/* * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "crypto/rand.h" #include "drbg_local.h" #include "internal/thread_once.h" #include "crypto/cryptlib.h" #include "prov/seeding.h" #include "prov/rand_pool.h" #include "prov/provider_ctx.h" #include "prov/providercommonerr.h" /* * Support framework for NIST SP 800-90A DRBG * * See manual page PROV_DRBG(7) for a general overview. * * The OpenSSL model is to have new and free functions, and that new * does all initialization. That is not the NIST model, which has * instantiation and un-instantiate, and re-use within a new/free * lifecycle. (No doubt this comes from the desire to support hardware * DRBG, where allocation of resources on something like an HSM is * a much bigger deal than just re-setting an allocated resource.) */ /* NIST SP 800-90A DRBG recommends the use of a personalization string. */ static const char ossl_pers_string[] = DRBG_DEFAULT_PERS_STRING; static const OSSL_DISPATCH *find_call(const OSSL_DISPATCH *dispatch, int function); static int rand_drbg_restart(PROV_DRBG *drbg); int drbg_lock(void *vctx) { PROV_DRBG *drbg = vctx; if (drbg == NULL || drbg->lock == NULL) return 1; return CRYPTO_THREAD_write_lock(drbg->lock); } void drbg_unlock(void *vctx) { PROV_DRBG *drbg = vctx; if (drbg != NULL && drbg->lock != NULL) CRYPTO_THREAD_unlock(drbg->lock); } static int drbg_lock_parent(PROV_DRBG *drbg) { void *parent = drbg->parent; if (parent != NULL && drbg->parent_lock != NULL && !drbg->parent_lock(parent)) { ERR_raise(ERR_LIB_PROV, PROV_R_PARENT_LOCKING_NOT_ENABLED); return 0; } return 1; } static void drbg_unlock_parent(PROV_DRBG *drbg) { void *parent = drbg->parent; if (parent != NULL && drbg->parent_unlock != NULL) drbg->parent_unlock(parent); } static int get_parent_strength(PROV_DRBG *drbg, unsigned int *str) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; void *parent = drbg->parent; int res; if (drbg->parent_get_ctx_params == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_GET_PARENT_STRENGTH); return 0; } *params = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, str); if (!drbg_lock_parent(drbg)) { ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOCK_PARENT); return 0; } res = drbg->parent_get_ctx_params(parent, params); drbg_unlock_parent(drbg); if (!res) { ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_GET_PARENT_STRENGTH); return 0; } return 1; } static unsigned int get_parent_reseed_count(PROV_DRBG *drbg) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; void *parent = drbg->parent; unsigned int r; *params = OSSL_PARAM_construct_uint(OSSL_DRBG_PARAM_RESEED_CTR, &r); if (!drbg_lock_parent(drbg)) { ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOCK_PARENT); goto err; } if (!drbg->parent_get_ctx_params(parent, params)) { drbg_unlock_parent(drbg); ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_GET_RESEED_PROP_CTR); goto err; } drbg_unlock_parent(drbg); return r; err: r = tsan_load(&drbg->reseed_counter) - 2; if (r == 0) r = UINT_MAX; return r; } /* * Implements the get_entropy() callback (see RAND_DRBG_set_callbacks()) * * If the DRBG has a parent, then the required amount of entropy input * is fetched using the parent's RAND_DRBG_generate(). * * Otherwise, the entropy is polled from the system entropy sources * using prov_pool_acquire_entropy(). * * If a random pool has been added to the DRBG using RAND_add(), then * its entropy will be used up first. */ static size_t prov_drbg_get_entropy(PROV_DRBG *drbg, unsigned char **pout, int entropy, size_t min_len, size_t max_len, int prediction_resistance) { size_t ret = 0; size_t entropy_available = 0; RAND_POOL *pool; unsigned int p_str; if (drbg->parent != NULL) { if (!get_parent_strength(drbg, &p_str)) return 0; if (drbg->strength > p_str) { /* * We currently don't support the algorithm from NIST SP 800-90C * 10.1.2 to use a weaker DRBG as source */ RANDerr(0, PROV_R_PARENT_STRENGTH_TOO_WEAK); return 0; } } if (drbg->seed_pool != NULL) { pool = drbg->seed_pool; pool->entropy_requested = entropy; } else { pool = rand_pool_new(entropy, 1, min_len, max_len); if (pool == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return 0; } } if (drbg->parent != NULL) { size_t bytes_needed = rand_pool_bytes_needed(pool, 1 /*entropy_factor*/); unsigned char *buffer = rand_pool_add_begin(pool, bytes_needed); if (buffer != NULL) { size_t bytes = 0; if (drbg->parent_generate == NULL) goto err; /* * Our lock is already held, but we need to lock our parent before * generating bits from it. (Note: taking the lock will be a no-op * if locking if drbg->parent->lock == NULL.) */ drbg_lock_parent(drbg); /* * Get random data from parent. Include our DRBG address as * additional input, in order to provide a distinction between * different DRBG child instances. * * Note: using the sizeof() operator on a pointer triggers * a warning in some static code analyzers, but it's * intentional and correct here. */ if (drbg->parent_generate(drbg->parent, buffer, bytes_needed, drbg->strength, prediction_resistance, (unsigned char *)&drbg, sizeof(drbg)) != 0) bytes = bytes_needed; drbg_unlock_parent(drbg); drbg->parent_reseed_counter = get_parent_reseed_count(drbg); rand_pool_add_end(pool, bytes, 8 * bytes); entropy_available = rand_pool_entropy_available(pool); } } else { /* Get entropy by polling system entropy sources. */ entropy_available = prov_pool_acquire_entropy(pool); } if (entropy_available > 0) { ret = rand_pool_length(pool); *pout = rand_pool_detach(pool); } err: if (drbg->seed_pool == NULL) rand_pool_free(pool); return ret; } /* * Implements the cleanup_entropy() callback (see RAND_DRBG_set_callbacks()) * */ static void prov_drbg_cleanup_entropy(PROV_DRBG *drbg, unsigned char *out, size_t outlen) { if (drbg->seed_pool == NULL) { OPENSSL_secure_clear_free(out, outlen); } } static size_t get_entropy(PROV_DRBG *drbg, unsigned char **pout, int entropy, size_t min_len, size_t max_len, int prediction_resistance) { #ifdef FIPS_MODULE if (drbg->parent == NULL) return prov_crngt_get_entropy(drbg, pout, entropy, min_len, max_len, prediction_resistance); #endif return prov_drbg_get_entropy(drbg, pout, entropy, min_len, max_len, prediction_resistance); } static void cleanup_entropy(PROV_DRBG *drbg, unsigned char *out, size_t outlen) { #ifdef FIPS_MODULE if (drbg->parent == NULL) prov_crngt_cleanup_entropy(drbg, out, outlen); else #endif prov_drbg_cleanup_entropy(drbg, out, outlen); } #ifndef PROV_RAND_GET_RANDOM_NONCE typedef struct prov_drbg_nonce_global_st { CRYPTO_RWLOCK *rand_nonce_lock; int rand_nonce_count; } PROV_DRBG_NONCE_GLOBAL; /* * drbg_ossl_ctx_new() calls drgb_setup() which calls rand_drbg_get_nonce() * which needs to get the rand_nonce_lock out of the OPENSSL_CTX...but since * drbg_ossl_ctx_new() hasn't finished running yet we need the rand_nonce_lock * to be in a different global data object. Otherwise we will go into an * infinite recursion loop. */ static void *prov_drbg_nonce_ossl_ctx_new(OPENSSL_CTX *libctx) { PROV_DRBG_NONCE_GLOBAL *dngbl = OPENSSL_zalloc(sizeof(*dngbl)); if (dngbl == NULL) return NULL; dngbl->rand_nonce_lock = CRYPTO_THREAD_lock_new(); if (dngbl->rand_nonce_lock == NULL) { OPENSSL_free(dngbl); return NULL; } return dngbl; } static void prov_drbg_nonce_ossl_ctx_free(void *vdngbl) { PROV_DRBG_NONCE_GLOBAL *dngbl = vdngbl; if (dngbl == NULL) return; CRYPTO_THREAD_lock_free(dngbl->rand_nonce_lock); OPENSSL_free(dngbl); } static const OPENSSL_CTX_METHOD drbg_nonce_ossl_ctx_method = { prov_drbg_nonce_ossl_ctx_new, prov_drbg_nonce_ossl_ctx_free, }; /* Get a nonce from the operating system */ static size_t prov_drbg_get_nonce(PROV_DRBG *drbg, unsigned char **pout, int entropy, size_t min_len, size_t max_len) { size_t ret = 0, n; RAND_POOL *pool; unsigned char *buf = NULL; OPENSSL_CTX *libctx = PROV_LIBRARY_CONTEXT_OF(drbg->provctx); PROV_DRBG_NONCE_GLOBAL *dngbl = openssl_ctx_get_data(libctx, OPENSSL_CTX_DRBG_NONCE_INDEX, &drbg_nonce_ossl_ctx_method); struct { void *instance; int count; } data; if (dngbl == NULL) return 0; if (drbg->parent != NULL) { if (drbg->parent_nonce != NULL) { n = drbg->parent_nonce(drbg->parent, NULL, 0, drbg->min_noncelen, drbg->max_noncelen); if (n > 0 && (buf = OPENSSL_malloc(n)) != NULL) { ret = drbg->parent_nonce(drbg->parent, buf, 0, drbg->min_noncelen, drbg->max_noncelen); if (ret == n) { *pout = buf; return ret; } OPENSSL_free(buf); } } } /* Use the built in nonce source */ memset(&data, 0, sizeof(data)); pool = rand_pool_new(0, 0, min_len, max_len); if (pool == NULL) return 0; if (prov_pool_add_nonce_data(pool) == 0) goto err; data.instance = drbg; CRYPTO_atomic_add(&dngbl->rand_nonce_count, 1, &data.count, dngbl->rand_nonce_lock); if (rand_pool_add(pool, (unsigned char *)&data, sizeof(data), 0) == 0) goto err; ret = rand_pool_length(pool); *pout = rand_pool_detach(pool); err: rand_pool_free(pool); return ret; } static void prov_drbg_clear_nonce(PROV_DRBG *drbg, unsigned char *nonce, size_t noncelen) { OPENSSL_clear_free(nonce, noncelen); } #else # define prov_drbg_clear_nonce(drbg, nonce, len) \ OPENSSL_clear_free((nonce), (len)) #endif /* PROV_RAND_GET_RANDOM_NONCE */ /* * Instantiate |drbg|, after it has been initialized. Use |pers| and * |perslen| as prediction-resistance input. * * Requires that drbg->lock is already locked for write, if non-null. * * Returns 1 on success, 0 on failure. */ int PROV_DRBG_instantiate(PROV_DRBG *drbg, unsigned int strength, int prediction_resistance, const unsigned char *pers, size_t perslen) { unsigned char *nonce = NULL, *entropy = NULL; size_t noncelen = 0, entropylen = 0; size_t min_entropy, min_entropylen, max_entropylen; if (strength > drbg->strength) { PROVerr(0, PROV_R_INSUFFICIENT_DRBG_STRENGTH); goto end; } min_entropy = drbg->strength; min_entropylen = drbg->min_entropylen; max_entropylen = drbg->max_entropylen; if (pers == NULL) { pers = (const unsigned char *)ossl_pers_string; perslen = sizeof(ossl_pers_string); } if (perslen > drbg->max_perslen) { PROVerr(0, PROV_R_PERSONALISATION_STRING_TOO_LONG); goto end; } if (drbg->state != EVP_RAND_STATE_UNINITIALISED) { if (drbg->state == EVP_RAND_STATE_ERROR) PROVerr(0, PROV_R_IN_ERROR_STATE); else PROVerr(0, PROV_R_ALREADY_INSTANTIATED); goto end; } drbg->state = EVP_RAND_STATE_ERROR; if (drbg->min_noncelen > 0) { if (drbg->parent_nonce != NULL) { noncelen = drbg->parent_nonce(drbg->parent, NULL, drbg->strength, drbg->min_noncelen, drbg->max_noncelen); if (noncelen == 