/* * Copyright 2021-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * Some ctrls depend on deprecated functionality. We trust that this is * functionality that remains internally even when 'no-deprecated' is * configured. When we drop #legacy EVP_PKEYs, this source should be * possible to drop as well. */ #include "internal/deprecated.h" #include /* The following includes get us all the EVP_PKEY_CTRL macros */ #include #include #include #include #include /* This include gets us all the OSSL_PARAM key string macros */ #include #include #include #include #include "internal/nelem.h" #include "internal/cryptlib.h" #include "internal/ffc.h" #include "crypto/evp.h" #include "crypto/dh.h" #include "crypto/ec.h" struct translation_ctx_st; /* Forwarding */ struct translation_st; /* Forwarding */ /* * The fixup_args functions are called with the following parameters: * * |state| The state we're called in, explained further at the * end of this comment. * |translation| The translation item, to be pilfered for data as * necessary. * |ctx| The translation context, which contains copies of * the following arguments, applicable according to * the caller. All of the attributes in this context * may be freely modified by the fixup_args function. * For cleanup, call cleanup_translation_ctx(). * * The |state| tells the fixup_args function something about the caller and * what they may expect: * * PKEY The fixup_args function has been called * from an EVP_PKEY payload getter / setter, * and is fully responsible for getting or * setting the requested data. With this * state, the fixup_args function is expected * to use or modify |*params|, depending on * |action_type|. * * PRE_CTRL_TO_PARAMS The fixup_args function has been called * POST_CTRL_TO_PARAMS from EVP_PKEY_CTX_ctrl(), to help with * translating the ctrl data to an OSSL_PARAM * element or back. The calling sequence is * as follows: * * 1. fixup_args(PRE_CTRL_TO_PARAMS, ...) * 2. EVP_PKEY_CTX_set_params() or * EVP_PKEY_CTX_get_params() * 3. fixup_args(POST_CTRL_TO_PARAMS, ...) * * With the PRE_CTRL_TO_PARAMS state, the * fixup_args function is expected to modify * the passed |*params| in whatever way * necessary, when |action_type == SET|. * With the POST_CTRL_TO_PARAMS state, the * fixup_args function is expected to modify * the passed |p2| in whatever way necessary, * when |action_type == GET|. * * The return value from the fixup_args call * with the POST_CTRL_TO_PARAMS state becomes * the return value back to EVP_PKEY_CTX_ctrl(). * * CLEANUP_CTRL_TO_PARAMS The cleanup_args functions has been called * from EVP_PKEY_CTX_ctrl(), to clean up what * the fixup_args function has done, if needed. * * * PRE_CTRL_STR_TO_PARAMS The fixup_args function has been called * POST_CTRL_STR_TO_PARAMS from EVP_PKEY_CTX_ctrl_str(), to help with * translating the ctrl_str data to an * OSSL_PARAM element or back. The calling * sequence is as follows: * * 1. fixup_args(PRE_CTRL_STR_TO_PARAMS, ...) * 2. EVP_PKEY_CTX_set_params() or * EVP_PKEY_CTX_get_params() * 3. fixup_args(POST_CTRL_STR_TO_PARAMS, ...) * * With the PRE_CTRL_STR_TO_PARAMS state, * the fixup_args function is expected to * modify the passed |*params| in whatever * way necessary, when |action_type == SET|. * With the POST_CTRL_STR_TO_PARAMS state, * the fixup_args function is only expected * to return a value. * * CLEANUP_CTRL_STR_TO_PARAMS The cleanup_args functions has been called * from EVP_PKEY_CTX_ctrl_str(), to clean up * what the fixup_args function has done, if * needed. * * PRE_PARAMS_TO_CTRL The fixup_args function has been called * POST_PARAMS_TO_CTRL from EVP_PKEY_CTX_get_params() or * EVP_PKEY_CTX_set_params(), to help with * translating the OSSL_PARAM data to the * corresponding EVP_PKEY_CTX_ctrl() arguments * or the other way around. The calling * sequence is as follows: * * 1. fixup_args(PRE_PARAMS_TO_CTRL, ...) * 2. EVP_PKEY_CTX_ctrl() * 3. fixup_args(POST_PARAMS_TO_CTRL, ...) * * With the PRE_PARAMS_TO_CTRL state, the * fixup_args function is expected to modify * the passed |p1| and |p2| in whatever way * necessary, when |action_type == SET|. * With the POST_PARAMS_TO_CTRL state, the * fixup_args function is expected to * modify the passed |*params| in whatever * way necessary, when |action_type == GET|. * * CLEANUP_PARAMS_TO_CTRL The cleanup_args functions has been called * from EVP_PKEY_CTX_get_params() or * EVP_PKEY_CTX_set_params(), to clean up what * the fixup_args function has done, if needed. */ enum state { PKEY, PRE_CTRL_TO_PARAMS, POST_CTRL_TO_PARAMS, CLEANUP_CTRL_TO_PARAMS, PRE_CTRL_STR_TO_PARAMS, POST_CTRL_STR_TO_PARAMS, CLEANUP_CTRL_STR_TO_PARAMS, PRE_PARAMS_TO_CTRL, POST_PARAMS_TO_CTRL, CLEANUP_PARAMS_TO_CTRL }; enum action { NONE = 0, GET = 1, SET = 2 }; typedef int fixup_args_fn(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx); typedef int cleanup_args_fn(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx); struct translation_ctx_st { /* * The EVP_PKEY_CTX, for calls on that structure, to be pilfered for data * as necessary. */ EVP_PKEY_CTX *pctx; /* * The action type (GET or SET). This may be 0 in some cases, and should * be modified by the fixup_args function in the PRE states. It should * otherwise remain untouched once set. */ enum action action_type; /* * For ctrl to params translation, the actual ctrl command number used. * For params to ctrl translation, 0. */ int ctrl_cmd; /* * For ctrl_str to params translation, the actual ctrl command string * used. In this case, the (string) value is always passed as |p2|. * For params to ctrl translation, this is NULL. Along with it is also * and indicator whether it matched |ctrl_str| or |ctrl_hexstr| in the * translation item. */ const char *ctrl_str; int ishex; /* the ctrl-style int argument. */ int p1; /* the ctrl-style void* argument. */ void *p2; /* a size, for passing back the |p2| size where applicable */ size_t sz; /* pointer to the OSSL_PARAM-style params array. */ OSSL_PARAM *params; /*- * The following are used entirely internally by the fixup_args functions * and should not be touched by the callers, at all. */ /* * Copy of the ctrl-style void* argument, if the fixup_args function * needs to manipulate |p2| but wants to remember original. */ void *orig_p2; /* Diverse types of storage for the needy. */ char name_buf[OSSL_MAX_NAME_SIZE]; void *allocated_buf; void *bufp; size_t buflen; }; struct translation_st { /*- * What this table item does. * * If the item has this set to 0, it means that both GET and SET are * supported, and |fixup_args| will determine which it is. This is to * support translations of ctrls where the action type depends on the * value of |p1| or |p2| (ctrls are really bi-directional, but are * seldom used that way). * * This can be also used in the lookup template when it looks up by * OSSL_PARAM key, to indicate if a setter or a getter called. */ enum action action_type; /*- * Conditions, for params->ctrl translations. * * In table item, |keytype1| and |keytype2| can be set to -1 to indicate * that this item supports all key types (or rather, that |fixup_args| * will check and return an error if it's not supported). * Any of these may be set to 0 to indicate that they are unset. */ int keytype1; /* The EVP_PKEY_XXX type, i.e. NIDs. #legacy */ int keytype2; /* Another EVP_PKEY_XXX type, used for aliases */ int optype; /* The operation type */ /* * Lookup and translation attributes * * |ctrl_num|, |ctrl_str|, |ctrl_hexstr| and |param_key| are lookup * attributes. * * |ctrl_num| may be 0 or that |param_key| may be NULL in the table item, * but not at the same time. If they are, they are simply not used for * lookup. * When |ctrl_num| == 0, no ctrl will be called. Likewise, when * |param_key| == NULL, no OSSL_PARAM setter/getter will be called. * In that case the treatment of the translation item relies entirely on * |fixup_args|, which is then assumed to have side effects. * * As a special case, it's possible to set |ctrl_hexstr| and assign NULL * to |ctrl_str|. That will signal to default_fixup_args() that the * value must always be interpreted as hex. */ int ctrl_num; /* EVP_PKEY_CTRL_xxx */ const char *ctrl_str; /* The corresponding ctrl string */ const char *ctrl_hexstr; /* The alternative "hex{str}" ctrl string */ const char *param_key; /* The corresponding OSSL_PARAM key */ /* * The appropriate OSSL_PARAM data type. This may be 0 to indicate that * this OSSL_PARAM may have more than one data type, depending on input * material. In this case, |fixup_args| is expected to check and handle * it. */ unsigned int param_data_type; /* * Fixer functions * * |fixup_args| is always called before (for SET) or after (for GET) * the actual ctrl / OSSL_PARAM function. */ fixup_args_fn *fixup_args; }; /*- * Fixer function implementations * ============================== */ /* * default_check isn't a fixer per se, but rather a helper function to * perform certain standard checks. */ static int default_check(enum state state, const struct translation_st *translation, const struct translation_ctx_st *ctx) { switch (state) { default: break; case PRE_CTRL_TO_PARAMS: if (!ossl_assert(translation != NULL)) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); return -2; } if (!ossl_assert(translation->param_key != 0) || !ossl_assert(translation->param_data_type != 0)) { ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); return -1; } break; case PRE_CTRL_STR_TO_PARAMS: /* * For ctrl_str to params translation, we allow direct use of * OSSL_PARAM keys as ctrl_str keys. Therefore, it's possible that * we end up with |translation == NULL|, which is fine. The fixup * function will have to deal with it carefully. */ if (translation != NULL) { if (!ossl_assert(translation->action_type != GET)) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); return -2; } if (!ossl_assert(translation->param_key != NULL) || !ossl_assert(translation->param_data_type != 0)) { ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); return 0; } } break; case PRE_PARAMS_TO_CTRL: case POST_PARAMS_TO_CTRL: if (!ossl_assert(translation != NULL)) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); return -2; } if (!ossl_assert(translation->ctrl_num != 0) || !ossl_assert(translation->param_data_type != 0)) { ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); return -1; } } /* Nothing else to check */ return 1; } /*- * default_fixup_args fixes up all sorts of arguments, governed by the * diverse attributes in the translation item. It covers all "standard" * base ctrl functionality, meaning it can handle basic conversion of * data between p1+p2 (SET) or return value+p2 (GET) as long as the values * don't have extra semantics (such as NIDs, OIDs, that sort of stuff). * Extra semantics must be handled via specific fixup_args functions. * * The following states and action type combinations have standard handling * done in this function: * * PRE_CTRL_TO_PARAMS, 0 - ERROR. action type must be * determined by a fixup function. * PRE_CTRL_TO_PARAMS, SET | GET - |p1| and |p2| are converted to an * OSSL_PARAM according to the data * type given in |translattion|. * For OSSL_PARAM_UNSIGNED_INTEGER, * a BIGNUM passed as |p2| is accepted. * POST_CTRL_TO_PARAMS, GET - If the OSSL_PARAM data type is a * STRING or PTR type, |p1| is set * to the OSSL_PARAM return size, and * |p2| is set to the string. * PRE_CTRL_STR_TO_PARAMS, !SET - ERROR. That combination is not * supported. * PRE_CTRL_STR_TO_PARAMS, SET - |p2| is taken as a string, and is * converted to an OSSL_PARAM in a * standard manner, guided by the * param key and data type from * |translation|. * PRE_PARAMS_TO_CTRL, SET - the OSSL_PARAM is converted to * |p1| and |p2| according to the * data type given in |translation| * For OSSL_PARAM_UNSIGNED_INTEGER, * if |p2| is non-NULL, then |*p2| * is assigned a BIGNUM, otherwise * |p1| is assigned an unsigned int. * POST_PARAMS_TO_CTRL, GET - |p1| and |p2| are converted to * an OSSL_PARAM, in the same manner * as for the combination of * PRE_CTRL_TO_PARAMS, SET. */ static int default_fixup_args(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; switch (state) { default: /* For states this function should never have been called with */ ERR_raise_data(ERR_LIB_EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, "[action:%d, state:%d]", ctx->action_type, state); return 0; /* * PRE_CTRL_TO_PARAMS and POST_CTRL_TO_PARAMS handle ctrl to params * translations. PRE_CTRL_TO_PARAMS is responsible for preparing * |*params|, and POST_CTRL_TO_PARAMS is responsible for bringing the * result back to |*p2| and the return value. */ case PRE_CTRL_TO_PARAMS: /* This is ctrl to params translation, so we need an OSSL_PARAM key */ if (ctx->action_type == NONE) { /* * No action type is an error here. That's a case for a * special fixup function. */ ERR_raise_data(ERR_LIB_EVP, ERR_R_UNSUPPORTED, "[action:%d, state:%d]", ctx->action_type, state); return 0; } if (translation->optype != 0) { if ((EVP_PKEY_CTX_IS_SIGNATURE_OP(ctx->pctx) && ctx->pctx->op.sig.algctx == NULL) || (EVP_PKEY_CTX_IS_DERIVE_OP(ctx->pctx) && ctx->pctx->op.kex.algctx == NULL) || (EVP_PKEY_CTX_IS_ASYM_CIPHER_OP(ctx->pctx) && ctx->pctx->op.ciph.algctx == NULL) || (EVP_PKEY_CTX_IS_KEM_OP(ctx->pctx) && ctx->pctx->op.encap.algctx == NULL) /* * The following may be unnecessary, but we have them * for good measure... */ || (EVP_PKEY_CTX_IS_GEN_OP(ctx->pctx) && ctx->pctx->op.keymgmt.genctx == NULL) || (EVP_PKEY_CTX_IS_FROMDATA_OP(ctx->pctx) && ctx->pctx->op.keymgmt.genctx == NULL)) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); /* Uses the same return values as EVP_PKEY_CTX_ctrl */ return -2; } } /* * OSSL_PARAM_construct_TYPE() works equally well for both SET and GET. */ switch (translation->param_data_type) { case OSSL_PARAM_INTEGER: *ctx->params = OSSL_PARAM_construct_int(translation->param_key, &ctx->p1); break; case OSSL_PARAM_UNSIGNED_INTEGER: /* * BIGNUMs are passed via |p2|. For all ctrl's that just want * to pass a simple integer via |p1|, |p2| is expected to be * NULL. * * Note that this allocates a buffer, which the cleanup function * must deallocate. */ if (ctx->p2 != NULL) { if (ctx->action_type == SET) { ctx->buflen = BN_num_bytes(ctx->p2); if ((ctx->allocated_buf = OPENSSL_malloc(ctx->buflen)) == NULL) return 0; if (BN_bn2nativepad(ctx->p2, ctx->allocated_buf, ctx->buflen) < 0) { OPENSSL_free(ctx->allocated_buf); ctx->allocated_buf = NULL; return 0; } *ctx->params = OSSL_PARAM_construct_BN(translation->param_key, ctx->allocated_buf, ctx->buflen); } else { /* * No support for getting a BIGNUM by ctrl, this needs * fixup_args function support. */ ERR_raise_data(ERR_LIB_EVP, ERR_R_UNSUPPORTED, "[action:%d, state:%d] trying to get a " "BIGNUM via ctrl call", ctx->action_type, state); return 0; } } else { *ctx->params = OSSL_PARAM_construct_uint(translation->param_key, (unsigned int *)&ctx->p1); } break; case OSSL_PARAM_UTF8_STRING: *ctx->params = OSSL_PARAM_construct_utf8_string(translation->param_key, ctx->p2, (size_t)ctx->p1); break; case OSSL_PARAM_UTF8_PTR: *ctx->params = OSSL_PARAM_construct_utf8_ptr(translation->param_key, ctx->p2, (size_t)ctx->p1); break; case OSSL_PARAM_OCTET_STRING: *ctx->params = OSSL_PARAM_construct_octet_string(translation->param_key, ctx->p2, (size_t)ctx->p1); break; case OSSL_PARAM_OCTET_PTR: *ctx->params = OSSL_PARAM_construct_octet_ptr(translation->param_key, ctx->p2, (size_t)ctx->p1); break; } break; case POST_CTRL_TO_PARAMS: /* * Because EVP_PKEY_CTX_ctrl() returns the length of certain objects * as its return value, we need to ensure that we do it here as well, * for the OSSL_PARAM data types where this makes sense. */ if (ctx->action_type == GET) { switch (translation->param_data_type) { case OSSL_PARAM_UTF8_STRING: case OSSL_PARAM_UTF8_PTR: case OSSL_PARAM_OCTET_STRING: case OSSL_PARAM_OCTET_PTR: ctx->p1 = (int)ctx->params[0].return_size; break; } } break; /* * PRE_CTRL_STR_TO_PARAMS and POST_CTRL_STR_TO_PARAMS handle ctrl_str to * params translations. PRE_CTRL_TO_PARAMS is responsible for preparing * |*params|, and POST_CTRL_TO_PARAMS currently has nothing to do, since * there's no support for getting data via ctrl_str calls. */ case PRE_CTRL_STR_TO_PARAMS: { /* This is ctrl_str to params translation */ const char *tmp_ctrl_str = ctx->ctrl_str; const char *orig_ctrl_str = ctx->ctrl_str; const char *orig_value = ctx->p2; const OSSL_PARAM *settable = NULL; int exists = 0; /* Only setting is supported here */ if (ctx->action_type != SET) { ERR_raise_data(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED, "[action:%d, state:%d] only setting allowed", ctx->action_type, state); return 0; } /* * If no translation exists, we simply pass the control string * unmodified. */ if (translation != NULL) { tmp_ctrl_str = ctx->ctrl_str = translation->param_key; if (ctx->ishex) { strcpy(ctx->name_buf, "hex"); if (OPENSSL_strlcat(ctx->name_buf, tmp_ctrl_str, sizeof(ctx->name_buf)) <= 3) { ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); return -1; } tmp_ctrl_str = ctx->name_buf; } } settable = EVP_PKEY_CTX_settable_params(ctx->pctx); if (!OSSL_PARAM_allocate_from_text(ctx->params, settable, tmp_ctrl_str, ctx->p2, strlen(ctx->p2), &exists)) { if (!exists) { ERR_raise_data(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED, "[action:%d, state:%d] name=%s, value=%s", ctx->action_type, state, orig_ctrl_str, orig_value); return -2; } return 0; } ctx->allocated_buf = ctx->params->data; ctx->buflen = ctx->params->data_size; } break; case POST_CTRL_STR_TO_PARAMS: /* Nothing to be done */ break; /* * PRE_PARAMS_TO_CTRL and POST_PARAMS_TO_CTRL handle params to ctrl * translations. PRE_PARAMS_TO_CTRL is responsible for preparing * |p1| and |p2|, and POST_PARAMS_TO_CTRL is responsible for bringing * the EVP_PKEY_CTX_ctrl() return value (passed as |p1|) and |p2| back * to |*params|. * * PKEY is treated just like POST_PARAMS_TO_CTRL, making it easy * for the related fixup_args functions to just set |p1| and |p2| * appropriately and leave it to this section of code to fix up * |ctx->params| accordingly. */ case PKEY: case POST_PARAMS_TO_CTRL: ret = ctx->p1; /* FALLTHRU */ case PRE_PARAMS_TO_CTRL: { /* This is params to ctrl translation */ if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == SET) { /* For the PRE state, only setting needs some work to be done */ /* When setting, we populate |p1| and |p2| from |*params| */ switch (translation->param_data_type) { case OSSL_PARAM_INTEGER: return OSSL_PARAM_get_int(ctx->params, &ctx->p1); case OSSL_PARAM_UNSIGNED_INTEGER: if (ctx->p2 != NULL) { /* BIGNUM passed down with p2 */ if (!OSSL_PARAM_get_BN(ctx->params, ctx->p2)) return 0; } else { /* Normal C unsigned int passed down */ if (!OSSL_PARAM_get_uint(ctx->params, (unsigned int *)&ctx->p1)) return 0; } return 1; case OSSL_PARAM_UTF8_STRING: return OSSL_PARAM_get_utf8_string(ctx->params, ctx->p2, ctx->sz); case OSSL_PARAM_OCTET_STRING: return OSSL_PARAM_get_octet_string(ctx->params, &ctx->p2, ctx->sz, (size_t *)&ctx->p1); case OSSL_PARAM_OCTET_PTR: return OSSL_PARAM_get_octet_ptr(ctx->params, ctx->p2, &ctx->sz); default: ERR_raise_data(ERR_LIB_EVP, ERR_R_UNSUPPORTED, "[action:%d, state:%d] " "unknown OSSL_PARAM data type %d", ctx->action_type, state, translation->param_data_type); return 0; } } else if ((state == POST_PARAMS_TO_CTRL || state == PKEY) && ctx->action_type == GET) { /* For the POST state, only getting needs some work to be done */ unsigned int param_data_type = translation->param_data_type; size_t size = (size_t)ctx->p1; if (state == PKEY) size = ctx->sz; if (param_data_type == 0) { /* we must have a fixup_args function to work */ if (!ossl_assert(translation->fixup_args != NULL)) { ERR_raise(ERR_LIB_EVP, ERR_R_INTERNAL_ERROR); return 0; } param_data_type = ctx->params->data_type; } /* When getting, we populate |*params| from |p1| and |p2| */ switch (param_data_type) { case OSSL_PARAM_INTEGER: return OSSL_PARAM_set_int(ctx->params, ctx->p1); case OSSL_PARAM_UNSIGNED_INTEGER: if (ctx->p2 != NULL) { /* BIGNUM passed back */ return OSSL_PARAM_set_BN(ctx->params, ctx->p2); } else { /* Normal C unsigned int passed back */ return OSSL_PARAM_set_uint(ctx->params, (unsigned int)ctx->p1); } return 0; case OSSL_PARAM_UTF8_STRING: return OSSL_PARAM_set_utf8_string(ctx->params, ctx->p2); case OSSL_PARAM_OCTET_STRING: return OSSL_PARAM_set_octet_string(ctx->params, ctx->p2, size); case OSSL_PARAM_OCTET_PTR: return OSSL_PARAM_set_octet_ptr(ctx->params, *(void **)ctx->p2, size); default: ERR_raise_data(ERR_LIB_EVP, ERR_R_UNSUPPORTED, "[action:%d, state:%d] " "unsupported OSSL_PARAM data type %d", ctx->action_type, state, translation->param_data_type); return 0; } } else if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == GET) { if (translation->param_data_type == OSSL_PARAM_OCTET_PTR) ctx->p2 = &ctx->bufp; } } /* Any other combination is simply pass-through */ break; } return ret; } static int cleanup_translation_ctx(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { if (ctx->allocated_buf != NULL) OPENSSL_free(ctx->allocated_buf); ctx->allocated_buf = NULL; return 1; } /* * fix_cipher_md fixes up an EVP_CIPHER / EVP_MD to its name on SET, * and cipher / md name to EVP_MD on GET. */ static const char *get_cipher_name(void *cipher) { return EVP_CIPHER_get0_name(cipher); } static const char *get_md_name(void *md) { return EVP_MD_get0_name(md); } static const void *get_cipher_by_name(OSSL_LIB_CTX *libctx, const char *name) { return evp_get_cipherbyname_ex(libctx, name); } static const void *get_md_by_name(OSSL_LIB_CTX *libctx, const char *name) { return evp_get_digestbyname_ex(libctx, name); } static int fix_cipher_md(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx, const char *(*get_name)(void *algo), const void *(*get_algo_by_name)(OSSL_LIB_CTX *libctx, const char *name)) { int ret = 1; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == GET) { /* * |ctx->p2| contains the address to an EVP_CIPHER or EVP_MD pointer * to be filled in. We need to remember it, then make |ctx->p2| * point at a buffer to be filled in with the name, and |ctx->p1| * with its size. default_fixup_args() will take care of the rest * for us. */ ctx->orig_p2 = ctx->p2; ctx->p2 = ctx->name_buf; ctx->p1 = sizeof(ctx->name_buf); } else if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET) { /* * In different parts of OpenSSL, this ctrl command is used * differently. Some calls pass a NID as p1, others pass an * EVP_CIPHER pointer as p2... */ ctx->p2 = (char *)(ctx->p2 == NULL ? OBJ_nid2sn(ctx->p1) : get_name(ctx->p2)); ctx->p1 = strlen(ctx->p2); } else if (state == POST_PARAMS_TO_CTRL && ctx->action_type == GET) { ctx->p2 = (ctx->p2 == NULL ? "" : (char *)get_name(ctx->p2)); ctx->p1 = strlen(ctx->p2); } if ((ret = default_fixup_args(state, translation, ctx)) <= 0) return ret; if (state == POST_CTRL_TO_PARAMS && ctx->action_type == GET) { /* * Here's how we reuse |ctx->orig_p2| that was set in the * PRE_CTRL_TO_PARAMS state above. */ *(void **)ctx->orig_p2 = (void *)get_algo_by_name(ctx->pctx->libctx, ctx->p2); ctx->p1 = 1; } else if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == SET) { ctx->p2 = (void *)get_algo_by_name(ctx->pctx->libctx, ctx->p2); ctx->p1 = 0; } return ret; } static int fix_cipher(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { return fix_cipher_md(state, translation, ctx, get_cipher_name, get_cipher_by_name); } static int fix_md(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { return fix_cipher_md(state, translation, ctx, get_md_name, get_md_by_name); } static int fix_distid_len(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { int ret = default_fixup_args(state, translation, ctx); if (ret > 0) { ret = 0; if ((state == POST_CTRL_TO_PARAMS || state == POST_CTRL_STR_TO_PARAMS) && ctx->action_type == GET) { *(size_t *)ctx->p2 = ctx->sz; ret = 1; } } return ret; } struct kdf_type_map_st { int kdf_type_num; const char *kdf_type_str; }; static int fix_kdf_type(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx, const struct kdf_type_map_st *kdf_type_map) { /* * The EVP_PKEY_CTRL_DH_KDF_TYPE ctrl command is a bit special, in * that it's used both for setting a value, and for getting it, all * depending on the value if |p1|; if |p1| is -2, the backend is * supposed to place the current kdf type in |p2|, and if not, |p1| * is interpreted as the new kdf type. */ int ret = 0; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; if (state == PRE_CTRL_TO_PARAMS) { /* * In |translations|, the initial value for |ctx->action_type| must * be NONE. */ if (!ossl_assert(ctx->action_type == NONE)) return 0; /* The action type depends on the value of *p1 */ if (ctx->p1 == -2) { /* * The OSSL_PARAMS getter needs space to store a copy of the kdf * type string. We use |ctx->name_buf|, which has enough space * allocated. * * (this wouldn't be needed if the OSSL_xxx_PARAM_KDF_TYPE * had the data type OSSL_PARAM_UTF8_PTR) */ ctx->p2 = ctx->name_buf; ctx->p1 = sizeof(ctx->name_buf); ctx->action_type = GET; } else { ctx->action_type = SET; } } if ((ret = default_check(state, translation, ctx)) <= 0) return ret; if ((state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET) || (state == POST_PARAMS_TO_CTRL && ctx->action_type == GET)) { ret = -2; /* Convert KDF type numbers to strings */ for (; kdf_type_map->kdf_type_str != NULL; kdf_type_map++) if (ctx->p1 == kdf_type_map->kdf_type_num) { ctx->p2 = (char *)kdf_type_map->kdf_type_str; ret = 1; break; } if (ret <= 0) goto end; ctx->p1 = strlen(ctx->p2); } if ((ret = default_fixup_args(state, translation, ctx)) <= 0) return ret; if ((state == POST_CTRL_TO_PARAMS && ctx->action_type == GET) || (state == PRE_PARAMS_TO_CTRL && ctx->action_type == SET)) { ctx->p1 = ret = -1; /* Convert KDF type strings to numbers */ for (; kdf_type_map->kdf_type_str != NULL; kdf_type_map++) if (OPENSSL_strcasecmp(ctx->p2, kdf_type_map->kdf_type_str) == 0) { ctx->p1 = kdf_type_map->kdf_type_num; ret = 1; break; } ctx->p2 = NULL; } else if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == GET) { ctx->p1 = -2; } end: return ret; } /* EVP_PKEY_CTRL_DH_KDF_TYPE */ static int fix_dh_kdf_type(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { static const struct kdf_type_map_st kdf_type_map[] = { { EVP_PKEY_DH_KDF_NONE, "" }, { EVP_PKEY_DH_KDF_X9_42, OSSL_KDF_NAME_X942KDF_ASN1 }, { 0, NULL } }; return fix_kdf_type(state, translation, ctx, kdf_type_map); } /* EVP_PKEY_CTRL_EC_KDF_TYPE */ static int fix_ec_kdf_type(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { static const struct kdf_type_map_st kdf_type_map[] = { { EVP_PKEY_ECDH_KDF_NONE, "" }, { EVP_PKEY_ECDH_KDF_X9_63, OSSL_KDF_NAME_X963KDF }, { 0, NULL } }; return fix_kdf_type(state, translation, ctx, kdf_type_map); } /* EVP_PKEY_CTRL_DH_KDF_OID, EVP_PKEY_CTRL_GET_DH_KDF_OID, ...??? */ static int fix_oid(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; if ((state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET) || (state == POST_PARAMS_TO_CTRL && ctx->action_type == GET)) { /* * We're translating from ctrl to params and setting the OID, or * we're translating from params to ctrl and getting the OID. * Either way, |ctx->p2| points at an ASN1_OBJECT, and needs to have * that replaced with the corresponding name. * default_fixup_args() will then be able to convert that to the * corresponding OSSL_PARAM. */ OBJ_obj2txt(ctx->name_buf, sizeof(ctx->name_buf), ctx->p2, 0); ctx->p2 = (char *)ctx->name_buf; ctx->p1 = 0; /* let default_fixup_args() figure out the length */ } if ((ret = default_fixup_args(state, translation, ctx)) <= 0) return ret; if ((state == PRE_PARAMS_TO_CTRL && ctx->action_type == SET) || (state == POST_CTRL_TO_PARAMS && ctx->action_type == GET)) { /* * We're translating from ctrl to params and setting the OID name, * or we're translating from params to ctrl and getting the OID * name. Either way, default_fixup_args() has placed the OID name * in |ctx->p2|, all we need to do now is to replace that with the * corresponding ASN1_OBJECT. */ ctx->p2 = (ASN1_OBJECT *)OBJ_txt2obj(ctx->p2, 0); } return ret; } /* EVP_PKEY_CTRL_DH_NID */ static int fix_dh_nid(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; /* This is only settable */ if (ctx->action_type != SET) return 0; if (state == PRE_CTRL_TO_PARAMS) { if ((ctx->p2 = (char *)ossl_ffc_named_group_get_name (ossl_ffc_uid_to_dh_named_group(ctx->p1))) == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_VALUE); return 0; } ctx->p1 = 0; } return default_fixup_args(state, translation, ctx); } /* EVP_PKEY_CTRL_DH_RFC5114 */ static int fix_dh_nid5114(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; /* This is only settable */ if (ctx->action_type != SET) return 0; switch (state) { case PRE_CTRL_TO_PARAMS: if ((ctx->p2 = (char *)ossl_ffc_named_group_get_name (ossl_ffc_uid_to_dh_named_group(ctx->p1))) == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_VALUE); return 0; } ctx->p1 = 0; break; case PRE_CTRL_STR_TO_PARAMS: if (ctx->p2 == NULL) return 0; if ((ctx->p2 = (char *)ossl_ffc_named_group_get_name (ossl_ffc_uid_to_dh_named_group(atoi(ctx->p2)))) == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_VALUE); return 0; } ctx->p1 = 0; break; default: break; } return default_fixup_args(state, translation, ctx); } /* EVP_PKEY_CTRL_DH_PARAMGEN_TYPE */ static int fix_dh_paramgen_type(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; /* This is only settable */ if (ctx->action_type != SET) return 0; if (state == PRE_CTRL_STR_TO_PARAMS) { if ((ctx->p2 = (char *)ossl_dh_gen_type_id2name(atoi(ctx->p2))) == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_VALUE); return 0; } ctx->p1 = strlen(ctx->p2); } return default_fixup_args(state, translation, ctx); } /* EVP_PKEY_CTRL_EC_PARAM_ENC */ static int fix_ec_param_enc(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; /* This is currently only settable */ if (ctx->action_type != SET) return 0; if (state == PRE_CTRL_TO_PARAMS) { switch (ctx->p1) { case OPENSSL_EC_EXPLICIT_CURVE: ctx->p2 = OSSL_PKEY_EC_ENCODING_EXPLICIT; break; case OPENSSL_EC_NAMED_CURVE: ctx->p2 = OSSL_PKEY_EC_ENCODING_GROUP; break; default: ret = -2; goto end; } ctx->p1 = 0; } if ((ret = default_fixup_args(state, translation, ctx)) <= 0) return ret; if (state == PRE_PARAMS_TO_CTRL) { if (strcmp(ctx->p2, OSSL_PKEY_EC_ENCODING_EXPLICIT) == 0) ctx->p1 = OPENSSL_EC_EXPLICIT_CURVE; else if (strcmp(ctx->p2, OSSL_PKEY_EC_ENCODING_GROUP) == 0) ctx->p1 = OPENSSL_EC_NAMED_CURVE; else ctx->p1 = ret = -2; ctx->p2 = NULL; } end: if (ret == -2) ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); return ret; } /* EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID */ static int