/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * DSA low level APIs are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include #include "internal/cryptlib.h" #include #include #include "crypto/asn1.h" #include "crypto/evp.h" #include "crypto/x509.h" #include #include #include #include "internal/provider.h" struct X509_pubkey_st { X509_ALGOR *algor; ASN1_BIT_STRING *public_key; EVP_PKEY *pkey; /* extra data for the callback, used by d2i_PUBKEY_ex */ OSSL_LIB_CTX *libctx; char *propq; }; static int x509_pubkey_decode(EVP_PKEY **pk, const X509_PUBKEY *key); static int x509_pubkey_set0_libctx(X509_PUBKEY *x, OSSL_LIB_CTX *libctx, const char *propq) { if (x != NULL) { x->libctx = libctx; OPENSSL_free(x->propq); x->propq = NULL; if (propq != NULL) { x->propq = OPENSSL_strdup(propq); if (x->propq == NULL) return 0; } } return 1; } /* Minor tweak to operation: free up EVP_PKEY */ static int pubkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, void *exarg) { X509_PUBKEY *pubkey = (X509_PUBKEY *)*pval; if (operation == ASN1_OP_FREE_POST) { OPENSSL_free(pubkey->propq); EVP_PKEY_free(pubkey->pkey); } else if (operation == ASN1_OP_D2I_POST) { /* Attempt to decode public key and cache in pubkey structure. */ EVP_PKEY_free(pubkey->pkey); pubkey->pkey = NULL; /* * Opportunistically decode the key but remove any non fatal errors * from the queue. Subsequent explicit attempts to decode/use the key * will return an appropriate error. */ ERR_set_mark(); if (x509_pubkey_decode(&pubkey->pkey, pubkey) == -1) { ERR_clear_last_mark(); return 0; } ERR_pop_to_mark(); } else if (operation == ASN1_OP_DUP_POST) { X509_PUBKEY *old = exarg; if (!x509_pubkey_set0_libctx(pubkey, old->libctx, old->propq)) return 0; } return 1; } ASN1_SEQUENCE_cb(X509_PUBKEY, pubkey_cb) = { ASN1_SIMPLE(X509_PUBKEY, algor, X509_ALGOR), ASN1_SIMPLE(X509_PUBKEY, public_key, ASN1_BIT_STRING) } ASN1_SEQUENCE_END_cb(X509_PUBKEY, X509_PUBKEY) IMPLEMENT_ASN1_FUNCTIONS(X509_PUBKEY) IMPLEMENT_ASN1_DUP_FUNCTION(X509_PUBKEY) /* TODO should better be called X509_PUBKEY_set1 */ int X509_PUBKEY_set(X509_PUBKEY **x, EVP_PKEY *pkey) { X509_PUBKEY *pk = NULL; if (x == NULL || pkey == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (pkey->ameth != NULL) { if ((pk = X509_PUBKEY_new()) == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); goto error; } if (pkey->ameth->pub_encode != NULL) { if (!pkey->ameth->pub_encode(pk, pkey)) { ERR_raise(ERR_LIB_X509, X509_R_PUBLIC_KEY_ENCODE_ERROR); goto error; } } else { ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); goto error; } } else if (evp_pkey_is_provided(pkey)) { unsigned char *der = NULL; size_t derlen = 0; OSSL_ENCODER_CTX *ectx = OSSL_ENCODER_CTX_new_by_EVP_PKEY(pkey, EVP_PKEY_PUBLIC_KEY, "DER", "SubjectPublicKeyInfo", NULL); if (OSSL_ENCODER_to_data(ectx, &der, &derlen)) { const unsigned char *pder = der; pk = d2i_X509_PUBKEY(NULL, &pder, (long)derlen); } OSSL_ENCODER_CTX_free(ectx); OPENSSL_free(der); } if (pk == NULL) { ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); goto error; } X509_PUBKEY_free(*x); if (!EVP_PKEY_up_ref(pkey)) { ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); goto error; } *x = pk; /* * pk->pkey is NULL when using the legacy routine, but is non-NULL when * going through the encoder, and for all intents and purposes, it's * a perfect copy of |pkey|, just not the same instance. In that case, * we could simply return early, right here. * However, in the interest of being cautious leaning on paranoia, some * application might very well depend on the passed |pkey| being used * and none other, so we spend a few more cycles throwing away the newly * created |pk->pkey| and replace it with |pkey|. * TODO(3.0) Investigate if it's safe to change to simply return here * if |pk->pkey != NULL|. */ if (pk->pkey != NULL) EVP_PKEY_free(pk->pkey); pk->pkey = pkey; return 1; error: X509_PUBKEY_free(pk); return 0; } /* * Attempt to decode a public key. * Returns 1 on success, 0 for a decode failure and -1 for a fatal * error e.g. malloc failure. */ static int x509_pubkey_decode(EVP_PKEY **ppkey, const X509_PUBKEY *key) { EVP_PKEY *pkey = EVP_PKEY_new(); if (pkey == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); return -1; } if (!EVP_PKEY_set_type(pkey, OBJ_obj2nid(key->algor->algorithm))) { ERR_raise(ERR_LIB_X509, X509_R_UNSUPPORTED_ALGORITHM); goto error; } if (pkey->ameth->pub_decode) { /* * Treat any failure of pub_decode as a decode error. In * future we could have different return codes for decode * errors and fatal errors such as malloc failure. */ if (!pkey->ameth->pub_decode(pkey, key)) goto error; } else { ERR_raise(ERR_LIB_X509, X509_R_METHOD_NOT_SUPPORTED); goto error; } *ppkey = pkey; return 1; error: EVP_PKEY_free(pkey); return 0; } EVP_PKEY *X509_PUBKEY_get0(const X509_PUBKEY *key) { EVP_PKEY *ret = NULL; if (key == NULL || key->public_key == NULL) return NULL; if (key->pkey != NULL) return key->pkey; /* * When the key ASN.1 is initially parsed an attempt is made to * decode the public key and cache the EVP_PKEY structure. If this * operation fails the cached value will be NULL. Parsing continues * to allow parsing of unknown key types or unsupported forms. * We repeat the decode operation so the appropriate errors are left * in the queue. */ x509_pubkey_decode(&ret, key); /* If decode doesn't fail something bad happened */ if (ret != NULL) { ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); EVP_PKEY_free(ret); } return NULL; } EVP_PKEY *X509_PUBKEY_get(const X509_PUBKEY *key) { EVP_PKEY *ret = X509_PUBKEY_get0(key); if (ret != NULL && !EVP_PKEY_up_ref(ret)) { ERR_raise(ERR_LIB_X509, ERR_R_INTERNAL_ERROR); ret = NULL; } return ret; } /* * Now three pseudo ASN1 routines that take an EVP_PKEY structure and encode * or decode as X509_PUBKEY */ EVP_PKEY *d2i_PUBKEY_ex(EVP_PKEY **a, const unsigned char **pp, long length, OSSL_LIB_CTX *libctx, const char *propq) { X509_PUBKEY *xpk, *xpk2 = NULL, **pxpk = NULL; EVP_PKEY *pktmp = NULL; const unsigned char *q; q = *pp; /* * If libctx or propq are non-NULL, we take advantage of the reuse * feature. It's not generally recommended, but is safe enough for * newly created structures. */ if (libctx != NULL || propq != NULL) { xpk2 = OPENSSL_zalloc(sizeof(*xpk2)); if (xpk2 == NULL) { ERR_raise(ERR_LIB_X509, ERR_R_MALLOC_FAILURE); return NULL; } if (!x509_pubkey_set0_libctx(xpk2, libctx, propq)) goto end; pxpk = &xpk2; } xpk = d2i_X509_PUBKEY(pxpk, &q, length); if (xpk == NULL) goto end; pktmp = X509_PUBKEY_get(xpk); X509_PUBKEY_free(xpk); xpk2 = NULL; /* We know that xpk == xpk2 */ if (pktmp == NULL) goto end; *pp = q; if (a != NULL) { EVP_PKEY_free(*a); *a = pktmp; } end: X509_PUBKEY_free(xpk2); return pktmp; } EVP_PKEY *d2i_PUBKEY(EVP_PKEY **a, const unsigned char **pp, long length) { return d2i_PUBKEY_ex(a, pp, length, NULL, NULL); } int i2d_PUBKEY(const EVP_PKEY *a, unsigned char **pp) { int ret = -1; if (a == NULL) return 0; if (a->ameth != NULL) { X509_PUBKEY *xpk = NULL; if ((xpk = X509_PUBKEY_new()) == NULL) return -1; /* pub_encode() only encode parameters, not the key itself */ if (a->ameth->pub_encode != NULL && a->ameth->pub_encode(xpk, a)) { xpk->pkey = (EVP_PKEY *)a; ret = i2d_X509_PUBKEY(xpk, pp); xpk->pkey = NULL; } X509_PUBKEY_free(xpk); } else if (a->keymgmt != NULL) { OSSL_ENCODER_CTX *ctx = OSSL_ENCODER_CTX_new_by_EVP_PKEY(a, EVP_PKEY_PUBLIC_KEY, "DER", "SubjectPublicKeyInfo", NULL); BIO *out = BIO_new(BIO_s_mem()); BUF_MEM *buf = NULL; if (OSSL_ENCODER_CTX_get_num_encoders(ctx) != 0 && out != NULL && OSSL_ENCODER_to_bio(ctx, out) && BIO_get_mem_ptr(out, &buf) > 