/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include "internal/evp_int.h" #include "internal/provider.h" #include "evp_locl.h" int EVP_CIPHER_CTX_reset(EVP_CIPHER_CTX *ctx) { if (ctx == NULL) return 1; if (ctx->cipher == NULL || ctx->cipher->prov == NULL) goto legacy; if (ctx->provctx != NULL) { if (ctx->cipher->freectx != NULL) ctx->cipher->freectx(ctx->provctx); ctx->provctx = NULL; } if (ctx->fetched_cipher != NULL) EVP_CIPHER_meth_free(ctx->fetched_cipher); memset(ctx, 0, sizeof(*ctx)); return 1; /* TODO(3.0): Remove legacy code below */ legacy: if (ctx->cipher != NULL) { if (ctx->cipher->cleanup && !ctx->cipher->cleanup(ctx)) return 0; /* Cleanse cipher context data */ if (ctx->cipher_data && ctx->cipher->ctx_size) OPENSSL_cleanse(ctx->cipher_data, ctx->cipher->ctx_size); } OPENSSL_free(ctx->cipher_data); #ifndef OPENSSL_NO_ENGINE ENGINE_finish(ctx->engine); #endif memset(ctx, 0, sizeof(*ctx)); return 1; } EVP_CIPHER_CTX *EVP_CIPHER_CTX_new(void) { return OPENSSL_zalloc(sizeof(EVP_CIPHER_CTX)); } void EVP_CIPHER_CTX_free(EVP_CIPHER_CTX *ctx) { EVP_CIPHER_CTX_reset(ctx); OPENSSL_free(ctx); } int EVP_CipherInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const unsigned char *key, const unsigned char *iv, int enc) { if (cipher != NULL) EVP_CIPHER_CTX_reset(ctx); return EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, enc); } int EVP_CipherInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const unsigned char *key, const unsigned char *iv, int enc) { EVP_CIPHER *provciph = NULL; ENGINE *tmpimpl = NULL; const EVP_CIPHER *tmpcipher; /* * enc == 1 means we are encrypting. * enc == 0 means we are decrypting. * enc == -1 means, use the previously initialised value for encrypt/decrypt */ if (enc == -1) { enc = ctx->encrypt; } else { if (enc) enc = 1; ctx->encrypt = enc; } if (cipher == NULL && ctx->cipher == NULL) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_NO_CIPHER_SET); return 0; } /* TODO(3.0): Legacy work around code below. Remove this */ #ifndef OPENSSL_NO_ENGINE /* * Whether it's nice or not, "Inits" can be used on "Final"'d contexts so * this context may already have an ENGINE! Try to avoid releasing the * previous handle, re-querying for an ENGINE, and having a * reinitialisation, when it may all be unnecessary. */ if (ctx->engine && ctx->cipher && (cipher == NULL || cipher->nid == ctx->cipher->nid)) goto skip_to_init; if (cipher != NULL && impl == NULL) { /* Ask if an ENGINE is reserved for this job */ tmpimpl = ENGINE_get_cipher_engine(cipher->nid); } #endif /* * If there are engines involved then we should use legacy handling for now. */ if (ctx->engine != NULL || impl != NULL || tmpimpl != NULL) { if (ctx->cipher == ctx->fetched_cipher) ctx->cipher = NULL; EVP_CIPHER_meth_free(ctx->fetched_cipher); ctx->fetched_cipher = NULL; goto legacy; } tmpcipher = (cipher == NULL) ? ctx->cipher : cipher; if (tmpcipher->prov == NULL) { switch(tmpcipher->nid) { case NID_aes_256_ecb: case NID_aes_192_ecb: case NID_aes_128_ecb: case NID_aes_256_cbc: case NID_aes_192_cbc: case NID_aes_128_cbc: case NID_aes_256_ofb128: case NID_aes_192_ofb128: case NID_aes_128_ofb128: case NID_aes_256_cfb128: case NID_aes_192_cfb128: case NID_aes_128_cfb128: case