choosen, i.e. # s >= n + 2 * k, which matches our case: 1040 > 1024 + 2 * 1. # # void RSAZ_amm52x20_x1_256(BN_ULONG *res, # const BN_ULONG *a, # const BN_ULONG *b, # const BN_ULONG *m, # BN_ULONG k0); ############################################################################### { # input parameters ("%rdi","%rsi","%rdx","%rcx","%r8") my ($res,$a,$b,$m,$k0) = @_6_args_universal_ABI; my $mask52 = "%rax"; my $acc0_0 = "%r9"; my $acc0_0_low = "%r9d"; my $acc0_1 = "%r15"; my $acc0_1_low = "%r15d"; my $b_ptr = "%r11"; my $iter = "%ebx"; my $zero = "%ymm0"; my ($R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0) = ("%ymm1", map("%ymm$_",(16..19))); my ($R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1) = ("%ymm2", map("%ymm$_",(20..23))); my $Bi = "%ymm3"; my $Yi = "%ymm4"; # Registers mapping for normalization. # We can reuse Bi, Yi registers here. my $TMP = $Bi; my $mask52x4 = $Yi; my ($T0,$T0h,$T1,$T1h,$T2) = map("%ymm$_", (24..28)); sub amm52x20_x1() { # _data_offset - offset in the |a| or |m| arrays pointing to the beginning # of data for corresponding AMM operation; # _b_offset - offset in the |b| array pointing to the next qword digit; my ($_data_offset,$_b_offset,$_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2,$_k0) = @_; my $_R0_xmm = $_R0 =~ s/%y/%x/r; $code.=<<___; movq $_b_offset($b_ptr), %r13 # b[i] vpbroadcastq %r13, $Bi # broadcast b[i] movq $_data_offset($a), %rdx mulx %r13, %r13, %r12 # a[0]*b[i] = (t0,t2) addq %r13, $_acc # acc += t0 movq %r12, %r10 adcq \$0, %r10 # t2 += CF movq $_k0, %r13 imulq $_acc, %r13 # acc * k0 andq $mask52, %r13 # yi = (acc * k0) & mask52 vpbroadcastq %r13, $Yi # broadcast y[i] movq $_data_offset($m), %rdx mulx %r13, %r13, %r12 # yi * m[0] = (t0,t1) addq %r13, $_acc # acc += t0 adcq %r12, %r10 # t2 += (t1 + CF) shrq \$52, $_acc salq \$12, %r10 or %r10, $_acc # acc = ((acc >> 52) | (t2 << 12)) vpmadd52luq `$_data_offset+64*0`($a), $Bi, $_R0 vpmadd52luq `$_data_offset+64*0+32`($a), $Bi, $_R0h vpmadd52luq `$_data_offset+64*1`($a), $Bi, $_R1 vpmadd52luq `$_data_offset+64*1+32`($a), $Bi, $_R1h vpmadd52luq `$_data_offset+64*2`($a), $Bi, $_R2 vpmadd52luq `$_data_offset+64*0`($m), $Yi, $_R0 vpmadd52luq `$_data_offset+64*0+32`($m), $Yi, $_R0h vpmadd52luq `$_data_offset+64*1`($m), $Yi, $_R1 vpmadd52luq `$_data_offset+64*1+32`($m), $Yi, $_R1h vpmadd52luq `$_data_offset+64*2`($m), $Yi, $_R2 # Shift accumulators right by 1 qword, zero extending the highest one valignq \$1, $_R0, $_R0h, $_R0 valignq \$1, $_R0h, $_R1, $_R0h valignq \$1, $_R1, $_R1h, $_R1 valignq \$1, $_R1h, $_R2, $_R1h valignq \$1, $_R2, $zero, $_R2 vmovq $_R0_xmm, %r13 addq %r13, $_acc # acc += R0[0] vpmadd52huq `$_data_offset+64*0`($a), $Bi, $_R0 vpmadd52huq `$_data_offset+64*0+32`($a), $Bi, $_R0h vpmadd52huq `$_data_offset+64*1`($a), $Bi, $_R1 vpmadd52huq `$_data_offset+64*1+32`($a), $Bi, $_R1h vpmadd52huq `$_data_offset+64*2`($a), $Bi, $_R2 vpmadd52huq `$_data_offset+64*0`($m), $Yi, $_R0 vpmadd52huq `$_data_offset+64*0+32`($m), $Yi, $_R0h vpmadd52huq `$_data_offset+64*1`($m), $Yi, $_R1 vpmadd52huq `$_data_offset+64*1+32`($m), $Yi, $_R1h vpmadd52huq `$_data_offset+64*2`($m), $Yi, $_R2 ___ } # Normalization routine: handles carry bits in R0..R2 QWs and # gets R0..R2 back to normalized 2^52 representation. # # Uses %r8-14,%e[bcd]x sub amm52x20_x1_norm { my ($_acc,$_R0,$_R0h,$_R1,$_R1h,$_R2) = @_; $code.