/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include "crypto/asn1.h" #include "crypto/evp.h" EVP_PKEY *d2i_PrivateKey_ex(int type, EVP_PKEY **a, const unsigned char **pp, long length, OPENSSL_CTX *libctx, const char *propq) { EVP_PKEY *ret; const unsigned char *p = *pp; if ((a == NULL) || (*a == NULL)) { if ((ret = EVP_PKEY_new()) == NULL) { ASN1err(0, ERR_R_EVP_LIB); return NULL; } } else { ret = *a; #ifndef OPENSSL_NO_ENGINE ENGINE_finish(ret->engine); ret->engine = NULL; #endif } if (!EVP_PKEY_set_type(ret, type)) { ASN1err(0, ASN1_R_UNKNOWN_PUBLIC_KEY_TYPE); goto err; } if (!ret->ameth->old_priv_decode || !ret->ameth->old_priv_decode(ret, &p, length)) { if (ret->ameth->priv_decode != NULL || ret->ameth->priv_decode_with_libctx != NULL) { EVP_PKEY *tmp; PKCS8_PRIV_KEY_INFO *p8 = NULL; p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, length); if (p8 == NULL) goto err; tmp = evp_pkcs82pkey_int(p8, libctx, propq); PKCS8_PRIV_KEY_INFO_free(p8); if (tmp == NULL) goto err; EVP_PKEY_free(ret); ret = tmp; } else { ASN1err(0, ERR_R_ASN1_LIB); goto err; } } *pp = p; if (a != NULL) (*a) = ret; return ret; err: if (a == NULL || *a != ret) EVP_PKEY_free(ret); return NULL; } EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **a, const unsigned char **pp, long length) { return d2i_PrivateKey_ex(type, a, pp, length, NULL, NULL); } /* * This works like d2i_PrivateKey() except it automatically works out the * type */ EVP_PKEY *d2i_AutoPrivateKey_ex(EVP_PKEY **a, const unsigned char **pp, long length, OPENSSL_CTX *libctx, const char *propq) { STACK_OF(ASN1_TYPE) *inkey; const unsigned char *p; int keytype; p = *pp; /* * Dirty trick: read in the ASN1 data into a STACK_OF(ASN1_TYPE): by * analyzing it we can determine the passed structure: this assumes the * input is surrounded by an ASN1 SEQUENCE. */ inkey = d2i_ASN1_SEQUENCE_ANY(NULL, &p, length); p = *pp; /* * Since we only need to discern "traditional format" RSA and DSA keys we * can just count the elements. */ if (sk_ASN1_TYPE_num(inkey) == 6) { keytype = EVP_PKEY_DSA; } else if (sk_ASN1_TYPE_num(inkey) == 4) { keytype = EVP_PKEY_EC; } else if (sk_ASN1_TYPE_num(inkey) == 3) { /* This seems to be PKCS8, not * traditional format */ PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, length); EVP_PKEY *ret; sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free); if (p8 == NULL) { ASN1err(0, ASN1_R_UNSUPPORTED_PUBLIC_KEY_TYPE); return NULL; } ret = evp_pkcs82pkey_int(p8, libctx, propq); PKCS8_PRIV_KEY_INFO_free(p8); if (ret == NULL) return NULL; *pp = p; if (a) { *a = ret; } return ret; } else { keytype = EVP_PKEY_RSA; } sk_ASN1_TYPE_pop_free(inkey, ASN1_TYPE_free); return d2i_PrivateKey_ex(keytype, a, pp, length, libctx, propq); } EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **a, const unsigned char **pp, long length) { return d2i_AutoPrivateKey_ex(a, pp, length, NULL, NULL); }