0) { ret = buf->length; if (pp != NULL) { if (*pp == NULL) { *pp = (unsigned char *)buf->data; buf->length = 0; buf->data = NULL; } else { memcpy(*pp, buf->data, ret); *pp += ret; } } } BIO_free(out); OSSL_ENCODER_CTX_free(ctx); } return ret; } /* * The following are equivalents but which return RSA and DSA keys */ RSA *d2i_RSA_PUBKEY(RSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; RSA *key; const unsigned char *q; q = *pp; pkey = d2i_PUBKEY(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_RSA(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { RSA_free(*a); *a = key; } return key; } int i2d_RSA_PUBKEY(const RSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); return -1; } (void)EVP_PKEY_assign_RSA(pktmp, (RSA *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #ifndef OPENSSL_NO_DSA DSA *d2i_DSA_PUBKEY(DSA **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; DSA *key; const unsigned char *q; q = *pp; pkey = d2i_PUBKEY(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_DSA(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { DSA_free(*a); *a = key; } return key; } int i2d_DSA_PUBKEY(const DSA *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (!a) return 0; pktmp = EVP_PKEY_new(); if (pktmp == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); return -1; } (void)EVP_PKEY_assign_DSA(pktmp, (DSA *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif #ifndef OPENSSL_NO_EC EC_KEY *d2i_EC_PUBKEY(EC_KEY **a, const unsigned char **pp, long length) { EVP_PKEY *pkey; EC_KEY *key; const unsigned char *q; q = *pp; pkey = d2i_PUBKEY(NULL, &q, length); if (pkey == NULL) return NULL; key = EVP_PKEY_get1_EC_KEY(pkey); EVP_PKEY_free(pkey); if (key == NULL) return NULL; *pp = q; if (a != NULL) { EC_KEY_free(*a); *a = key; } return key; } int i2d_EC_PUBKEY(const EC_KEY *a, unsigned char **pp) { EVP_PKEY *pktmp; int ret; if (a == NULL) return 0; if ((pktmp = EVP_PKEY_new()) == NULL) { ERR_raise(ERR_LIB_ASN1, ERR_R_MALLOC_FAILURE); return -1; } (void)EVP_PKEY_assign_EC_KEY(pktmp, (EC_KEY *)a); ret = i2d_PUBKEY(pktmp, pp); pktmp->pkey.ptr = NULL; EVP_PKEY_free(pktmp); return ret; } #endif int X509_PUBKEY_set0_param(X509_PUBKEY *pub, ASN1_OBJECT *aobj, int ptype, void *pval, unsigned char *penc, int penclen) { if (!X509_ALGOR_set0(pub->algor, aobj, ptype, pval)) return 0; if (penc) { OPENSSL_free(pub->public_key->data); pub->public_key->data = penc; pub->public_key->length = penclen; /* Set number of unused bits to zero */ pub->public_key->flags &= ~(ASN1_STRING_FLAG_BITS_LEFT | 0x07); pub->public_key->flags |= ASN1_STRING_FLAG_BITS_LEFT; } return 1; } int X509_PUBKEY_get0_param(ASN1_OBJECT **ppkalg, const unsigned char **pk, int *ppklen, X509_ALGOR **pa, const X509_PUBKEY *pub) { if (ppkalg) *ppkalg = pub->algor->algorithm; if (pk) { *pk = pub->public_key->data; *ppklen = pub->public_key->length; } if (pa) *pa = pub->algor; return 1; } ASN1_BIT_STRING *X509_get0_pubkey_bitstr(const X509 *x) { if (x == NULL) return NULL; return x->cert_info.key->public_key; } /* Returns 1 for equal, 0, for non-equal, < 0 on error */ int X509_PUBKEY_eq(const X509_PUBKEY *a, const X509_PUBKEY *b) { X509_ALGOR *algA, *algB; EVP_PKEY *pA, *pB; if (a == b) return 1; if (a == NULL || b == NULL) return 0; if (!X509_PUBKEY_get0_param(NULL, NULL, NULL, &algA, a) || algA == NULL || !X509_PUBKEY_get0_param(NULL, NULL, NULL, &algB, b) || algB == NULL) return -2; if (X509_ALGOR_cmp(algA, algB) != 0) return 0; if ((pA = X509_PUBKEY_get0(a)) == NULL || (pB = X509_PUBKEY_get0(b)) == NULL) return -2; return EVP_PKEY_eq(pA, pB); } int X509_PUBKEY_get0_libctx(OSSL_LIB_CTX **plibctx, const char **ppropq, const X509_PUBKEY *key) { if (plibctx) *plibctx = key->libctx; if (ppropq) *ppropq = key->propq; return 1; }