NID_aes_256_cfb1: case NID_aes_192_cfb1: case NID_aes_128_cfb1: case NID_aes_256_cfb8: case NID_aes_192_cfb8: case NID_aes_128_cfb8: case NID_aes_256_ctr: case NID_aes_192_ctr: case NID_aes_128_ctr: break; default: goto legacy; } } /* * Ensure a context left lying around from last time is cleared * (legacy code) */ if (cipher != NULL && ctx->cipher != NULL) { OPENSSL_clear_free(ctx->cipher_data, ctx->cipher->ctx_size); ctx->cipher_data = NULL; } /* TODO(3.0): Start of non-legacy code below */ /* Ensure a context left lying around from last time is cleared */ if (cipher != NULL && ctx->cipher != NULL) { unsigned long flags = ctx->flags; EVP_CIPHER_CTX_reset(ctx); /* Restore encrypt and flags */ ctx->encrypt = enc; ctx->flags = flags; } if (cipher != NULL) ctx->cipher = cipher; else cipher = ctx->cipher; if (cipher->prov == NULL) { provciph = EVP_CIPHER_fetch(NULL, OBJ_nid2sn(cipher->nid), ""); if (provciph == NULL) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } cipher = provciph; EVP_CIPHER_meth_free(ctx->fetched_cipher); ctx->fetched_cipher = provciph; } ctx->cipher = cipher; if (ctx->provctx == NULL) { ctx->provctx = ctx->cipher->newctx(ossl_provider_ctx(cipher->prov)); if (ctx->provctx == NULL) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } } if ((ctx->flags & EVP_CIPH_NO_PADDING) != 0) { /* * If this ctx was already set up for no padding then we need to tell * the new cipher about it. */ if (!EVP_CIPHER_CTX_set_padding(ctx, 0)) return 0; } switch (EVP_CIPHER_mode(ctx->cipher)) { case EVP_CIPH_CFB_MODE: case EVP_CIPH_OFB_MODE: case EVP_CIPH_CBC_MODE: /* For these modes we remember the original IV for later use */ if (!ossl_assert(EVP_CIPHER_CTX_iv_length(ctx) <= (int)sizeof(ctx->oiv))) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } if (iv != NULL) memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); } if (enc) { if (ctx->cipher->einit == NULL) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } return ctx->cipher->einit(ctx->provctx, key, key == NULL ? 0 : EVP_CIPHER_CTX_key_length(ctx), iv, iv == NULL ? 0 : EVP_CIPHER_CTX_iv_length(ctx)); } if (ctx->cipher->dinit == NULL) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } return ctx->cipher->dinit(ctx->provctx, key, key == NULL ? 0 : EVP_CIPHER_CTX_key_length(ctx), iv, iv == NULL ? 0 : EVP_CIPHER_CTX_iv_length(ctx)); /* TODO(3.0): Remove legacy code below */ legacy: if (cipher != NULL) { /* * Ensure a context left lying around from last time is cleared (we * previously attempted to avoid this if the same ENGINE and * EVP_CIPHER could be used). */ if (ctx->cipher) { unsigned long flags = ctx->flags; EVP_CIPHER_CTX_reset(ctx); /* Restore encrypt and flags */ ctx->encrypt = enc; ctx->flags = flags; } #ifndef OPENSSL_NO_ENGINE if (impl != NULL) { if (!ENGINE_init(impl)) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } } else { impl = tmpimpl; } if (impl != NULL) { /* There's an ENGINE for this job ... (apparently) */ const EVP_CIPHER *c = ENGINE_get_cipher(impl, cipher->nid); if (c == NULL) { /* * One positive side-effect of US's export control history, * is that we should at least be able to avoid using US * misspellings of "initialisation"? */ EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } /* We'll