fix_ec_paramgen_curve_nid(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { char *p2 = NULL; int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; /* This is currently only settable */ if (ctx->action_type != SET) return 0; if (state == PRE_CTRL_TO_PARAMS) { ctx->p2 = (char *)OBJ_nid2sn(ctx->p1); ctx->p1 = 0; } else if (state == PRE_PARAMS_TO_CTRL) { /* * We're translating from params to ctrl and setting the curve name. * The ctrl function needs it to be a NID, but meanwhile, we need * space to get the curve name from the param. |ctx->name_buf| is * sufficient for that. * The double indirection is necessary for default_fixup_args()'s * call of OSSL_PARAM_get_utf8_string() to be done correctly. */ p2 = ctx->name_buf; ctx->p2 = &p2; ctx->sz = sizeof(ctx->name_buf); } if ((ret = default_fixup_args(state, translation, ctx)) <= 0) return ret; if (state == PRE_PARAMS_TO_CTRL) { ctx->p1 = OBJ_sn2nid(p2); ctx->p2 = NULL; } return ret; } /* EVP_PKEY_CTRL_EC_ECDH_COFACTOR */ static int fix_ecdh_cofactor(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { /* * The EVP_PKEY_CTRL_EC_ECDH_COFACTOR ctrl command is a bit special, in * that it's used both for setting a value, and for getting it, all * depending on the value if |ctx->p1|; if |ctx->p1| is -2, the backend is * supposed to place the current cofactor mode in |ctx->p2|, and if not, * |ctx->p1| is interpreted as the new cofactor mode. */ int ret = 0; if (state == PRE_CTRL_TO_PARAMS) { /* * The initial value for |ctx->action_type| must be zero. * evp_pkey_ctrl_to_params() takes it from the translation item. */ if (!ossl_assert(ctx->action_type == NONE)) return 0; /* The action type depends on the value of ctx->p1 */ if (ctx->p1 == -2) ctx->action_type = GET; else ctx->action_type = SET; } else if (state == PRE_CTRL_STR_TO_PARAMS) { ctx->action_type = SET; } else if (state == PRE_PARAMS_TO_CTRL) { /* The initial value for |ctx->action_type| must not be zero. */ if (!ossl_assert(ctx->action_type != NONE)) return 0; } if ((ret = default_check(state, translation, ctx)) <= 0) return ret; if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET) { if (ctx->p1 < -1 || ctx->p1 > 1) { /* Uses the same return value of pkey_ec_ctrl() */ return -2; } } if ((ret = default_fixup_args(state, translation, ctx)) <= 0) return ret; if (state == POST_CTRL_TO_PARAMS && ctx->action_type == GET) { if (ctx->p1 < 0 || ctx->p1 > 1) { /* * The provider should return either 0 or 1, any other value is a * provider error. */ ctx->p1 = ret = -1; } } else if (state == PRE_PARAMS_TO_CTRL && ctx->action_type == GET) { ctx->p1 = -2; } return ret; } /* EVP_PKEY_CTRL_RSA_PADDING, EVP_PKEY_CTRL_GET_RSA_PADDING */ static int fix_rsa_padding_mode(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { static const OSSL_ITEM str_value_map[] = { { RSA_PKCS1_PADDING, "pkcs1" }, { RSA_NO_PADDING, "none" }, { RSA_PKCS1_OAEP_PADDING, "oaep" }, { RSA_PKCS1_OAEP_PADDING, "oeap" }, { RSA_X931_PADDING, "x931" }, { RSA_PKCS1_PSS_PADDING, "pss" }, /* Special case, will pass directly as an integer */ { RSA_PKCS1_WITH_TLS_PADDING, NULL } }; int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == GET) { /* * EVP_PKEY_CTRL_GET_RSA_PADDING returns the padding mode in the * weirdest way for a ctrl. Instead of doing like all other ctrls * that return a simple, i.e. just have that as a return value, * this particular ctrl treats p2 as the address for the int to be * returned. We must therefore remember |ctx->p2|, then make * |ctx->p2| point at a buffer to be filled in with the name, and * |ctx->p1| with its size. default_fixup_args() will take care * of the rest for us, along with the POST_CTRL_TO_PARAMS && GET * code section further down. */ ctx->orig_p2 = ctx->p2; ctx->p2 = ctx->name_buf; ctx->p1 = sizeof(ctx->name_buf); } else if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == SET) { /* * Ideally, we should use utf8 strings for the diverse padding modes. * We only came here because someone called EVP_PKEY_CTX_ctrl(), * though, and since that can reasonably be seen as legacy code * that uses the diverse RSA macros for the padding mode, and we * know that at least our providers can handle the numeric modes, * we take the cheap route for now. * * The other solution would be to match |ctx->p1| against entries * in str_value_map and pass the corresponding string. However, * since we don't have a string for RSA_PKCS1_WITH_TLS_PADDING, * we have to do this same hack at least for that one. * * Since the "official" data type for the RSA padding mode is utf8 * string, we cannot count on default_fixup_args(). Instead, we * build the OSSL_PARAM item ourselves and return immediately. */ ctx->params[0] = OSSL_PARAM_construct_int(translation->param_key, &ctx->p1); return 1; } else if (state == POST_PARAMS_TO_CTRL && ctx->action_type == GET) { size_t i; /* * The EVP_PKEY_CTX_get_params() caller may have asked for a utf8 * string, or may have asked for an integer of some sort. If they * ask for an integer, we respond directly. If not, we translate * the response from the ctrl function into a string. */ switch (ctx->params->data_type) { case OSSL_PARAM_INTEGER: return OSSL_PARAM_get_int(ctx->params, &ctx->p1); case OSSL_PARAM_UNSIGNED_INTEGER: return OSSL_PARAM_get_uint(ctx->params, (unsigned int *)&ctx->p1); default: break; } for (i = 0; i < OSSL_NELEM(str_value_map); i++) { if (ctx->p1 == (int)str_value_map[i].id) break; } if (i == OSSL_NELEM(str_value_map)) { ERR_raise_data(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE, "[action:%d, state:%d] padding number %d", ctx->action_type, state, ctx->p1); return -2; } /* * If we don't have a string, we can't do anything. The caller * should have asked for a number... */ if (str_value_map[i].ptr == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); return -2; } ctx->p2 = str_value_map[i].ptr; ctx->p1 = strlen(ctx->p2); } if ((ret = default_fixup_args(state, translation, ctx)) <= 0) return ret; if ((ctx->action_type == SET && state == PRE_PARAMS_TO_CTRL) || (ctx->action_type == GET && state == POST_CTRL_TO_PARAMS)) { size_t i; for (i = 0; i < OSSL_NELEM(str_value_map); i++) { if (strcmp(ctx->p2, str_value_map[i].ptr) == 0) break; } if (i == OSSL_NELEM(str_value_map)) { ERR_raise_data(ERR_LIB_RSA, RSA_R_UNKNOWN_PADDING_TYPE, "[action:%d, state:%d] padding name %s", ctx->action_type, state, ctx->p1); ctx->p1 = ret = -2; } else if (state == POST_CTRL_TO_PARAMS) { /* EVP_PKEY_CTRL_GET_RSA_PADDING weirdness explained further up */ *(int *)ctx->orig_p2 = str_value_map[i].id; } else { ctx->p1 = str_value_map[i].id; } ctx->p2 = NULL; } return ret; } /* EVP_PKEY_CTRL_RSA_PSS_SALTLEN, EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN */ static int fix_rsa_pss_saltlen(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { static const OSSL_ITEM str_value_map[] = { { (unsigned int)RSA_PSS_SALTLEN_DIGEST, "digest" }, { (unsigned int)RSA_PSS_SALTLEN_MAX, "max" }, { (unsigned int)RSA_PSS_SALTLEN_AUTO, "auto" } }; int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; if (state == PRE_CTRL_TO_PARAMS && ctx->action_type == GET) { /* * EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN returns the saltlen by filling * in the int pointed at by p2. This is potentially as weird as * the way EVP_PKEY_CTRL_GET_RSA_PADDING works, except that saltlen * might be a negative value, so it wouldn't work as a legitimate * return value. * In any case, we must therefore remember |ctx->p2|, then make * |ctx->p2| point at a buffer to be filled in with the name, and * |ctx->p1| with its size. default_fixup_args() will take care * of the rest for us, along with the POST_CTRL_TO_PARAMS && GET * code section further down. */ ctx->orig_p2 = ctx->p2; ctx->p2 = ctx->name_buf; ctx->p1 = sizeof(ctx->name_buf); } else if ((ctx->action_type == SET && state == PRE_CTRL_TO_PARAMS) || (ctx->action_type == GET && state == POST_PARAMS_TO_CTRL)) { size_t i; for (i = 0; i < OSSL_NELEM(str_value_map); i++) { if (ctx->p1 == (int)str_value_map[i].id) break; } if (i == OSSL_NELEM(str_value_map)) { BIO_snprintf(ctx->name_buf, sizeof(ctx->name_buf), "%d", ctx->p1); } else { /* This won't truncate but it will quiet static analysers */ strncpy(ctx->name_buf, str_value_map[i].ptr, sizeof(ctx->name_buf) - 1); ctx->name_buf[sizeof(ctx->name_buf) - 1] = '\0'; } ctx->p2 = ctx->name_buf; ctx->p1 = strlen(ctx->p2); } if ((ret = default_fixup_args(state, translation, ctx)) <= 0) return ret; if ((ctx->action_type == SET && state == PRE_PARAMS_TO_CTRL) || (ctx->action_type == GET && state == POST_CTRL_TO_PARAMS)) { size_t i; int val; for (i = 0; i < OSSL_NELEM(str_value_map); i++) { if (strcmp(ctx->p2, str_value_map[i].ptr) == 0) break; } val = i == OSSL_NELEM(str_value_map) ? atoi(ctx->p2) : (int)str_value_map[i].id; if (state == POST_CTRL_TO_PARAMS) { /* * EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN weirdness explained further * up */ *(int *)ctx->orig_p2 = val; } else { ctx->p1 = val; } ctx->p2 = NULL; } return ret; } /* EVP_PKEY_CTRL_HKDF_MODE */ static int fix_hkdf_mode(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { static const OSSL_ITEM str_value_map[] = { { EVP_KDF_HKDF_MODE_EXTRACT_AND_EXPAND, "EXTRACT_AND_EXPAND" }, { EVP_KDF_HKDF_MODE_EXTRACT_ONLY, "EXTRACT_ONLY" }, { EVP_KDF_HKDF_MODE_EXPAND_ONLY, "EXPAND_ONLY" } }; int ret; if ((ret = default_check(state, translation, ctx)) <= 0) return ret; if ((ctx->action_type == SET && state == PRE_CTRL_TO_PARAMS) || (ctx->action_type == GET && state == POST_PARAMS_TO_CTRL)) { size_t i; for (i = 0; i < OSSL_NELEM(str_value_map); i++) { if (ctx->p1 == (int)str_value_map[i].id) break; } if (i == OSSL_NELEM(str_value_map)) return 0; ctx->p2 = str_value_map[i].ptr; ctx->p1 = strlen(ctx->p2); } if ((ret = default_fixup_args(state, translation, ctx)) <= 0) return ret; if ((ctx->action_type == SET && state == PRE_PARAMS_TO_CTRL) || (ctx->action_type == GET && state == POST_CTRL_TO_PARAMS)) { size_t i; for (i = 0; i < OSSL_NELEM(str_value_map); i++) { if (strcmp(ctx->p2, str_value_map[i].ptr) == 0) break; } if (i == OSSL_NELEM(str_value_map)) return 0; if (state == POST_CTRL_TO_PARAMS) ret = str_value_map[i].id; else ctx->p1 = str_value_map[i].id; ctx->p2 = NULL; } return 1; } /*- * Payload