0) { PROVerr(0, PROV_R_ERROR_RETRIEVING_NONCE); goto end; } nonce = OPENSSL_malloc(noncelen); if (nonce == NULL) { PROVerr(0, PROV_R_ERROR_RETRIEVING_NONCE); goto end; } if (noncelen != drbg->parent_nonce(drbg->parent, nonce, drbg->strength, drbg->min_noncelen, drbg->max_noncelen)) { PROVerr(0, PROV_R_ERROR_RETRIEVING_NONCE); goto end; } #ifndef PROV_RAND_GET_RANDOM_NONCE } else if (drbg->parent != NULL) { #endif /* * NIST SP800-90Ar1 section 9.1 says you can combine getting * the entropy and nonce in 1 call by increasing the entropy * with 50% and increasing the minimum length to accommodate * the length of the nonce. We do this in case a nonce is * required and there is no parental nonce capability. */ min_entropy += drbg->strength / 2; min_entropylen += drbg->min_noncelen; max_entropylen += drbg->max_noncelen; } #ifndef PROV_RAND_GET_RANDOM_NONCE else { /* parent == NULL */ noncelen = prov_drbg_get_nonce(drbg, &nonce, drbg->strength / 2, drbg->min_noncelen, drbg->max_noncelen); if (noncelen < drbg->min_noncelen || noncelen > drbg->max_noncelen) { PROVerr(0, PROV_R_ERROR_RETRIEVING_NONCE); goto end; } } #endif } drbg->reseed_next_counter = tsan_load(&drbg->reseed_counter); if (drbg->reseed_next_counter) { drbg->reseed_next_counter++; if (!drbg->reseed_next_counter) drbg->reseed_next_counter = 1; } entropylen = get_entropy(drbg, &entropy, min_entropy, min_entropylen, max_entropylen, prediction_resistance); if (entropylen < min_entropylen || entropylen > max_entropylen) { PROVerr(0, PROV_R_ERROR_RETRIEVING_ENTROPY); goto end; } if (!drbg->instantiate(drbg, entropy, entropylen, nonce, noncelen, pers, perslen)) { PROVerr(0, PROV_R_ERROR_INSTANTIATING_DRBG); goto end; } drbg->state = EVP_RAND_STATE_READY; drbg->reseed_gen_counter = 1; drbg->reseed_time = time(NULL); tsan_store(&drbg->reseed_counter, drbg->reseed_next_counter); end: if (entropy != NULL) cleanup_entropy(drbg, entropy, entropylen); prov_drbg_clear_nonce(drbg, nonce, noncelen); if (drbg->state == EVP_RAND_STATE_READY) return 1; return 0; } /* * Uninstantiate |drbg|. Must be instantiated before it can be used. * * Requires that drbg->lock is already locked for write, if non-null. * * Returns 1 on success, 0 on failure. */ int PROV_DRBG_uninstantiate(PROV_DRBG *drbg) { drbg->state = EVP_RAND_STATE_UNINITIALISED; return 1; } /* * Reseed |drbg|, mixing in the specified data * * Requires that drbg->lock is already locked for write, if non-null. * * Returns 1 on success, 0 on failure. */ int PROV_DRBG_reseed(PROV_DRBG *drbg, int prediction_resistance, const unsigned char *ent, size_t ent_len, const unsigned char *adin, size_t adinlen) { unsigned char *entropy = NULL; size_t entropylen = 0; if (drbg->state != EVP_RAND_STATE_READY) { /* try to recover from previous errors */ rand_drbg_restart(drbg); if (drbg->state == EVP_RAND_STATE_ERROR) { PROVerr(0, PROV_R_IN_ERROR_STATE); return 0; } if (drbg->state == EVP_RAND_STATE_UNINITIALISED) { PROVerr(0, PROV_R_NOT_INSTANTIATED); return 0; } } if (ent != NULL) { if (ent_len < drbg->min_entropylen) { RANDerr(0, RAND_R_ENTROPY_OUT_OF_RANGE); drbg->state = EVP_RAND_STATE_ERROR; return 0; } if (ent_len > drbg->max_entropylen) { RANDerr(0, RAND_R_ENTROPY_INPUT_TOO_LONG); drbg->state = EVP_RAND_STATE_ERROR; return 0; } } if (adin == NULL) { adinlen = 0; } else if (adinlen > drbg->max_adinlen) { PROVerr(0, PROV_R_ADDITIONAL_INPUT_TOO_LONG); return 0; } drbg->state = EVP_RAND_STATE_ERROR; drbg->reseed_next_counter = tsan_load(&drbg->reseed_counter); if (drbg->reseed_next_counter) { drbg->reseed_next_counter++; if (!drbg->reseed_next_counter) drbg->reseed_next_counter = 1; } if (ent != NULL) { #ifdef FIP_MODULE /* * NIST SP-800-90A mandates that entropy *shall not* be provided * by the consuming application. Instead the data is added as additional * input. * * (NIST SP-800-90Ar1, Sections 9.1 and 9.2) */ if (!drbg->reseed(drbg, NULL, 0, ent, ent_len)) { ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_RESEED); return 0; } #else if (!drbg->reseed(drbg, ent, ent_len, adin, adinlen)) { ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_RESEED); return 0; } /* There isn't much point adding the same additional input twice */ adin = NULL; adinlen = 0; #endif } /* Reseed using our sources in addition */ entropylen = get_entropy(drbg, &entropy, drbg->strength, drbg->min_entropylen, drbg->max_entropylen, prediction_resistance); if (entropylen < drbg->min_entropylen || entropylen > drbg->max_entropylen) { PROVerr(0, PROV_R_ERROR_RETRIEVING_ENTROPY); goto end; } if (!drbg->reseed(drbg, entropy, entropylen, adin, adinlen)) goto end; drbg->state = EVP_RAND_STATE_READY; drbg->reseed_gen_counter = 1; drbg->reseed_time = time(NULL); tsan_store(&drbg->reseed_counter, drbg->reseed_next_counter); if (drbg->parent != NULL) drbg->parent_reseed_counter = get_parent_reseed_count(drbg); end: cleanup_entropy(drbg, entropy, entropylen); if (drbg->state == EVP_RAND_STATE_READY) return 1; return 0; } /* * Generate |outlen| bytes into the buffer at |out|. Reseed if we need * to or if |prediction_resistance| is set. Additional input can be * sent in |adin| and |adinlen|. * * Requires that drbg->lock is already locked for write, if non-null. * * Returns 1 on success, 0 on failure. * */ int PROV_DRBG_generate(PROV_DRBG *drbg, unsigned char *out, size_t outlen, unsigned int strength, int prediction_resistance, const unsigned char *adin, size_t adinlen) { int fork_id; int reseed_required = 0; if (drbg->state != EVP_RAND_STATE_READY) { /* try to recover from previous errors */ rand_drbg_restart(drbg); if (drbg->state == EVP_RAND_STATE_ERROR) { PROVerr(0, PROV_R_IN_ERROR_STATE); return 0; } if (drbg->state == EVP_RAND_STATE_UNINITIALISED) { PROVerr(0, PROV_R_NOT_INSTANTIATED); return 0; } } if (strength > drbg->strength) { PROVerr(0, PROV_R_INSUFFICIENT_DRBG_STRENGTH); return 0; } if (outlen > drbg->max_request) { PROVerr(0, PROV_R_REQUEST_TOO_LARGE_FOR_DRBG); return 0; } if (adinlen > drbg->max_adinlen) { PROVerr(0, PROV_R_ADDITIONAL_INPUT_TOO_LONG); return 0; } fork_id = openssl_get_fork_id(); if (drbg->fork_id != fork_id) { drbg->fork_id = fork_id; reseed_required = 1; } if (drbg->reseed_interval > 0) { if (drbg->reseed_gen_counter >= drbg->reseed_interval) reseed_required = 1; } if (drbg->reseed_time_interval > 0) { time_t now = time(NULL); if (now < drbg->reseed_time || now - drbg->reseed_time >= drbg->reseed_time_interval) reseed_required = 1; } if (drbg->parent != NULL && get_parent_reseed_count(drbg) != drbg->parent_reseed_counter) reseed_required = 1; if (reseed_required || prediction_resistance) { if (!PROV_DRBG_reseed(drbg, prediction_resistance, NULL, 0, adin, adinlen)) { PROVerr(0, PROV_R_RESEED_ERROR); return 0; } adin = NULL; adinlen = 0; } if (!drbg->generate(drbg, out, outlen, adin, adinlen)) { drbg->state = EVP_RAND_STATE_ERROR; PROVerr(0, PROV_R_GENERATE_ERROR); return 0; } drbg->reseed_gen_counter++; return 1; } /* * Restart |drbg|, using the specified entropy