use the ENGINE's private cipher definition */ cipher = c; /* * Store the ENGINE functional reference so we know 'cipher' came * from an ENGINE and we need to release it when done. */ ctx->engine = impl; } else { ctx->engine = NULL; } #endif ctx->cipher = cipher; if (ctx->cipher->ctx_size) { ctx->cipher_data = OPENSSL_zalloc(ctx->cipher->ctx_size); if (ctx->cipher_data == NULL) { ctx->cipher = NULL; EVPerr(EVP_F_EVP_CIPHERINIT_EX, ERR_R_MALLOC_FAILURE); return 0; } } else { ctx->cipher_data = NULL; } ctx->key_len = cipher->key_len; /* Preserve wrap enable flag, zero everything else */ ctx->flags &= EVP_CIPHER_CTX_FLAG_WRAP_ALLOW; if (ctx->cipher->flags & EVP_CIPH_CTRL_INIT) { if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_INIT, 0, NULL)) { ctx->cipher = NULL; EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_INITIALIZATION_ERROR); return 0; } } } #ifndef OPENSSL_NO_ENGINE skip_to_init: #endif /* we assume block size is a power of 2 in *cryptUpdate */ OPENSSL_assert(ctx->cipher->block_size == 1 || ctx->cipher->block_size == 8 || ctx->cipher->block_size == 16); if (!(ctx->flags & EVP_CIPHER_CTX_FLAG_WRAP_ALLOW) && EVP_CIPHER_CTX_mode(ctx) == EVP_CIPH_WRAP_MODE) { EVPerr(EVP_F_EVP_CIPHERINIT_EX, EVP_R_WRAP_MODE_NOT_ALLOWED); return 0; } if (!(EVP_CIPHER_flags(EVP_CIPHER_CTX_cipher(ctx)) & EVP_CIPH_CUSTOM_IV)) { switch (EVP_CIPHER_CTX_mode(ctx)) { case EVP_CIPH_STREAM_CIPHER: case EVP_CIPH_ECB_MODE: break; case EVP_CIPH_CFB_MODE: case EVP_CIPH_OFB_MODE: ctx->num = 0; /* fall-through */ case EVP_CIPH_CBC_MODE: OPENSSL_assert(EVP_CIPHER_CTX_iv_length(ctx) <= (int)sizeof(ctx->iv)); if (iv) memcpy(ctx->oiv, iv, EVP_CIPHER_CTX_iv_length(ctx)); memcpy(ctx->iv, ctx->oiv, EVP_CIPHER_CTX_iv_length(ctx)); break; case EVP_CIPH_CTR_MODE: ctx->num = 0; /* Don't reuse IV for CTR mode */ if (iv) memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); break; default: return 0; } } if (key || (ctx->cipher->flags & EVP_CIPH_ALWAYS_CALL_INIT)) { if (!ctx->cipher->init(ctx, key, iv, enc)) return 0; } ctx->buf_len = 0; ctx->final_used = 0; ctx->block_mask = ctx->cipher->block_size - 1; return 1; } int EVP_CipherUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { if (ctx->encrypt) return EVP_EncryptUpdate(ctx, out, outl, in, inl); else return EVP_DecryptUpdate(ctx, out, outl, in, inl); } int EVP_CipherFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { if (ctx->encrypt) return EVP_EncryptFinal_ex(ctx, out, outl); else return EVP_DecryptFinal_ex(ctx, out, outl); } int EVP_CipherFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { if (ctx->encrypt) return EVP_EncryptFinal(ctx, out, outl); else return EVP_DecryptFinal(ctx, out, outl); } int EVP_EncryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const unsigned char *key, const unsigned char *iv) { return EVP_CipherInit(ctx, cipher, key, iv, 1); } int EVP_EncryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const unsigned char *key, const unsigned char *iv) { return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 1); } int EVP_DecryptInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, const unsigned char *key, const unsigned char *iv) { return EVP_CipherInit(ctx, cipher, key, iv, 0); } int