getters * =============== * * These all get the data they want, then call default_fixup_args() as * a post-ctrl GET fixup. They all get NULL ctx, ctrl_cmd, ctrl_str, * p1, sz */ /* Pilfering DH, DSA and EC_KEY */ static int get_payload_group_name(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { EVP_PKEY *pkey = ctx->p2; ctx->p2 = NULL; switch (EVP_PKEY_get_base_id(pkey)) { #ifndef OPENSSL_NO_DH case EVP_PKEY_DH: { const DH *dh = EVP_PKEY_get0_DH(pkey); int uid = DH_get_nid(dh); if (uid != NID_undef) { const DH_NAMED_GROUP *dh_group = ossl_ffc_uid_to_dh_named_group(uid); ctx->p2 = (char *)ossl_ffc_named_group_get_name(dh_group); } } break; #endif #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: { const EC_GROUP *grp = EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey)); int nid = NID_undef; if (grp != NULL) nid = EC_GROUP_get_curve_name(grp); if (nid != NID_undef) ctx->p2 = (char *)OSSL_EC_curve_nid2name(nid); } break; #endif default: ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE); return 0; } /* * Quietly ignoring unknown groups matches the behaviour on the provider * side. */ if (ctx->p2 == NULL) return 1; ctx->p1 = strlen(ctx->p2); return default_fixup_args(state, translation, ctx); } static int get_payload_private_key(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { EVP_PKEY *pkey = ctx->p2; ctx->p2 = NULL; if (ctx->params->data_type != OSSL_PARAM_UNSIGNED_INTEGER) return 0; switch (EVP_PKEY_get_base_id(pkey)) { #ifndef OPENSSL_NO_DH case EVP_PKEY_DH: { const DH *dh = EVP_PKEY_get0_DH(pkey); ctx->p2 = (BIGNUM *)DH_get0_priv_key(dh); } break; #endif #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: { const EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); ctx->p2 = (BIGNUM *)EC_KEY_get0_private_key(ec); } break; #endif default: ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE); return 0; } return default_fixup_args(state, translation, ctx); } static int get_payload_public_key(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { EVP_PKEY *pkey = ctx->p2; unsigned char *buf = NULL; int ret; ctx->p2 = NULL; switch (EVP_PKEY_get_base_id(pkey)) { #ifndef OPENSSL_NO_DH case EVP_PKEY_DHX: case EVP_PKEY_DH: switch (ctx->params->data_type) { case OSSL_PARAM_OCTET_STRING: ctx->sz = ossl_dh_key2buf(EVP_PKEY_get0_DH(pkey), &buf, 0, 1); ctx->p2 = buf; break; case OSSL_PARAM_UNSIGNED_INTEGER: ctx->p2 = (void *)DH_get0_pub_key(EVP_PKEY_get0_DH(pkey)); break; default: return 0; } break; #endif #ifndef OPENSSL_NO_DSA case EVP_PKEY_DSA: if (ctx->params->data_type == OSSL_PARAM_UNSIGNED_INTEGER) { ctx->p2 = (void *)DSA_get0_pub_key(EVP_PKEY_get0_DSA(pkey)); break; } return 0; #endif #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: if (ctx->params->data_type == OSSL_PARAM_OCTET_STRING) { const EC_KEY *eckey = EVP_PKEY_get0_EC_KEY(pkey); BN_CTX *bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(eckey)); const EC_GROUP *ecg = EC_KEY_get0_group(eckey); const EC_POINT *point = EC_KEY_get0_public_key(eckey); if (bnctx == NULL) return 0; ctx->sz = EC_POINT_point2buf(ecg, point, POINT_CONVERSION_COMPRESSED, &buf, bnctx); ctx->p2 = buf; BN_CTX_free(bnctx); break; } return 0; #endif default: ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE); return 0; } ret = default_fixup_args(state, translation, ctx); OPENSSL_free(buf); return ret; } static int get_payload_public_key_ec(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { #ifndef OPENSSL_NO_EC EVP_PKEY *pkey = ctx->p2; const EC_KEY *eckey = EVP_PKEY_get0_EC_KEY(pkey); BN_CTX *bnctx; const EC_POINT *point; const EC_GROUP *ecg; BIGNUM *x = NULL; BIGNUM *y = NULL; int ret = 0; ctx->p2 = NULL; if (eckey == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE); return 0; } bnctx = BN_CTX_new_ex(ossl_ec_key_get_libctx(eckey)); if (bnctx == NULL) return 0; point = EC_KEY_get0_public_key(eckey); ecg = EC_KEY_get0_group(eckey); /* Caller should have requested a BN, fail if not */ if (ctx->params->data_type != OSSL_PARAM_UNSIGNED_INTEGER) goto out; x = BN_CTX_get(bnctx); y = BN_CTX_get(bnctx); if (y == NULL) goto out; if (!EC_POINT_get_affine_coordinates(ecg, point, x, y, bnctx)) goto out; if (strncmp(ctx->params->key, OSSL_PKEY_PARAM_EC_PUB_X, 2) == 0) ctx->p2 = x; else if (strncmp(ctx->params->key, OSSL_PKEY_PARAM_EC_PUB_Y, 2) == 0) ctx->p2 = y; else goto out; /* Return the payload */ ret = default_fixup_args(state, translation, ctx); out: BN_CTX_free(bnctx); return ret; #else ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE); return 0; #endif } static int get_payload_bn(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx, const BIGNUM *bn) { if (bn == NULL) return 0; if (ctx->params->data_type != OSSL_PARAM_UNSIGNED_INTEGER) return 0; ctx->p2 = (BIGNUM *)bn; return default_fixup_args(state, translation, ctx); } static int get_dh_dsa_payload_p(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { const BIGNUM *bn = NULL; EVP_PKEY *pkey = ctx->p2; switch (EVP_PKEY_get_base_id(pkey)) { #ifndef OPENSSL_NO_DH case EVP_PKEY_DH: bn = DH_get0_p(EVP_PKEY_get0_DH(pkey)); break; #endif #ifndef OPENSSL_NO_DSA case EVP_PKEY_DSA: bn = DSA_get0_p(EVP_PKEY_get0_DSA(pkey)); break; #endif default: ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE); } return get_payload_bn(state, translation, ctx, bn); } static int get_dh_dsa_payload_q(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { const BIGNUM *bn = NULL; switch (EVP_PKEY_get_base_id(ctx->p2)) { #ifndef OPENSSL_NO_DH case EVP_PKEY_DH: bn = DH_get0_q(EVP_PKEY_get0_DH(ctx->p2)); break; #endif #ifndef OPENSSL_NO_DSA case EVP_PKEY_DSA: bn = DSA_get0_q(EVP_PKEY_get0_DSA(ctx->p2)); break; #endif } return get_payload_bn(state, translation, ctx, bn); } static int get_dh_dsa_payload_g(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { const BIGNUM *bn = NULL; switch (EVP_PKEY_get_base_id(ctx->p2)) { #ifndef OPENSSL_NO_DH case EVP_PKEY_DH: bn = DH_get0_g(EVP_PKEY_get0_DH(ctx->p2)); break; #endif #ifndef OPENSSL_NO_DSA case EVP_PKEY_DSA: bn = DSA_get0_g(EVP_PKEY_get0_DSA(ctx->p2)); break; #endif } return get_payload_bn(state, translation, ctx, bn); } static int get_payload_int(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx, const int val) { if (ctx->params->data_type != OSSL_PARAM_INTEGER) return 0; ctx->p1 = val; ctx->p2 = NULL; return default_fixup_args(state, translation, ctx); } static int get_ec_decoded_from_explicit_params(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { int val = 0; EVP_PKEY *pkey = ctx->p2; switch (EVP_PKEY_base_id(pkey)) { #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: val = EC_KEY_decoded_from_explicit_params(EVP_PKEY_get0_EC_KEY(pkey)); if (val < 0) { ERR_raise(ERR_LIB_EVP, EVP_R_INVALID_KEY); return 0; } break; #endif default: ERR_raise(ERR_LIB_EVP, EVP_R_UNSUPPORTED_KEY_TYPE); return 0; } return get_payload_int(state, translation, ctx, val); } static int get_rsa_payload_n(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { const BIGNUM *bn = NULL; if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA) return 0; bn = RSA_get0_n(EVP_PKEY_get0_RSA(ctx->p2)); return get_payload_bn(state, translation, ctx, bn); } static int get_rsa_payload_e(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { const BIGNUM *bn = NULL; if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA) return 0; bn = RSA_get0_e(EVP_PKEY_get0_RSA(ctx->p2)); return get_payload_bn(state, translation, ctx, bn); } static int get_rsa_payload_d(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { const BIGNUM *bn = NULL; if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA) return 0; bn = RSA_get0_d(EVP_PKEY_get0_RSA(ctx->p2)); return get_payload_bn(state, translation, ctx, bn); } static int get_rsa_payload_factor(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx, size_t factornum) { const RSA *r = EVP_PKEY_get0_RSA(ctx->p2); const BIGNUM *bn = NULL; switch (factornum) { case 0: bn = RSA_get0_p(r); break; case 1: bn = RSA_get0_q(r); break; default: { size_t pnum = RSA_get_multi_prime_extra_count(r); const BIGNUM *factors[10]; if (factornum - 2 < pnum && RSA_get0_multi_prime_factors(r, factors)) bn = factors[factornum - 2]; } break; } return get_payload_bn(state, translation, ctx, bn); } static int get_rsa_payload_exponent(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx, size_t exponentnum) { const RSA *r = EVP_PKEY_get0_RSA(ctx->p2); const BIGNUM *bn = NULL; switch (exponentnum) { case 0: bn = RSA_get0_dmp1(r); break; case 1: bn = RSA_get0_dmq1(r); break; default: { size_t pnum = RSA_get_multi_prime_extra_count(r); const BIGNUM *exps[10], *coeffs[10]; if (exponentnum - 2 < pnum && RSA_get0_multi_prime_crt_params(r, exps, coeffs)) bn = exps[exponentnum - 2]; } break; } return get_payload_bn(state, translation, ctx, bn); } static int get_rsa_payload_coefficient(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx, size_t coefficientnum) { const RSA *r = EVP_PKEY_get0_RSA(ctx->p2); const BIGNUM *bn = NULL; switch (coefficientnum) { case 0: bn = RSA_get0_iqmp(r); break; default: { size_t pnum = RSA_get_multi_prime_extra_count(r); const BIGNUM *exps[10], *coeffs[10]; if (coefficientnum - 1 < pnum && RSA_get0_multi_prime_crt_params(r, exps, coeffs)) bn = coeffs[coefficientnum - 1]; } break; } return get_payload_bn(state, translation, ctx, bn); } #define IMPL_GET_RSA_PAYLOAD_FACTOR(n) \ static int \ get_rsa_payload_f##n(enum state state, \ const struct translation_st *translation, \ struct translation_ctx_st *ctx) \ { \ if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA) \ return 0; \ return get_rsa_payload_factor(state, translation, ctx, n - 1); \ } #define IMPL_GET_RSA_PAYLOAD_EXPONENT(n) \ static int \ get_rsa_payload_e##n(enum state state, \ const struct translation_st *translation, \ struct translation_ctx_st *ctx) \ { \ if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA) \ return 0; \ return get_rsa_payload_exponent(state, translation, ctx, \ n - 1); \ } #define IMPL_GET_RSA_PAYLOAD_COEFFICIENT(n) \ static int \ get_rsa_payload_c##n(enum state state, \ const struct translation_st *translation, \ struct translation_ctx_st *ctx) \ { \ if (EVP_PKEY_get_base_id(ctx->p2) != EVP_PKEY_RSA) \ return 0; \ return get_rsa_payload_coefficient(state, translation, ctx, \ n - 1); \ } IMPL_GET_RSA_PAYLOAD_FACTOR(1) IMPL_GET_RSA_PAYLOAD_FACTOR(2) IMPL_GET_RSA_PAYLOAD_FACTOR(3) IMPL_GET_RSA_PAYLOAD_FACTOR(4) IMPL_GET_RSA_PAYLOAD_FACTOR(5) IMPL_GET_RSA_PAYLOAD_FACTOR(6) IMPL_GET_RSA_PAYLOAD_FACTOR(7) IMPL_GET_RSA_PAYLOAD_FACTOR(8) IMPL_GET_RSA_PAYLOAD_FACTOR(9) IMPL_GET_RSA_PAYLOAD_FACTOR(10) IMPL_GET_RSA_PAYLOAD_EXPONENT(1) IMPL_GET_RSA_PAYLOAD_EXPONENT(2) IMPL_GET_RSA_PAYLOAD_EXPONENT(3) IMPL_GET_RSA_PAYLOAD_EXPONENT(4) IMPL_GET_RSA_PAYLOAD_EXPONENT(5) IMPL_GET_RSA_PAYLOAD_EXPONENT(6) IMPL_GET_RSA_PAYLOAD_EXPONENT(7) IMPL_GET_RSA_PAYLOAD_EXPONENT(8) IMPL_GET_RSA_PAYLOAD_EXPONENT(9) IMPL_GET_RSA_PAYLOAD_EXPONENT(10) IMPL_GET_RSA_PAYLOAD_COEFFICIENT(1) IMPL_GET_RSA_PAYLOAD_COEFFICIENT(2) IMPL_GET_RSA_PAYLOAD_COEFFICIENT(3) IMPL_GET_RSA_PAYLOAD_COEFFICIENT(4) IMPL_GET_RSA_PAYLOAD_COEFFICIENT(5) IMPL_GET_RSA_PAYLOAD_COEFFICIENT(6) IMPL_GET_RSA_PAYLOAD_COEFFICIENT(7) IMPL_GET_RSA_PAYLOAD_COEFFICIENT(8) IMPL_GET_RSA_PAYLOAD_COEFFICIENT(9) static int fix_group_ecx(enum state state, const struct translation_st *translation, struct translation_ctx_st *ctx) { const char *value = NULL; switch (state) { case PRE_PARAMS_TO_CTRL: if (!EVP_PKEY_CTX_IS_GEN_OP(ctx->pctx)) return 0; ctx->action_type = NONE; return 1; case POST_PARAMS_TO_CTRL: if (OSSL_PARAM_get_utf8_string_ptr(ctx->params, &value) == 0 || OPENSSL_strcasecmp(ctx->pctx->keytype, value) != 0) { ERR_raise(ERR_LIB_EVP, ERR_R_PASSED_INVALID_ARGUMENT); ctx->p1 = 0; return 0; } ctx->p1 = 1; return 1; default: return 0; } } /*- * The translation table itself * ============================ */ static const struct translation_st evp_pkey_ctx_translations[] = { /* * DistID: we pass it to the backend as an octet string, * but get it back as a pointer to an octet string. * * Note that the EVP_PKEY_CTRL_GET1_ID_LEN is purely for legacy purposes * that has no separate counterpart in OSSL_PARAM terms, since we get * the length of the DistID automatically when getting the DistID itself. */ { SET, -1, -1, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_SET1_ID, "distid", "hexdistid", OSSL_PKEY_PARAM_DIST_ID, OSSL_PARAM_OCTET_STRING, NULL }, { GET, -1, -1, -1, EVP_PKEY_CTRL_GET1_ID, "distid", "hexdistid", OSSL_PKEY_PARAM_DIST_ID, OSSL_PARAM_OCTET_PTR, NULL }, { GET, -1, -1, -1, EVP_PKEY_CTRL_GET1_ID_LEN, NULL, NULL, OSSL_PKEY_PARAM_DIST_ID, OSSL_PARAM_OCTET_PTR, fix_distid_len }, /*- * DH & DHX * ======== */ /* * EVP_PKEY_CTRL_DH_KDF_TYPE is used both for setting and getting. The * fixup function has to handle this... */ { NONE, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_DH_KDF_TYPE, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_TYPE, OSSL_PARAM_UTF8_STRING, fix_dh_kdf_type }, { SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_DH_KDF_MD, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { GET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_DH_KDF_MD, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_DH_KDF_OUTLEN, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { GET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_DH_KDF_OUTLEN, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_DH_KDF_UKM, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_STRING, NULL }, { GET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_DH_KDF_UKM, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_PTR, NULL }, { SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_DH_KDF_OID, NULL, NULL, OSSL_KDF_PARAM_CEK_ALG, OSSL_PARAM_UTF8_STRING, fix_oid }, { GET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_DH_KDF_OID, NULL, NULL, OSSL_KDF_PARAM_CEK_ALG, OSSL_PARAM_UTF8_STRING, fix_oid }, /* DHX Keygen Parameters that are shared with DH */ { SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DH_PARAMGEN_TYPE, "dh_paramgen_type", NULL, OSSL_PKEY_PARAM_FFC_TYPE, OSSL_PARAM_UTF8_STRING, fix_dh_paramgen_type }, { SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DH_PARAMGEN_PRIME_LEN, "dh_paramgen_prime_len", NULL, OSSL_PKEY_PARAM_FFC_PBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_DH_NID, "dh_param", NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, NULL }, { SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_DH_RFC5114, "dh_rfc5114", NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_dh_nid5114 }, /* DH Keygen Parameters that are shared with DHX */ { SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DH_PARAMGEN_TYPE, "dh_paramgen_type", NULL, OSSL_PKEY_PARAM_FFC_TYPE, OSSL_PARAM_UTF8_STRING, fix_dh_paramgen_type }, { SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DH_PARAMGEN_PRIME_LEN, "dh_paramgen_prime_len", NULL, OSSL_PKEY_PARAM_FFC_PBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_DH_NID, "dh_param", NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_dh_nid }, { SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_DH_RFC5114, "dh_rfc5114", NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_dh_nid5114 }, /* DH specific Keygen Parameters */ { SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DH_PARAMGEN_GENERATOR, "dh_paramgen_generator", NULL, OSSL_PKEY_PARAM_DH_GENERATOR, OSSL_PARAM_INTEGER, NULL }, /* DHX specific Keygen Parameters */ { SET, EVP_PKEY_DHX, 0, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DH_PARAMGEN_SUBPRIME_LEN, "dh_paramgen_subprime_len", NULL, OSSL_PKEY_PARAM_FFC_QBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_DH, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_DH_PAD, "dh_pad", NULL, OSSL_EXCHANGE_PARAM_PAD, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, /*- * DSA * === */ { SET, EVP_PKEY_DSA, 0, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DSA_PARAMGEN_BITS, "dsa_paramgen_bits", NULL, OSSL_PKEY_PARAM_FFC_PBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_DSA, 0, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DSA_PARAMGEN_Q_BITS, "dsa_paramgen_q_bits", NULL, OSSL_PKEY_PARAM_FFC_QBITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_DSA, 0, EVP_PKEY_OP_PARAMGEN, EVP_PKEY_CTRL_DSA_PARAMGEN_MD, "dsa_paramgen_md", NULL, OSSL_PKEY_PARAM_FFC_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, /*- * EC * == */ { SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_EC_PARAM_ENC, "ec_param_enc", NULL, OSSL_PKEY_PARAM_EC_ENCODING, OSSL_PARAM_UTF8_STRING, fix_ec_param_enc }, { SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID, "ec_paramgen_curve", NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_ec_paramgen_curve_nid }, /* * EVP_PKEY_CTRL_EC_ECDH_COFACTOR and EVP_PKEY_CTRL_EC_KDF_TYPE are used * both for setting and getting. The fixup function has to handle this... */ { NONE, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_ECDH_COFACTOR, "ecdh_cofactor_mode", NULL, OSSL_EXCHANGE_PARAM_EC_ECDH_COFACTOR_MODE, OSSL_PARAM_INTEGER, fix_ecdh_cofactor }, { NONE, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_KDF_TYPE, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_TYPE, OSSL_PARAM_UTF8_STRING, fix_ec_kdf_type }, { SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_KDF_MD, "ecdh_kdf_md", NULL, OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { GET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_EC_KDF_MD, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_KDF_OUTLEN, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { GET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_EC_KDF_OUTLEN, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_KDF_UKM, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_STRING, NULL }, { GET, EVP_PKEY_EC, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_EC_KDF_UKM, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_PTR, NULL }, /*- * SM2 * == */ { SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_EC_PARAM_ENC, "ec_param_enc", NULL, OSSL_PKEY_PARAM_EC_ENCODING, OSSL_PARAM_UTF8_STRING, fix_ec_param_enc }, { SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_PARAMGEN | EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_EC_PARAMGEN_CURVE_NID, "ec_paramgen_curve", NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_ec_paramgen_curve_nid }, /* * EVP_PKEY_CTRL_EC_ECDH_COFACTOR and EVP_PKEY_CTRL_EC_KDF_TYPE are used * both for setting and getting. The fixup function has to handle this... */ { NONE, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_ECDH_COFACTOR, "ecdh_cofactor_mode", NULL, OSSL_EXCHANGE_PARAM_EC_ECDH_COFACTOR_MODE, OSSL_PARAM_INTEGER, fix_ecdh_cofactor }, { NONE, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_KDF_TYPE, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_TYPE, OSSL_PARAM_UTF8_STRING, fix_ec_kdf_type }, { SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_KDF_MD, "ecdh_kdf_md", NULL, OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { GET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_EC_KDF_MD, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_KDF_OUTLEN, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { GET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_EC_KDF_OUTLEN, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_OUTLEN, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_EC_KDF_UKM, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_STRING, NULL }, { GET, EVP_PKEY_SM2, 0, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_GET_EC_KDF_UKM, NULL, NULL, OSSL_EXCHANGE_PARAM_KDF_UKM, OSSL_PARAM_OCTET_PTR, NULL }, /*- * RSA * === */ /* * RSA padding modes are numeric with ctrls, strings with ctrl_strs, * and can be both with OSSL_PARAM. We standardise on strings here, * fix_rsa_padding_mode() does the work when the caller has a different * idea. */ { SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_RSA_PADDING, "rsa_padding_mode", NULL, OSSL_PKEY_PARAM_PAD_MODE, OSSL_PARAM_UTF8_STRING, fix_rsa_padding_mode }, { GET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_GET_RSA_PADDING, NULL, NULL, OSSL_PKEY_PARAM_PAD_MODE, OSSL_PARAM_UTF8_STRING, fix_rsa_padding_mode }, { SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_RSA_MGF1_MD, "rsa_mgf1_md", NULL, OSSL_PKEY_PARAM_MGF1_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { GET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_TYPE_CRYPT | EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_GET_RSA_MGF1_MD, NULL, NULL, OSSL_PKEY_PARAM_MGF1_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, /* * RSA-PSS saltlen is essentially numeric, but certain values can be * expressed as keywords (strings) with ctrl_str. The corresponding * OSSL_PARAM allows both forms. * fix_rsa_pss_saltlen() takes care of the distinction. */ { SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_RSA_PSS_SALTLEN, "rsa_pss_saltlen", NULL, OSSL_PKEY_PARAM_RSA_PSS_SALTLEN, OSSL_PARAM_UTF8_STRING, fix_rsa_pss_saltlen }, { GET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, NULL, NULL, OSSL_PKEY_PARAM_RSA_PSS_SALTLEN, OSSL_PARAM_UTF8_STRING, fix_rsa_pss_saltlen }, { SET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_RSA_OAEP_MD, "rsa_oaep_md", NULL, OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { GET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_GET_RSA_OAEP_MD, NULL, NULL, OSSL_ASYM_CIPHER_PARAM_OAEP_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, /* * The "rsa_oaep_label" ctrl_str expects the value to always be hex. * This is accommodated by default_fixup_args() above, which mimics that * expectation for any translation item where |ctrl_str| is NULL and * |ctrl_hexstr| is non-NULL. */ { SET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_RSA_OAEP_LABEL, NULL, "rsa_oaep_label", OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, OSSL_PARAM_OCTET_STRING, NULL }, { GET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, NULL, NULL, OSSL_ASYM_CIPHER_PARAM_OAEP_LABEL, OSSL_PARAM_OCTET_PTR, NULL }, { SET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_RSA_IMPLICIT_REJECTION, NULL, "rsa_pkcs1_implicit_rejection", OSSL_ASYM_CIPHER_PARAM_IMPLICIT_REJECTION, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_RSA_PSS, 0, EVP_PKEY_OP_TYPE_GEN, EVP_PKEY_CTRL_MD, "rsa_pss_keygen_md", NULL, OSSL_ALG_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { SET, EVP_PKEY_RSA_PSS, 0, EVP_PKEY_OP_TYPE_GEN, EVP_PKEY_CTRL_RSA_MGF1_MD, "rsa_pss_keygen_mgf1_md", NULL, OSSL_PKEY_PARAM_MGF1_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { SET, EVP_PKEY_RSA_PSS, 0, EVP_PKEY_OP_TYPE_GEN, EVP_PKEY_CTRL_RSA_PSS_SALTLEN, "rsa_pss_keygen_saltlen", NULL, OSSL_SIGNATURE_PARAM_PSS_SALTLEN, OSSL_PARAM_INTEGER, NULL }, { SET, EVP_PKEY_RSA, EVP_PKEY_RSA_PSS, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_RSA_KEYGEN_BITS, "rsa_keygen_bits", NULL, OSSL_PKEY_PARAM_RSA_BITS, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, "rsa_keygen_pubexp", NULL, OSSL_PKEY_PARAM_RSA_E, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, EVP_PKEY_RSA, 0, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_RSA_KEYGEN_PRIMES, "rsa_keygen_primes", NULL, OSSL_PKEY_PARAM_RSA_PRIMES, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, /*- * SipHash * ====== */ { SET, -1, -1, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_SET_DIGEST_SIZE, "digestsize", NULL, OSSL_MAC_PARAM_SIZE, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, /*- * TLS1-PRF * ======== */ { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_TLS_MD, "md", NULL, OSSL_KDF_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_TLS_SECRET, "secret", "hexsecret", OSSL_KDF_PARAM_SECRET, OSSL_PARAM_OCTET_STRING, NULL }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_TLS_SEED, "seed", "hexseed", OSSL_KDF_PARAM_SEED, OSSL_PARAM_OCTET_STRING, NULL }, /*- * HKDF * ==== */ { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_HKDF_MD, "md", NULL, OSSL_KDF_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_HKDF_SALT, "salt", "hexsalt", OSSL_KDF_PARAM_SALT, OSSL_PARAM_OCTET_STRING, NULL }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_HKDF_KEY, "key", "hexkey", OSSL_KDF_PARAM_KEY, OSSL_PARAM_OCTET_STRING, NULL }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_HKDF_INFO, "info", "hexinfo", OSSL_KDF_PARAM_INFO, OSSL_PARAM_OCTET_STRING, NULL }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_HKDF_MODE, "mode", NULL, OSSL_KDF_PARAM_MODE, OSSL_PARAM_INTEGER, fix_hkdf_mode }, /*- * Scrypt * ====== */ { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_PASS, "pass", "hexpass", OSSL_KDF_PARAM_PASSWORD, OSSL_PARAM_OCTET_STRING, NULL }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_SCRYPT_SALT, "salt", "hexsalt", OSSL_KDF_PARAM_SALT, OSSL_PARAM_OCTET_STRING, NULL }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_SCRYPT_N, "N", NULL, OSSL_KDF_PARAM_SCRYPT_N, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_SCRYPT_R, "r", NULL, OSSL_KDF_PARAM_SCRYPT_R, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_SCRYPT_P, "p", NULL, OSSL_KDF_PARAM_SCRYPT_P, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, -1, -1, EVP_PKEY_OP_DERIVE, EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES, "maxmem_bytes", NULL, OSSL_KDF_PARAM_SCRYPT_MAXMEM, OSSL_PARAM_UNSIGNED_INTEGER, NULL }, { SET, -1, -1, EVP_PKEY_OP_KEYGEN | EVP_PKEY_OP_TYPE_CRYPT, EVP_PKEY_CTRL_CIPHER, NULL, NULL, OSSL_PKEY_PARAM_CIPHER, OSSL_PARAM_UTF8_STRING, fix_cipher }, { SET, -1, -1, EVP_PKEY_OP_KEYGEN, EVP_PKEY_CTRL_SET_MAC_KEY, "key", "hexkey", OSSL_PKEY_PARAM_PRIV_KEY, OSSL_PARAM_OCTET_STRING, NULL }, { SET, -1, -1, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_MD, NULL, NULL, OSSL_SIGNATURE_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, { GET, -1, -1, EVP_PKEY_OP_TYPE_SIG, EVP_PKEY_CTRL_GET_MD, NULL, NULL, OSSL_SIGNATURE_PARAM_DIGEST, OSSL_PARAM_UTF8_STRING, fix_md }, /*- * ECX * === */ { SET, EVP_PKEY_X25519, EVP_PKEY_X25519, EVP_PKEY_OP_KEYGEN, -1, NULL, NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_group_ecx }, { SET, EVP_PKEY_X25519, EVP_PKEY_X25519, EVP_PKEY_OP_PARAMGEN, -1, NULL, NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_group_ecx }, { SET, EVP_PKEY_X448, EVP_PKEY_X448, EVP_PKEY_OP_KEYGEN, -1, NULL, NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_group_ecx }, { SET, EVP_PKEY_X448, EVP_PKEY_X448, EVP_PKEY_OP_PARAMGEN, -1, NULL, NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, fix_group_ecx }, }; static const struct translation_st evp_pkey_translations[] = { /* * The following contain no ctrls, they are exclusively here to extract * key payloads from legacy keys, using OSSL_PARAMs, and rely entirely * on |fixup_args| to pass the actual data. The |fixup_args| should * expect to get the EVP_PKEY pointer through |ctx->p2|. */ /* DH, DSA & EC */ { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_GROUP_NAME, OSSL_PARAM_UTF8_STRING, get_payload_group_name }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_PRIV_KEY, OSSL_PARAM_UNSIGNED_INTEGER, get_payload_private_key }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_PUB_KEY, 0 /* no data type, let get_payload_public_key() handle that */, get_payload_public_key }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_EC_PUB_X, OSSL_PARAM_UNSIGNED_INTEGER, get_payload_public_key_ec }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_EC_PUB_Y, OSSL_PARAM_UNSIGNED_INTEGER, get_payload_public_key_ec }, /* DH and DSA */ { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_FFC_P, OSSL_PARAM_UNSIGNED_INTEGER, get_dh_dsa_payload_p }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_FFC_G, OSSL_PARAM_UNSIGNED_INTEGER, get_dh_dsa_payload_g }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_FFC_Q, OSSL_PARAM_UNSIGNED_INTEGER, get_dh_dsa_payload_q }, /* RSA */ { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_N, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_n }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_E, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_D, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_d }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR1, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f1 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR2, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f2 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR3, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f3 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR4, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f4 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR5, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f5 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR6, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f6 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR7, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f7 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR8, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f8 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR9, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f9 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_FACTOR10, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_f10 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT1, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e1 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT2, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e2 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT3, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e3 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT4, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e4 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT5, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e5 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT6, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e6 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT7, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e7 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT8, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e8 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT9, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e9 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_EXPONENT10, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_e10 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_COEFFICIENT1, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_c1 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_COEFFICIENT2, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_c2 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_COEFFICIENT3, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_c3 