=<<___; # Put accumulator to low qword in R0 vpbroadcastq $_acc, $TMP vpblendd \$3, $TMP, $_R0, $_R0 # Extract "carries" (12 high bits) from each QW of R0..R2 # Save them to LSB of QWs in T0..T2 vpsrlq \$52, $_R0, $T0 vpsrlq \$52, $_R0h, $T0h vpsrlq \$52, $_R1, $T1 vpsrlq \$52, $_R1h, $T1h vpsrlq \$52, $_R2, $T2 # "Shift left" T0..T2 by 1 QW valignq \$3, $T1h, $T2, $T2 valignq \$3, $T1, $T1h, $T1h valignq \$3, $T0h, $T1, $T1 valignq \$3, $T0, $T0h, $T0h valignq \$3, $zero, $T0, $T0 # Drop "carries" from R0..R2 QWs vpandq $mask52x4, $_R0, $_R0 vpandq $mask52x4, $_R0h, $_R0h vpandq $mask52x4, $_R1, $_R1 vpandq $mask52x4, $_R1h, $_R1h vpandq $mask52x4, $_R2, $_R2 # Sum R0..R2 with corresponding adjusted carries vpaddq $T0, $_R0, $_R0 vpaddq $T0h, $_R0h, $_R0h vpaddq $T1, $_R1, $_R1 vpaddq $T1h, $_R1h, $_R1h vpaddq $T2, $_R2, $_R2 # Now handle carry bits from this addition # Get mask of QWs which 52-bit parts overflow... vpcmpuq \$1, $_R0, $mask52x4, %k1 # OP=lt vpcmpuq \$1, $_R0h, $mask52x4, %k2 vpcmpuq \$1, $_R1, $mask52x4, %k3 vpcmpuq \$1, $_R1h, $mask52x4, %k4 vpcmpuq \$1, $_R2, $mask52x4, %k5 kmovb %k1, %r14d # k1 kmovb %k2, %r13d # k1h kmovb %k3, %r12d # k2 kmovb %k4, %r11d # k2h kmovb %k5, %r10d # k3 # ...or saturated vpcmpuq \$0, $_R0, $mask52x4, %k1 # OP=eq vpcmpuq \$0, $_R0h, $mask52x4, %k2 vpcmpuq \$0, $_R1, $mask52x4, %k3 vpcmpuq \$0, $_R1h, $mask52x4, %k4 vpcmpuq \$0, $_R2, $mask52x4, %k5 kmovb %k1, %r9d # k4 kmovb %k2, %r8d # k4h kmovb %k3, %ebx # k5 kmovb %k4, %ecx # k5h kmovb %k5, %edx # k6 # Get mask of QWs where carries shall be propagated to. # Merge 4-bit masks to 8-bit values to use add with carry. shl \$4, %r13b or %r13b, %r14b shl \$4, %r11b or %r11b, %r12b add %r14b, %r14b adc %r12b, %r12b adc %r10b, %r10b shl \$4, %r8b or %r8b,%r9b shl \$4, %cl or %cl, %bl add %r9b, %r14b adc %bl, %r12b adc %dl, %r10b xor %r9b, %r14b xor %bl, %r12b xor %dl, %r10b kmovb %r14d, %k1 shr \$4, %r14b kmovb %r14d, %k2 kmovb %r12d, %k3 shr \$4, %r12b kmovb %r12d, %k4 kmovb %r10d, %k5 # Add carries according to the obtained mask vpsubq $mask52x4, $_R0, ${_R0}{%k1} vpsubq $mask52x4, $_R0h, ${_R0h}{%k2} vpsubq $mask52x4, $_R1, ${_R1}{%k3} vpsubq $mask52x4, $_R1h, ${_R1h}{%k4} vpsubq $mask52x4, $_R2, ${_R2}{%k5} vpandq $mask52x4, $_R0, $_R0 vpandq $mask52x4, $_R0h, $_R0h vpandq $mask52x4, $_R1, $_R1 vpandq $mask52x4, $_R1h, $_R1h vpandq $mask52x4, $_R2, $_R2 ___ } $code.=<<___; .text .globl RSAZ_amm52x20_x1_256 .type RSAZ_amm52x20_x1_256,\@function,5 .align 32 RSAZ_amm52x20_x1_256: .cfi_startproc endbranch push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lrsaz_amm52x20_x1_256_body: # Zeroing accumulators vpxord $zero, $zero, $zero vmovdqa64 $zero, $R0_0 vmovdqa64 $zero, $R0_0h vmovdqa64 $zero, $R1_0 vmovdqa64 $zero, $R1_0h vmovdqa64 $zero, $R2_0 xorl $acc0_0_low, $acc0_0_low movq $b, $b_ptr # backup address of b movq \$0xfffffffffffff, $mask52 # 52-bit mask # Loop over 20 digits unrolled by 4 mov \$5, $iter .align 32 .Lloop5: ___ foreach my $idx (0..3) { &amm52x20_x1(0,8*$idx,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,$k0); } $code.