EVP_DecryptInit_ex(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, ENGINE *impl, const unsigned char *key, const unsigned char *iv) { return EVP_CipherInit_ex(ctx, cipher, impl, key, iv, 0); } /* * According to the letter of standard difference between pointers * is specified to be valid only within same object. This makes * it formally challenging to determine if input and output buffers * are not partially overlapping with standard pointer arithmetic. */ #ifdef PTRDIFF_T # undef PTRDIFF_T #endif #if defined(OPENSSL_SYS_VMS) && __INITIAL_POINTER_SIZE==64 /* * Then we have VMS that distinguishes itself by adhering to * sizeof(size_t)==4 even in 64-bit builds, which means that * difference between two pointers might be truncated to 32 bits. * In the context one can even wonder how comparison for * equality is implemented. To be on the safe side we adhere to * PTRDIFF_T even for comparison for equality. */ # define PTRDIFF_T uint64_t #else # define PTRDIFF_T size_t #endif int is_partially_overlapping(const void *ptr1, const void *ptr2, int len) { PTRDIFF_T diff = (PTRDIFF_T)ptr1-(PTRDIFF_T)ptr2; /* * Check for partially overlapping buffers. [Binary logical * operations are used instead of boolean to minimize number * of conditional branches.] */ int overlapped = (len > 0) & (diff != 0) & ((diff < (PTRDIFF_T)len) | (diff > (0 - (PTRDIFF_T)len))); return overlapped; } static int evp_EncryptDecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { int i, j, bl, cmpl = inl; if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) cmpl = (cmpl + 7) / 8; bl = ctx->cipher->block_size; if (inl <= 0) { *outl = 0; return inl == 0; } if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { /* If block size > 1 then the cipher will have to do this check */ if (bl == 1 && is_partially_overlapping(out, in, cmpl)) { EVPerr(EVP_F_EVP_ENCRYPTDECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); return 0; } i = ctx->cipher->do_cipher(ctx, out, in, inl); if (i < 0) return 0; else *outl = i; return 1; } if (is_partially_overlapping(out + ctx->buf_len, in, cmpl)) { EVPerr(EVP_F_EVP_ENCRYPTDECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); return 0; } if (ctx->buf_len == 0 && (inl & (ctx->block_mask)) == 0) { if (ctx->cipher->do_cipher(ctx, out, in, inl)) { *outl = inl; return 1; } else { *outl = 0; return 0; } } i = ctx->buf_len; OPENSSL_assert(bl <= (int)sizeof(ctx->buf)); if (i != 0) { if (bl - i > inl) { memcpy(&(ctx->buf[i]), in, inl); ctx->buf_len += inl; *outl = 0; return 1; } else { j = bl - i; memcpy(&(ctx->buf[i]), in, j); inl -= j; in += j; if (!ctx->cipher->do_cipher(ctx, out, ctx->buf, bl)) return 0; out += bl; *outl = bl; } } else *outl = 0; i = inl & (bl - 1); inl -= i; if (inl > 0) { if (!ctx->cipher->do_cipher(ctx, out, in, inl)) return 0; *outl += inl; } if (i != 0) memcpy(ctx->buf, &(in[inl]), i); ctx->buf_len = i; return 1; } int EVP_EncryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { int ret; size_t soutl; int blocksize; /* Prevent accidental use of decryption context when encrypting */ if (!ctx->encrypt) { EVPerr(EVP_F_EVP_ENCRYPTUPDATE, EVP_R_INVALID_OPERATION); return 0; } if (ctx->cipher == NULL || ctx->cipher->prov == NULL) goto legacy; blocksize = EVP_CIPHER_CTX_block_size(ctx); if (ctx->cipher->cupdate == NULL || blocksize < 1) { EVPerr(EVP_F_EVP_ENCRYPTUPDATE, EVP_R_UPDATE_ERROR); return 0; } ret = ctx->cipher->cupdate(ctx->provctx, out, &soutl, inl + (blocksize == 1 ? 