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_COEFFICIENT4, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_c4 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_COEFFICIENT5, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_c5 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_COEFFICIENT6, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_c6 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_COEFFICIENT7, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_c7 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_COEFFICIENT8, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_c8 }, { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_RSA_COEFFICIENT9, OSSL_PARAM_UNSIGNED_INTEGER, get_rsa_payload_c9 }, /* EC */ { GET, -1, -1, -1, 0, NULL, NULL, OSSL_PKEY_PARAM_EC_DECODED_FROM_EXPLICIT_PARAMS, OSSL_PARAM_INTEGER, get_ec_decoded_from_explicit_params }, }; static const struct translation_st * lookup_translation(struct translation_st *tmpl, const struct translation_st *translations, size_t translations_num) { size_t i; for (i = 0; i < translations_num; i++) { const struct translation_st *item = &translations[i]; /* * Sanity check the translation table item. * * 1. Either both keytypes are -1, or neither of them are. * 2. TBA... */ if (!ossl_assert((item->keytype1 == -1) == (item->keytype2 == -1))) continue; /* * Base search criteria: check that the optype and keytypes match, * if relevant. All callers must synthesise these bits somehow. */ if (item->optype != -1 && (tmpl->optype & item->optype) == 0) continue; /* * This expression is stunningly simple thanks to the sanity check * above. */ if (item->keytype1 != -1 && tmpl->keytype1 != item->keytype1 && tmpl->keytype2 != item->keytype2) continue; /* * Done with the base search criteria, now we check the criteria for * the individual types of translations: * ctrl->params, ctrl_str->params, and params->ctrl */ if (tmpl->ctrl_num != 0) { if (tmpl->ctrl_num != item->ctrl_num) continue; } else if (tmpl->ctrl_str != NULL) { const char *ctrl_str = NULL; const char *ctrl_hexstr = NULL; /* * Search criteria that originates from a ctrl_str is only used * for setting, never for getting. Therefore, we only look at * the setter items. */ if (item->action_type != NONE && item->action_type != SET) continue; /* * At least one of the ctrl cmd names must be match the ctrl * cmd name in the template. */ if (item->ctrl_str != NULL && OPENSSL_strcasecmp(tmpl->ctrl_str, item->ctrl_str) == 0) ctrl_str = tmpl->ctrl_str; else if (item->ctrl_hexstr != NULL && OPENSSL_strcasecmp(tmpl->ctrl_hexstr, item->ctrl_hexstr) == 0) ctrl_hexstr = tmpl->ctrl_hexstr; else continue; /* Modify the template to signal which string matched */ tmpl->ctrl_str = ctrl_str; tmpl->ctrl_hexstr = ctrl_hexstr; } else if (tmpl->param_key != NULL) { /* * Search criteria that originates from an OSSL_PARAM setter or * getter. * * Ctrls were fundamentally bidirectional, with only the ctrl * command macro name implying direction (if you're lucky). * A few ctrl commands were even taking advantage of the * bidirectional nature, making the direction depend in the * value of the numeric argument. * * OSSL_PARAM functions are fundamentally different, in that * setters and getters are separated, so the data direction is * implied by the function that's used. The same OSSL_PARAM * key name can therefore be used in both directions. We must * therefore take the action type into account in this case. */ if ((item->action_type != NONE && tmpl->action_type != item->action_type) || (item->param_key != NULL && OPENSSL_strcasecmp(tmpl->param_key, item->param_key) != 0)) continue; } else { return NULL; } return item; } return NULL; } static const struct translation_st * lookup_evp_pkey_ctx_translation(struct translation_st *tmpl) { return lookup_translation(tmpl, evp_pkey_ctx_translations, OSSL_NELEM(evp_pkey_ctx_translations)); } static const struct translation_st * lookup_evp_pkey_translation(struct translation_st *tmpl) { return lookup_translation(tmpl, evp_pkey_translations, OSSL_NELEM(evp_pkey_translations)); } /* This must ONLY be called for provider side operations */ int evp_pkey_ctx_ctrl_to_param(EVP_PKEY_CTX *pctx, int keytype, int optype, int cmd, int p1, void *p2) { struct translation_ctx_st ctx = { 0, }; struct translation_st tmpl = { 0, }; const struct translation_st *translation = NULL; OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; int ret; fixup_args_fn *fixup = default_fixup_args; if (keytype == -1) keytype = pctx->legacy_keytype; tmpl.ctrl_num = cmd; tmpl.keytype1 = tmpl.keytype2 = keytype; tmpl.optype = optype; translation = lookup_evp_pkey_ctx_translation(&tmpl); if (translation == NULL) { ERR_raise(ERR_LIB_EVP, EVP_R_COMMAND_NOT_SUPPORTED); return -2; } if (pctx->pmeth != NULL && pctx->pmeth->pkey_id != translation->keytype1 && pctx->pmeth->pkey_id != translation->keytype2) return -1; if (translation->fixup_args != NULL) fixup = translation->fixup_args; ctx.action_type = translation->action_type; ctx.ctrl_cmd = cmd; ctx.p1 = p1; ctx.p2 = p2; ctx.pctx = pctx; ctx.params = params; ret = fixup(PRE_CTRL_TO_PARAMS, translation, &ctx); if (ret > 0) { switch (ctx.action_type) { default: /* fixup_args is expected to make sure this is dead code */ break; case GET: ret = evp_pkey_ctx_get_params_strict(pctx, ctx.params); break; case SET: ret = evp_pkey_ctx_set_params_strict(pctx, ctx.params); break; } } /* * In POST, we pass the return value as p1, allowing the fixup_args * function to affect it by changing its value. */ if (ret > 0) { ctx.p1 = ret; fixup(POST_CTRL_TO_PARAMS, translation, &ctx); ret = ctx.p1; } cleanup_translation_ctx(POST_CTRL_TO_PARAMS, translation, &ctx); return ret; } /* This must ONLY be called for provider side operations */ int evp_pkey_ctx_ctrl_str_to_param(EVP_PKEY_CTX *pctx, const char *name, const char *value) { struct translation_ctx_st ctx = { 0, }; struct translation_st tmpl = { 0, }; const struct translation_st *translation = NULL; OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; int keytype = pctx->legacy_keytype; int optype = pctx->operation == 0 ? -1 : pctx->operation; int ret; fixup_args_fn *fixup = default_fixup_args; tmpl.action_type = SET; tmpl.keytype1 = tmpl.keytype2 = keytype; tmpl.optype = optype; tmpl.ctrl_str = name; tmpl.ctrl_hexstr = name; translation = lookup_evp_pkey_ctx_translation(&tmpl); if (translation != NULL) { if (translation->fixup_args != NULL) fixup = translation->fixup_args; ctx.action_type = translation->action_type; ctx.ishex = (tmpl.ctrl_hexstr != NULL); } else { /* String controls really only support setting */ ctx.action_type = SET; } ctx.ctrl_str = name; ctx.p1 = (int)strlen(value); ctx.p2 = (char *)value; ctx.pctx = pctx; ctx.params = params; ret = fixup(PRE_CTRL_STR_TO_PARAMS, translation, &ctx); if (ret > 0) { switch (ctx.action_type) { default: /* fixup_args is expected to make sure this is dead code */ break; case GET: /* * this is dead code, but must be present, or some compilers * will complain */ break; case SET: ret = evp_pkey_ctx_set_params_strict(pctx, ctx.params); break; } } if (ret > 0) ret = fixup(POST_CTRL_STR_TO_PARAMS, translation, &ctx); cleanup_translation_ctx(CLEANUP_CTRL_STR_TO_PARAMS, translation, &ctx); return ret; } /* This must ONLY be called for legacy operations */ static int evp_pkey_ctx_setget_params_to_ctrl(EVP_PKEY_CTX *pctx, enum action action_type, OSSL_PARAM *params) { int keytype = pctx->legacy_keytype; int optype = pctx->operation == 0 ? -1 : pctx->operation; for (; params != NULL && params->key != NULL; params++) { struct translation_ctx_st ctx = { 0, }; struct translation_st tmpl = { 0, }; const struct translation_st *translation = NULL; fixup_args_fn *fixup = default_fixup_args; int ret; tmpl.action_type = action_type; tmpl.keytype1 = tmpl.keytype2 = keytype; tmpl.optype = optype; tmpl.param_key = params->key; translation = lookup_evp_pkey_ctx_translation(&tmpl); if (translation != NULL) { if (translation->fixup_args != NULL) fixup = translation->fixup_args; ctx.action_type = translation->action_type; ctx.ctrl_cmd = translation->ctrl_num; } ctx.pctx = pctx; ctx.params = params; ret = fixup(PRE_PARAMS_TO_CTRL, translation, &ctx); if (ret > 0 && ctx.action_type != NONE) ret = EVP_PKEY_CTX_ctrl(pctx, keytype, optype, ctx.ctrl_cmd, ctx.p1, ctx.p2); /* * In POST, we pass the return value as p1, allowing the fixup_args * function to put it to good use, or maybe affect it. */ if (ret > 0) { ctx.p1 = ret; fixup(POST_PARAMS_TO_CTRL, translation, &ctx); ret = ctx.p1; } cleanup_translation_ctx(CLEANUP_PARAMS_TO_CTRL, translation, &ctx); if (ret <= 0) return 0; } return 1; } int evp_pkey_ctx_set_params_to_ctrl(EVP_PKEY_CTX *ctx, const OSSL_PARAM *params) { return evp_pkey_ctx_setget_params_to_ctrl(ctx, SET, (OSSL_PARAM *)params); } int evp_pkey_ctx_get_params_to_ctrl(EVP_PKEY_CTX *ctx, OSSL_PARAM *params) { return evp_pkey_ctx_setget_params_to_ctrl(ctx, GET, params); } /* This must ONLY be called for legacy EVP_PKEYs */ static int evp_pkey_setget_params_to_ctrl(const EVP_PKEY *pkey, enum action action_type, OSSL_PARAM *params) { int ret = 1; for (; params != NULL && params->key != NULL; params++) { struct translation_ctx_st ctx = { 0, }; struct translation_st tmpl = { 0, }; const struct translation_st *translation = NULL; fixup_args_fn *fixup = default_fixup_args; tmpl.action_type = action_type; tmpl.param_key = params->key; translation = lookup_evp_pkey_translation(&tmpl); if (translation != NULL) { if (translation->fixup_args != NULL) fixup = translation->fixup_args; ctx.action_type = translation->action_type; } ctx.p2 = (void *)pkey; ctx.params = params; /* * EVP_PKEY doesn't have any ctrl function, so we rely completely * on fixup_args to do the whole work. Also, we currently only * support getting. */ if (!ossl_assert(translation != NULL) || !ossl_assert(translation->action_type == GET) || !ossl_assert(translation->fixup_args != NULL)) { return -2; } ret = fixup(PKEY, translation, &ctx); cleanup_translation_ctx(PKEY, translation, &ctx); } return ret; } int evp_pkey_get_params_to_ctrl(const EVP_PKEY *pkey, OSSL_PARAM *params) { return evp_pkey_setget_params_to_ctrl(pkey, GET, params); }