=<<___; lea `4*8`($b_ptr), $b_ptr dec $iter jne .Lloop5 vmovdqa64 .Lmask52x4(%rip), $mask52x4 ___ &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0); $code.=<<___; vmovdqu64 $R0_0, ($res) vmovdqu64 $R0_0h, 32($res) vmovdqu64 $R1_0, 64($res) vmovdqu64 $R1_0h, 96($res) vmovdqu64 $R2_0, 128($res) vzeroupper mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lrsaz_amm52x20_x1_256_epilogue: ret .cfi_endproc .size RSAZ_amm52x20_x1_256, .-RSAZ_amm52x20_x1_256 ___ $code.=<<___; .data .align 32 .Lmask52x4: .quad 0xfffffffffffff .quad 0xfffffffffffff .quad 0xfffffffffffff .quad 0xfffffffffffff ___ ############################################################################### # Dual Almost Montgomery Multiplication for 20-digit number in radix 2^52 # # See description of RSAZ_amm52x20_x1_256() above for details about Almost # Montgomery Multiplication algorithm and function input parameters description. # # This function does two AMMs for two independent inputs, hence dual. # # void RSAZ_amm52x20_x2_256(BN_ULONG out[2][20], # const BN_ULONG a[2][20], # const BN_ULONG b[2][20], # const BN_ULONG m[2][20], # const BN_ULONG k0[2]); ############################################################################### $code.=<<___; .text .globl RSAZ_amm52x20_x2_256 .type RSAZ_amm52x20_x2_256,\@function,5 .align 32 RSAZ_amm52x20_x2_256: .cfi_startproc endbranch push %rbx .cfi_push %rbx push %rbp .cfi_push %rbp push %r12 .cfi_push %r12 push %r13 .cfi_push %r13 push %r14 .cfi_push %r14 push %r15 .cfi_push %r15 .Lrsaz_amm52x20_x2_256_body: # Zeroing accumulators vpxord $zero, $zero, $zero vmovdqa64 $zero, $R0_0 vmovdqa64 $zero, $R0_0h vmovdqa64 $zero, $R1_0 vmovdqa64 $zero, $R1_0h vmovdqa64 $zero, $R2_0 vmovdqa64 $zero, $R0_1 vmovdqa64 $zero, $R0_1h vmovdqa64 $zero, $R1_1 vmovdqa64 $zero, $R1_1h vmovdqa64 $zero, $R2_1 xorl $acc0_0_low, $acc0_0_low xorl $acc0_1_low, $acc0_1_low movq $b, $b_ptr # backup address of b movq \$0xfffffffffffff, $mask52 # 52-bit mask mov \$20, $iter .align 32 .Lloop20: ___ &amm52x20_x1( 0, 0,$acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0,"($k0)"); # 20*8 = offset of the next dimension in two-dimension array &amm52x20_x1(20*8,20*8,$acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1,"8($k0)"); $code.=<<___; lea 8($b_ptr), $b_ptr dec $iter jne .Lloop20 vmovdqa64 .Lmask52x4(%rip), $mask52x4 ___ &amm52x20_x1_norm($acc0_0,$R0_0,$R0_0h,$R1_0,$R1_0h,$R2_0); &amm52x20_x1_norm($acc0_1,$R0_1,$R0_1h,$R1_1,$R1_1h,$R2_1); $code.=<<___; vmovdqu64 $R0_0, ($res) vmovdqu64 $R0_0h, 32($res) vmovdqu64 $R1_0, 64($res) vmovdqu64 $R1_0h, 96($res) vmovdqu64 $R2_0, 128($res) vmovdqu64 $R0_1, 160($res) vmovdqu64 $R0_1h, 192($res) vmovdqu64 $R1_1, 224($res) vmovdqu64 $R1_1h, 256($res) vmovdqu64 $R2_1, 288($res) vzeroupper mov 0(%rsp),%r15 .cfi_restore %r15 mov 8(%rsp),%r14 .cfi_restore %r14 mov 16(%rsp),%r13 .cfi_restore %r13 mov 24(%rsp),%r12 .cfi_restore %r12 mov 32(%rsp),%rbp .cfi_restore %rbp mov 40(%rsp),%rbx .cfi_restore %rbx lea 48(%rsp),%rsp .cfi_adjust_cfa_offset -48 .Lrsaz_amm52x20_x2_256_epilogue: ret .cfi_endproc .size RSAZ_amm52x20_x2_256, .