0 : blocksize), in, (size_t)inl); if (soutl > INT_MAX) { EVPerr(EVP_F_EVP_ENCRYPTUPDATE, EVP_R_UPDATE_ERROR); return 0; } *outl = soutl; return ret; /* TODO(3.0): Remove legacy code below */ legacy: return evp_EncryptDecryptUpdate(ctx, out, outl, in, inl); } int EVP_EncryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int ret; ret = EVP_EncryptFinal_ex(ctx, out, outl); return ret; } int EVP_EncryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int n, ret; unsigned int i, b, bl; size_t soutl; int blocksize; /* Prevent accidental use of decryption context when encrypting */ if (!ctx->encrypt) { EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX, EVP_R_INVALID_OPERATION); return 0; } if (ctx->cipher == NULL || ctx->cipher->prov == NULL) goto legacy; blocksize = EVP_CIPHER_CTX_block_size(ctx); if (blocksize < 1 || ctx->cipher->cfinal == NULL) { EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX, EVP_R_FINAL_ERROR); return 0; } ret = ctx->cipher->cfinal(ctx->provctx, out, &soutl, blocksize == 1 ? 0 : blocksize); if (soutl > INT_MAX) { EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX, EVP_R_FINAL_ERROR); return 0; } *outl = soutl; return ret; /* TODO(3.0): Remove legacy code below */ legacy: if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { ret = ctx->cipher->do_cipher(ctx, out, NULL, 0); if (ret < 0) return 0; else *outl = ret; return 1; } b = ctx->cipher->block_size; OPENSSL_assert(b <= sizeof(ctx->buf)); if (b == 1) { *outl = 0; return 1; } bl = ctx->buf_len; if (ctx->flags & EVP_CIPH_NO_PADDING) { if (bl) { EVPerr(EVP_F_EVP_ENCRYPTFINAL_EX, EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); return 0; } *outl = 0; return 1; } n = b - bl; for (i = bl; i < b; i++) ctx->buf[i] = n; ret = ctx->cipher->do_cipher(ctx, out, ctx->buf, b); if (ret) *outl = b; return ret; } int EVP_DecryptUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl, const unsigned char *in, int inl) { int fix_len, cmpl = inl, ret; unsigned int b; size_t soutl; int blocksize; /* Prevent accidental use of encryption context when decrypting */ if (ctx->encrypt) { EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_INVALID_OPERATION); return 0; } if (ctx->cipher == NULL || ctx->cipher->prov == NULL) goto legacy; blocksize = EVP_CIPHER_CTX_block_size(ctx); if (ctx->cipher->cupdate == NULL || blocksize < 1) { EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_UPDATE_ERROR); return 0; } ret = ctx->cipher->cupdate(ctx->provctx, out, &soutl, inl + (blocksize == 1 ? 0 : blocksize), in, (size_t)inl); if (ret) { if (soutl > INT_MAX) { EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_UPDATE_ERROR); return 0; } *outl = soutl; } return ret; /* TODO(3.0): Remove legacy code below */ legacy: b = ctx->cipher->block_size; if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) cmpl = (cmpl + 7) / 8; if (inl <= 0) { *outl = 0; return inl == 0; } if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { if (b == 1 && is_partially_overlapping(out, in, cmpl)) { EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); return 0; } fix_len = ctx->cipher->do_cipher(ctx, out, in, inl); if (fix_len < 0) { *outl = 0; return 0; } else *outl = fix_len; return 1; } if (ctx->flags & EVP_CIPH_NO_PADDING) return evp_EncryptDecryptUpdate(ctx, out, outl, in, inl); OPENSSL_assert(b <= sizeof(ctx->final)); if (ctx->final_used) { /* see comment about PTRDIFF_T comparison above */ if (((PTRDIFF_T)out == (PTRDIFF_T)in) || is_partially_overlapping(out, in, b)) { EVPerr(EVP_F_EVP_DECRYPTUPDATE, EVP_R_PARTIALLY_OVERLAPPING); return 0; } memcpy(out, ctx->final, b); out += b; fix_len = 1; } else fix_len = 0; if (!evp_EncryptDecryptUpdate(ctx, out, outl, in, inl)) return 0; /* * if we have 'decrypted' a multiple of block size, make sure we have a * copy of this last block */ if (b > 1 && !ctx->buf_len) { *outl -= b; ctx->final_used = 1; memcpy(ctx->final, &out[*outl], b); } else ctx->final_used = 0; if (fix_len) *outl += b; return 1; } int EVP_DecryptFinal(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int ret; ret = EVP_DecryptFinal_ex(ctx, out, outl); return ret; } int EVP_DecryptFinal_ex(EVP_CIPHER_CTX *ctx, unsigned char *out, int *outl) { int i, n; unsigned int b; size_t soutl; int ret; int blocksize; /* Prevent accidental use of encryption context when decrypting */ if (ctx->encrypt) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_INVALID_OPERATION); return 0; } if (ctx->cipher == NULL || ctx->cipher->prov == NULL) goto legacy; blocksize = EVP_CIPHER_CTX_block_size(ctx); if (blocksize < 1 || ctx->cipher->cfinal == NULL) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_FINAL_ERROR); return 0; } ret = ctx->cipher->cfinal(ctx->provctx, out, &soutl, blocksize == 1 ? 0 : blocksize); if (ret) { if (soutl > INT_MAX) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_FINAL_ERROR); return 0; } *outl = soutl; } return ret; /* TODO(3.0): Remove legacy code below */ legacy: *outl = 0; if (ctx->cipher->flags & EVP_CIPH_FLAG_CUSTOM_CIPHER) { i = ctx->cipher->do_cipher(ctx, out, NULL, 0); if (i < 0) return 0; else *outl = i; return 1; } b = ctx->cipher->block_size; if (ctx->flags & EVP_CIPH_NO_PADDING) { if (ctx->buf_len) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_DATA_NOT_MULTIPLE_OF_BLOCK_LENGTH); return 0; } *outl = 0; return 1; } if (b > 1) { if (ctx->buf_len || !ctx->final_used) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_WRONG_FINAL_BLOCK_LENGTH); return 0; } OPENSSL_assert(b <= sizeof(ctx->final)); /* * The following assumes that the ciphertext has been authenticated. * Otherwise it provides a padding oracle. */ n = ctx->final[b - 1]; if (n == 0 || n > (int)b) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT); return 0; } for (i = 0; i < n; i++) { if (ctx->final[--b] != n) { EVPerr(EVP_F_EVP_DECRYPTFINAL_EX, EVP_R_BAD_DECRYPT); return 0; } } n = ctx->cipher->block_size - n; for (i = 0; i < n; i++) out[i] = ctx->final[i]; *outl = n; } else *outl = 0; return 1; } int EVP_CIPHER_CTX_set_key_length(EVP_CIPHER_CTX *c, int keylen) { if (c->cipher->flags & EVP_CIPH_CUSTOM_KEY_LENGTH) return EVP_CIPHER_CTX_ctrl(c, EVP_CTRL_SET_KEY_LENGTH, keylen, NULL); if (EVP_CIPHER_CTX_key_length(c) == keylen) return 1; if ((keylen > 0) && (c->cipher->flags & EVP_CIPH_VARIABLE_LENGTH)) { c->key_len = keylen; return 1; } EVPerr(EVP_F_EVP_CIPHER_CTX_SET_KEY_LENGTH, EVP_R_INVALID_KEY_LENGTH); return 0; } int EVP_CIPHER_CTX_set_padding(EVP_CIPHER_CTX *ctx, int pad) { if (pad) ctx->flags &= ~EVP_CIPH_NO_PADDING; else ctx->flags |= EVP_CIPH_NO_PADDING; if (ctx->cipher != NULL && ctx->cipher->prov != NULL) { OSSL_PARAM params[] = { OSSL_PARAM_int(OSSL_CIPHER_PARAM_PADDING, NULL), OSSL_PARAM_END }; params[0].data = &pad; if (ctx->cipher->ctx_set_params == NULL) { EVPerr(EVP_F_EVP_CIPHER_CTX_SET_PADDING, EVP_R_CTRL_NOT_IMPLEMENTED); return 0; } if (!ctx->cipher->ctx_set_params(ctx->provctx, params)) return 0; } return 1; } int EVP_CIPHER_CTX_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) { int ret; if (!ctx->cipher) { EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_NO_CIPHER_SET); return 0; } if (!ctx->cipher->ctrl) { EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_CTRL_NOT_IMPLEMENTED); return 0; } ret = ctx->cipher->ctrl(ctx, type, arg, ptr); if (ret == -1) { EVPerr(EVP_F_EVP_CIPHER_CTX_CTRL, EVP_R_CTRL_OPERATION_NOT_IMPLEMENTED); return 0; } return ret; } int EVP_CIPHER_CTX_rand_key(EVP_CIPHER_CTX *ctx, unsigned char *key) { if (ctx->cipher->flags & EVP_CIPH_RAND_KEY) return EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_RAND_KEY, 0, key); if (RAND_priv_bytes(key, EVP_CIPHER_CTX_key_length(ctx)) <= 0) return 0; return 1; } int EVP_CIPHER_CTX_copy(EVP_CIPHER_CTX *out, const EVP_CIPHER_CTX *in) { if ((in == NULL) || (in->cipher == NULL)) { EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INPUT_NOT_INITIALIZED); return 0; } if (in->cipher->prov == NULL) goto legacy; if (in->cipher->dupctx == NULL) { EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_NOT_ABLE_TO_COPY_CTX); return 0; } EVP_CIPHER_CTX_reset(out); *out = *in; out->provctx = NULL; if (in->fetched_cipher != NULL && !EVP_CIPHER_upref(in->fetched_cipher)) { out->fetched_cipher = NULL; return 0; } out->provctx = in->cipher->dupctx(in->provctx); if (out->provctx == NULL) { EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_NOT_ABLE_TO_COPY_CTX); return 0; } return 1; /* TODO(3.0): Remove legacy code below */ legacy: #ifndef OPENSSL_NO_ENGINE /* Make sure it's safe to copy a cipher context using an ENGINE */ if (in->engine && !ENGINE_init(in->engine)) { EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_ENGINE_LIB); return 0; } #endif EVP_CIPHER_CTX_reset(out); memcpy(out, in, sizeof(*out)); if (in->cipher_data && in->cipher->ctx_size) { out->cipher_data = OPENSSL_malloc(in->cipher->ctx_size); if (out->cipher_data == NULL) { out->cipher = NULL; EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, ERR_R_MALLOC_FAILURE); return 0; } memcpy(out->cipher_data, in->cipher_data, in->cipher->ctx_size); } if (in->cipher->flags & EVP_CIPH_CUSTOM_COPY) if (!in->cipher->ctrl((EVP_CIPHER_CTX *)in, EVP_CTRL_COPY, 0, out)) { out->cipher = NULL; EVPerr(EVP_F_EVP_CIPHER_CTX_COPY, EVP_R_INITIALIZATION_ERROR); return 0; } return 1; } static void *evp_cipher_from_dispatch(int nid, const OSSL_DISPATCH *fns, OSSL_PROVIDER *prov) { EVP_CIPHER *cipher = NULL; int fnciphcnt = 0, fnctxcnt = 0; if ((cipher = EVP_CIPHER_meth_new(nid, 0, 0)) == NULL) return