or additional input * * Tries its best to get the drbg instantiated by all means, * regardless of its current state. * * Optionally, a |buffer| of |len| random bytes can be passed, * which is assumed to contain at least |entropy| bits of entropy. * * If |entropy| > 0, the buffer content is used as entropy input. * * If |entropy| == 0, the buffer content is used as additional input * * Returns 1 on success, 0 on failure. * * This function is used internally only. */ static int rand_drbg_restart(PROV_DRBG *drbg) { if (drbg->seed_pool != NULL) { drbg->state = EVP_RAND_STATE_ERROR; rand_pool_free(drbg->seed_pool); drbg->seed_pool = NULL; RANDerr(0, ERR_R_INTERNAL_ERROR); return 0; } /* repair error state */ if (drbg->state == EVP_RAND_STATE_ERROR) drbg->uninstantiate(drbg); /* repair uninitialized state */ if (drbg->state == EVP_RAND_STATE_UNINITIALISED) /* reinstantiate drbg */ PROV_DRBG_instantiate(drbg, drbg->strength, 0, NULL, 0); rand_pool_free(drbg->seed_pool); drbg->seed_pool = NULL; return drbg->state == EVP_RAND_STATE_READY; } /* Provider support from here down */ static const OSSL_DISPATCH *find_call(const OSSL_DISPATCH *dispatch, int function) { if (dispatch != NULL) while (dispatch->function_id != 0) { if (dispatch->function_id == function) return dispatch; dispatch++; } return NULL; } int drbg_enable_locking(void *vctx) { PROV_DRBG *drbg = vctx; if (drbg != NULL && drbg->lock == NULL) { if (drbg->parent_enable_locking != NULL) if (!drbg->parent_enable_locking(drbg->parent)) { ERR_raise(ERR_LIB_PROV, PROV_R_PARENT_LOCKING_NOT_ENABLED); return 0; } drbg->lock = CRYPTO_THREAD_lock_new(); if (drbg->lock == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_CREATE_LOCK); return 0; } } return 1; } /* * Allocate memory and initialize a new DRBG. The DRBG is allocated on * the secure heap if |secure| is nonzero and the secure heap is enabled. * The |parent|, if not NULL, will be used as random source for reseeding. * This also requires the parent's provider context and the parent's lock. * * Returns a pointer to the new DRBG instance on success, NULL on failure. */ PROV_DRBG *prov_rand_drbg_new (void *provctx, void *parent, const OSSL_DISPATCH *p_dispatch, int (*dnew)(PROV_DRBG *ctx), int (*instantiate)(PROV_DRBG *drbg, const unsigned char *entropy, size_t entropylen, const unsigned char *nonce, size_t noncelen, const unsigned char *pers, size_t perslen), int (*uninstantiate)(PROV_DRBG *ctx), int (*reseed)(PROV_DRBG *drbg, const unsigned char *ent, size_t ent_len, const unsigned char *adin, size_t adin_len), int (*generate)(PROV_DRBG *, unsigned char *out, size_t outlen, const unsigned char *adin, size_t adin_len)) { PROV_DRBG *drbg = OPENSSL_zalloc(sizeof(*drbg)); unsigned int p_str; const OSSL_DISPATCH *pfunc; if (drbg == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return NULL; } drbg->provctx = provctx; drbg->instantiate = instantiate; drbg->uninstantiate = uninstantiate; drbg->reseed = reseed; drbg->generate = generate; drbg->fork_id = openssl_get_fork_id(); /* Extract parent's functions */ drbg->parent = parent; if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_ENABLE_LOCKING)) != NULL) drbg->parent_enable_locking = OSSL_FUNC_rand_enable_locking(pfunc); if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_LOCK)) != NULL) drbg->parent_lock = OSSL_FUNC_rand_lock(pfunc); if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_UNLOCK)) != NULL) drbg->parent_unlock = OSSL_FUNC_rand_unlock(pfunc); if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_GET_CTX_PARAMS)) != NULL) drbg->parent_get_ctx_params = OSSL_FUNC_rand_get_ctx_params(pfunc); if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_GENERATE)) != NULL) drbg->parent_generate = OSSL_FUNC_rand_generate(pfunc); if ((pfunc = find_call(p_dispatch, OSSL_FUNC_RAND_NONCE)) != NULL) drbg->parent_nonce = OSSL_FUNC_rand_nonce(pfunc); /* Set some default maximums up */ drbg->max_entropylen = DRBG_MAX_LENGTH; drbg->max_noncelen = DRBG_MAX_LENGTH; drbg->max_perslen = DRBG_MAX_LENGTH; drbg->max_adinlen = DRBG_MAX_LENGTH; drbg->reseed_gen_counter = 1; drbg->reseed_counter = 1; drbg->reseed_interval = RESEED_INTERVAL; drbg->reseed_time_interval = TIME_INTERVAL; if (!dnew(drbg)) goto err; if (parent != NULL) { if (!get_parent_strength(drbg, &p_str)) goto err; if (drbg->strength > p_str) { /* * We currently don't support the algorithm from NIST SP 800-90C * 10.1.2 to use a weaker DRBG as source */ ERR_raise(ERR_LIB_PROV, PROV_R_PARENT_STRENGTH_TOO_WEAK); goto err; } } return drbg; err: prov_rand_drbg_free(drbg); return NULL; } void prov_rand_drbg_free(PROV_DRBG *drbg) { if (drbg == NULL) return; rand_pool_free(drbg->adin_pool); CRYPTO_THREAD_lock_free(drbg->lock); OPENSSL_free(drbg); } int drbg_get_ctx_params(PROV_DRBG *drbg, OSSL_PARAM params[]) { OSSL_PARAM *p; p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STATE); if (p != NULL && !OSSL_PARAM_set_int(p, drbg->state)) return 0; p = OSSL_PARAM_locate(params, OSSL_RAND_PARAM_STRENGTH); if (p != NULL && !OSSL_PARAM_set_int(p, drbg->strength)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MAX_REQUEST); if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_request)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MIN_ENTROPYLEN); if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->min_entropylen)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MAX_ENTROPYLEN); if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_entropylen)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MIN_NONCELEN); if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->min_noncelen)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MAX_NONCELEN); if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_noncelen)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MAX_PERSLEN); if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_perslen)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_MAX_ADINLEN); if (p != NULL && !OSSL_PARAM_set_size_t(p, drbg->max_adinlen)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_RESEED_REQUESTS); if (p != NULL && !OSSL_PARAM_set_uint(p, drbg->reseed_interval)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_RESEED_TIME); if (p != NULL && !OSSL_PARAM_set_time_t(p, drbg->reseed_time)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL); if (p != NULL && !OSSL_PARAM_set_time_t(p, drbg->reseed_time_interval)) return 0; p = OSSL_PARAM_locate(params, OSSL_DRBG_PARAM_RESEED_CTR); if (p != NULL && !OSSL_PARAM_set_uint(p, tsan_load(&drbg->reseed_counter))) return 0; return 1; } int drbg_set_ctx_params(PROV_DRBG *drbg, const OSSL_PARAM params[]) { const OSSL_PARAM *p; p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_RESEED_REQUESTS); if (p != NULL && !OSSL_PARAM_get_uint(p, &drbg->reseed_interval)) return 0; p = OSSL_PARAM_locate_const(params, OSSL_DRBG_PARAM_RESEED_TIME_INTERVAL); if (p != NULL && !OSSL_PARAM_get_time_t(p, &drbg->reseed_time_interval)) return 0; return 1; }