-RSAZ_amm52x20_x2_256 ___ } ############################################################################### # Constant time extraction from the precomputed table of powers base^i, where # i = 0..2^EXP_WIN_SIZE-1 # # The input |red_table| contains precomputations for two independent base values, # so the |tbl_idx| indicates for which base shall we extract the value. # |red_table_idx| is a power index. # # Extracted value (output) is 20 digit number in 2^52 radix. # # void extract_multiplier_2x20_win5(BN_ULONG *red_Y, # const BN_ULONG red_table[1 << EXP_WIN_SIZE][2][20], # int red_table_idx, # int tbl_idx); # 0 or 1 # # EXP_WIN_SIZE = 5 ############################################################################### { # input parameters my ($out,$red_tbl,$red_tbl_idx,$tbl_idx) = @_6_args_universal_ABI; my ($t0,$t1,$t2,$t3,$t4) = map("%ymm$_", (0..4)); my $t4xmm = $t4 =~ s/%y/%x/r; my ($tmp0,$tmp1,$tmp2,$tmp3,$tmp4) = map("%ymm$_", (16..20)); my ($cur_idx,$idx,$ones) = map("%ymm$_", (21..23)); $code.=<<___; .text .align 32 .globl extract_multiplier_2x20_win5 .type extract_multiplier_2x20_win5,\@function,4 extract_multiplier_2x20_win5: .cfi_startproc endbranch leaq ($tbl_idx,$tbl_idx,4), %rax salq \$5, %rax addq %rax, $red_tbl vmovdqa64 .Lones(%rip), $ones # broadcast ones vpbroadcastq $red_tbl_idx, $idx leaq `(1<<5)*2*20*8`($red_tbl), %rax # holds end of the tbl vpxor $t4xmm, $t4xmm, $t4xmm vmovdqa64 $t4, $t3 # zeroing t0..4, cur_idx vmovdqa64 $t4, $t2 vmovdqa64 $t4, $t1 vmovdqa64 $t4, $t0 vmovdqa64 $t4, $cur_idx .align 32 .Lloop: vpcmpq \$0, $cur_idx, $idx, %k1 # mask of (idx == cur_idx) addq \$320, $red_tbl # 320 = 2 * 20 digits * 8 bytes vpaddq $ones, $cur_idx, $cur_idx # increment cur_idx vmovdqu64 -320($red_tbl), $tmp0 # load data from red_tbl vmovdqu64 -288($red_tbl), $tmp1 vmovdqu64 -256($red_tbl), $tmp2 vmovdqu64 -224($red_tbl), $tmp3 vmovdqu64 -192($red_tbl), $tmp4 vpblendmq $tmp0, $t0, ${t0}{%k1} # extract data when mask is not zero vpblendmq $tmp1, $t1, ${t1}{%k1} vpblendmq $tmp2, $t2, ${t2}{%k1} vpblendmq $tmp3, $t3, ${t3}{%k1} vpblendmq $tmp4, $t4, ${t4}{%k1} cmpq $red_tbl, %rax jne .Lloop vmovdqu64 $t0, ($out) # store t0..4 vmovdqu64 $t1, 32($out) vmovdqu64 $t2, 64($out) vmovdqu64 $t3, 96($out) vmovdqu64 $t4, 128($out) ret .cfi_endproc .size extract_multiplier_2x20_win5, .-extract_multiplier_2x20_win5 ___ $code.=<<___; .data .align 32 .Lones: .quad 1,1,1,1 ___ } if ($win64) { $rec="%rcx"; $frame="%rdx"; $context="%r8"; $disp="%r9"; $code.