NULL; for (; fns->function_id != 0; fns++) { switch (fns->function_id) { case OSSL_FUNC_CIPHER_NEWCTX: if (cipher->newctx != NULL) break; cipher->newctx = OSSL_get_OP_cipher_newctx(fns); fnctxcnt++; break; case OSSL_FUNC_CIPHER_ENCRYPT_INIT: if (cipher->einit != NULL) break; cipher->einit = OSSL_get_OP_cipher_encrypt_init(fns); fnciphcnt++; break; case OSSL_FUNC_CIPHER_DECRYPT_INIT: if (cipher->dinit != NULL) break; cipher->dinit = OSSL_get_OP_cipher_decrypt_init(fns); fnciphcnt++; break; case OSSL_FUNC_CIPHER_UPDATE: if (cipher->cupdate != NULL) break; cipher->cupdate = OSSL_get_OP_cipher_update(fns); fnciphcnt++; break; case OSSL_FUNC_CIPHER_FINAL: if (cipher->cfinal != NULL) break; cipher->cfinal = OSSL_get_OP_cipher_final(fns); fnciphcnt++; break; case OSSL_FUNC_CIPHER_CIPHER: if (cipher->ccipher != NULL) break; cipher->ccipher = OSSL_get_OP_cipher_cipher(fns); break; case OSSL_FUNC_CIPHER_FREECTX: if (cipher->freectx != NULL) break; cipher->freectx = OSSL_get_OP_cipher_freectx(fns); fnctxcnt++; break; case OSSL_FUNC_CIPHER_DUPCTX: if (cipher->dupctx != NULL) break; cipher->dupctx = OSSL_get_OP_cipher_dupctx(fns); break; case OSSL_FUNC_CIPHER_KEY_LENGTH: if (cipher->key_length != NULL) break; cipher->key_length = OSSL_get_OP_cipher_key_length(fns); break; case OSSL_FUNC_CIPHER_IV_LENGTH: if (cipher->iv_length != NULL) break; cipher->iv_length = OSSL_get_OP_cipher_iv_length(fns); break; case OSSL_FUNC_CIPHER_BLOCK_SIZE: if (cipher->blocksize != NULL) break; cipher->blocksize = OSSL_get_OP_cipher_block_size(fns); break; case OSSL_FUNC_CIPHER_GET_PARAMS: if (cipher->get_params != NULL) break; cipher->get_params = OSSL_get_OP_cipher_get_params(fns); break; case OSSL_FUNC_CIPHER_CTX_GET_PARAMS: if (cipher->ctx_get_params != NULL) break; cipher->ctx_get_params = OSSL_get_OP_cipher_ctx_get_params(fns); break; case OSSL_FUNC_CIPHER_CTX_SET_PARAMS: if (cipher->ctx_set_params != NULL) break; cipher->ctx_set_params = OSSL_get_OP_cipher_ctx_set_params(fns); break; } } if ((fnciphcnt != 0 && fnciphcnt != 3 && fnciphcnt != 4) || (fnciphcnt == 0 && cipher->ccipher == NULL) || fnctxcnt != 2 || cipher->blocksize == NULL || cipher->iv_length == NULL || cipher->key_length == NULL) { /* * In order to be a consistent set of functions we must have at least * a complete set of "encrypt" functions, or a complete set of "decrypt" * functions, or a single "cipher" function. In all cases we need a * complete set of context management functions, as well as the * blocksize, iv_length and key_length functions. */ EVP_CIPHER_meth_free(cipher); EVPerr(EVP_F_EVP_CIPHER_FROM_DISPATCH, EVP_R_INVALID_PROVIDER_FUNCTIONS); return NULL; } cipher->prov = prov; if (prov != NULL) ossl_provider_upref(prov); return cipher; } static int evp_cipher_upref(void *cipher) { return EVP_CIPHER_upref(cipher); } static void evp_cipher_free(void *cipher) { EVP_CIPHER_meth_free(cipher); } static int evp_cipher_nid(void *vcipher) { EVP_CIPHER *cipher = vcipher; return cipher->nid; } EVP_CIPHER *EVP_CIPHER_fetch(OPENSSL_CTX *ctx, const char *algorithm, const char *properties) { return evp_generic_fetch(ctx, OSSL_OP_CIPHER, algorithm, properties, evp_cipher_from_dispatch, evp_cipher_upref, evp_cipher_free, evp_cipher_nid); }