=<<___ .extern __imp_RtlVirtualUnwind .type rsaz_def_handler,\@abi-omnipotent .align 16 rsaz_def_handler: push %rsi push %rdi push %rbx push %rbp push %r12 push %r13 push %r14 push %r15 pushfq sub \$64,%rsp mov 120($context),%rax # pull context->Rax mov 248($context),%rbx # pull context->Rip mov 8($disp),%rsi # disp->ImageBase mov 56($disp),%r11 # disp->HandlerData mov 0(%r11),%r10d # HandlerData[0] lea (%rsi,%r10),%r10 # prologue label cmp %r10,%rbx # context->Rip<.Lprologue jb .Lcommon_seh_tail mov 152($context),%rax # pull context->Rsp mov 4(%r11),%r10d # HandlerData[1] lea (%rsi,%r10),%r10 # epilogue label cmp %r10,%rbx # context->Rip>=.Lepilogue jae .Lcommon_seh_tail lea 48(%rax),%rax mov -8(%rax),%rbx mov -16(%rax),%rbp mov -24(%rax),%r12 mov -32(%rax),%r13 mov -40(%rax),%r14 mov -48(%rax),%r15 mov %rbx,144($context) # restore context->Rbx mov %rbp,160($context) # restore context->Rbp mov %r12,216($context) # restore context->R12 mov %r13,224($context) # restore context->R13 mov %r14,232($context) # restore context->R14 mov %r15,240($context) # restore context->R14 .Lcommon_seh_tail: mov 8(%rax),%rdi mov 16(%rax),%rsi mov %rax,152($context) # restore context->Rsp mov %rsi,168($context) # restore context->Rsi mov %rdi,176($context) # restore context->Rdi mov 40($disp),%rdi # disp->ContextRecord mov $context,%rsi # context mov \$154,%ecx # sizeof(CONTEXT) .long 0xa548f3fc # cld; rep movsq mov $disp,%rsi xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER mov 8(%rsi),%rdx # arg2, disp->ImageBase mov 0(%rsi),%r8 # arg3, disp->ControlPc mov 16(%rsi),%r9 # arg4, disp->FunctionEntry mov 40(%rsi),%r10 # disp->ContextRecord lea 56(%rsi),%r11 # &disp->HandlerData lea 24(%rsi),%r12 # &disp->EstablisherFrame mov %r10,32(%rsp) # arg5 mov %r11,40(%rsp) # arg6 mov %r12,48(%rsp) # arg7 mov %rcx,56(%rsp) # arg8, (NULL) call *__imp_RtlVirtualUnwind(%rip) mov \$1,%eax # ExceptionContinueSearch add \$64,%rsp popfq pop %r15 pop %r14 pop %r13 pop %r12 pop %rbp pop %rbx pop %rdi pop %rsi ret .size rsaz_def_handler,.-rsaz_def_handler .section .pdata .align 4 .rva .LSEH_begin_RSAZ_amm52x20_x1_256 .rva .LSEH_end_RSAZ_amm52x20_x1_256 .rva .LSEH_info_RSAZ_amm52x20_x1_256 .rva .LSEH_begin_RSAZ_amm52x20_x2_256 .rva .LSEH_end_RSAZ_amm52x20_x2_256 .rva .LSEH_info_RSAZ_amm52x20_x2_256 .rva .LSEH_begin_extract_multiplier_2x20_win5 .rva .LSEH_end_extract_multiplier_2x20_win5 .rva .LSEH_info_extract_multiplier_2x20_win5 .section .xdata .align 8 .LSEH_info_RSAZ_amm52x20_x1_256: .byte 9,0,0,0 .rva rsaz_def_handler .rva .Lrsaz_amm52x20_x1_256_body,.Lrsaz_amm52x20_x1_256_epilogue .LSEH_info_RSAZ_amm52x20_x2_256: .byte 9,0,0,0 .rva rsaz_def_handler .rva .Lrsaz_amm52x20_x2_256_body,.Lrsaz_amm52x20_x2_256_epilogue .LSEH_info_extract_multiplier_2x20_win5: .byte 9,0,0,0 .rva rsaz_def_handler .rva .LSEH_begin_extract_multiplier_2x20_win5,.LSEH_begin_extract_multiplier_2x20_win5 ___ } }}} else {{{ # fallback for old assembler $code.=<<___; .text .globl rsaz_avx512ifma_eligible .type rsaz_avx512ifma_eligible,\@abi-omnipotent rsaz_avx512ifma_eligible: xor %eax,%eax ret .size rsaz_avx512ifma_eligible, .-rsaz_avx512ifma_eligible .globl RSAZ_amm52x20_x1_256 .globl RSAZ_amm52x20_x2_256 .globl extract_multiplier_2x20_win5 .type RSAZ_amm52x20_x1_256,\@abi-omnipotent RSAZ_amm52x20_x1_256: RSAZ_amm52x20_x2_256: extract_multiplier_2x20_win5: .byte 0x0f,0x0b # ud2 ret .size RSAZ_amm52x20_x1_256, .-RSAZ_amm52x20_x1_256 ___ }}} $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT or die "error closing STDOUT: $!";