/* * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * This file uses the low level AES functions (which are deprecated for * non-internal use) in order to implement the EVP AES ciphers. */ #include "internal/deprecated.h" #include #include #include #include #include #include #include #include #include #include "crypto/evp.h" #include "internal/cryptlib.h" #include "crypto/modes.h" #include "crypto/siv.h" #include "crypto/aes_platform.h" #include "evp_local.h" typedef struct { union { OSSL_UNION_ALIGN; AES_KEY ks; } ks; block128_f block; union { cbc128_f cbc; ctr128_f ctr; } stream; } EVP_AES_KEY; typedef struct { union { OSSL_UNION_ALIGN; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ GCM128_CONTEXT gcm; unsigned char *iv; /* Temporary IV store */ int ivlen; /* IV length */ int taglen; int iv_gen; /* It is OK to generate IVs */ int iv_gen_rand; /* No IV was specified, so generate a rand IV */ int tls_aad_len; /* TLS AAD length */ uint64_t tls_enc_records; /* Number of TLS records encrypted */ ctr128_f ctr; } EVP_AES_GCM_CTX; typedef struct { union { OSSL_UNION_ALIGN; AES_KEY ks; } ks1, ks2; /* AES key schedules to use */ XTS128_CONTEXT xts; void (*stream) (const unsigned char *in, unsigned char *out, size_t length, const AES_KEY *key1, const AES_KEY *key2, const unsigned char iv[16]); } EVP_AES_XTS_CTX; #ifdef FIPS_MODULE static const int allow_insecure_decrypt = 0; #else static const int allow_insecure_decrypt = 1; #endif typedef struct { union { OSSL_UNION_ALIGN; AES_KEY ks; } ks; /* AES key schedule to use */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ int tag_set; /* Set if tag is valid */ int len_set; /* Set if message length set */ int L, M; /* L and M parameters from RFC3610 */ int tls_aad_len; /* TLS AAD length */ CCM128_CONTEXT ccm; ccm128_f str; } EVP_AES_CCM_CTX; #ifndef OPENSSL_NO_OCB typedef struct { union { OSSL_UNION_ALIGN; AES_KEY ks; } ksenc; /* AES key schedule to use for encryption */ union { OSSL_UNION_ALIGN; AES_KEY ks; } ksdec; /* AES key schedule to use for decryption */ int key_set; /* Set if key initialised */ int iv_set; /* Set if an iv is set */ OCB128_CONTEXT ocb; unsigned char *iv; /* Temporary IV store */ unsigned char tag[16]; unsigned char data_buf[16]; /* Store partial data blocks */ unsigned char aad_buf[16]; /* Store partial AAD blocks */ int data_buf_len; int aad_buf_len; int ivlen; /* IV length */ int taglen; } EVP_AES_OCB_CTX; #endif #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4)) /* increment counter (64-bit int) by 1 */ static void ctr64_inc(unsigned char *counter) { int n = 8; unsigned char c; do { --n; c = counter[n]; ++c; counter[n] = c; if (c) return; } while (n); } #if defined(AESNI_CAPABLE) # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64) # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \ gctx->gcm.ghash==gcm_ghash_avx) # undef AES_GCM_ASM2 /* minor size optimization */ # endif static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); mode = EVP_CIPHER_CTX_mode(ctx); if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) aesni_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aesni_cbc_encrypt : NULL; } else { ret = aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) aesni_encrypt; if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; else dat->stream.cbc = NULL; } if (ret < 0) { EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, ctx->iv, EVP_CIPHER_CTX_encrypting(ctx)); return 1; } static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = EVP_CIPHER_CTX_block_size(ctx); if (len < bl) return 1; aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks, EVP_CIPHER_CTX_encrypting(ctx)); return 1; } # define aesni_ofb_cipher aes_ofb_cipher static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_cfb_cipher aes_cfb_cipher static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_cfb8_cipher aes_cfb8_cipher static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_cfb1_cipher aes_cfb1_cipher static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aesni_ctr_cipher aes_ctr_cipher static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt); gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks; /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } # define aesni_gcm_cipher aes_gcm_cipher static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); if (!iv && !key) return 1; if (key) { /* The key is two half length keys in reality */ const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; const int bits = bytes * 8; /* * Verify that the two keys are different. * * This addresses Rogaway's vulnerability. * See comment in aes_xts_init_key() below. */ if ((!allow_insecure_decrypt || enc) && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { EVPerr(EVP_F_AESNI_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); return 0; } /* key_len is two AES keys */ if (enc) { aesni_set_encrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aesni_encrypt; xctx->stream = aesni_xts_encrypt; } else { aesni_set_decrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aesni_decrypt; xctx->stream = aesni_xts_decrypt; } aesni_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) aesni_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } # define aesni_xts_cipher aes_xts_cipher static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); if (!iv && !key) return 1; if (key) { aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) aesni_encrypt); cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks : (ccm128_f) aesni_ccm64_decrypt_blocks; cctx->key_set = 1; } if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } # define aesni_ccm_cipher aes_ccm_cipher static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # ifndef OPENSSL_NO_OCB static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); if (!iv && !key) return 1; if (key) { do { /* * We set both the encrypt and decrypt key here because decrypt * needs both. We could possibly optimise to remove setting the * decrypt for an encryption operation. */ aesni_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); aesni_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) aesni_encrypt, (block128_f) aesni_decrypt, enc ? aesni_ocb_encrypt : aesni_ocb_decrypt)) return 0; } while (0); /* * If we have an iv we can set it directly, otherwise use saved IV. */ if (iv == NULL && octx->iv_set) iv = octx->iv; if (iv) { if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) != 1) return 0; octx->iv_set = 1; } octx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (octx->key_set) CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); else memcpy(octx->iv, iv, octx->ivlen); octx->iv_set = 1; } return 1; } # define aesni_ocb_cipher aes_ocb_cipher static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # endif /* OPENSSL_NO_OCB */ # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_init_key, \ aesni_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aesni_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aesni_##mode##_init_key, \ aesni_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; } #elif defined(SPARC_AES_CAPABLE) static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode, bits; EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); mode = EVP_CIPHER_CTX_mode(ctx); bits = EVP_CIPHER_CTX_key_length(ctx) * 8; if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { ret = 0; aes_t4_set_decrypt_key(key, bits, &dat->ks.ks); dat->block = (block128_f) aes_t4_decrypt; switch (bits) { case 128: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aes128_t4_cbc_decrypt : NULL; break; case 192: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aes192_t4_cbc_decrypt : NULL; break; case 256: dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) aes256_t4_cbc_decrypt : NULL; break; default: ret = -1; } } else { ret = 0; aes_t4_set_encrypt_key(key, bits, &dat->ks.ks); dat->block = (block128_f) aes_t4_encrypt; switch (bits) { case 128: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; case 192: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; case 256: if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt; else if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt; else dat->stream.cbc = NULL; break; default: ret = -1; } } if (ret < 0) { EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } # define aes_t4_cbc_cipher aes_cbc_cipher static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_ecb_cipher aes_ecb_cipher static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_ofb_cipher aes_ofb_cipher static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_cfb_cipher aes_cfb_cipher static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_cfb8_cipher aes_cfb8_cipher static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_cfb1_cipher aes_cfb1_cipher static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define aes_t4_ctr_cipher aes_ctr_cipher static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); if (!iv && !key) return 1; if (key) { int bits = EVP_CIPHER_CTX_key_length(ctx) * 8; aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aes_t4_encrypt); switch (bits) { case 128: gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt; break; case 192: gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt; break; case 256: gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt; break; default: return 0; } /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } # define aes_t4_gcm_cipher aes_gcm_cipher static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); if (!iv && !key) return 1; if (key) { /* The key is two half length keys in reality */ const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; const int bits = bytes * 8; /* * Verify that the two keys are different. * * This addresses Rogaway's vulnerability. * See comment in aes_xts_init_key() below. */ if ((!allow_insecure_decrypt || enc) && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { EVPerr(EVP_F_AES_T4_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); return 0; } xctx->stream = NULL; /* key_len is two AES keys */ if (enc) { aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aes_t4_encrypt; switch (bits) { case 128: xctx->stream = aes128_t4_xts_encrypt; break; case 256: xctx->stream = aes256_t4_xts_encrypt; break; default: return 0; } } else { aes_t4_set_decrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) aes_t4_decrypt; switch (bits) { case 128: xctx->stream = aes128_t4_xts_decrypt; break; case 256: xctx->stream = aes256_t4_xts_decrypt; break; default: return 0; } } aes_t4_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) aes_t4_encrypt; xctx->xts.key1 = &xctx->ks1; } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } # define aes_t4_xts_cipher aes_xts_cipher static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); if (!iv && !key) return 1; if (key) { int bits = EVP_CIPHER_CTX_key_length(ctx) * 8; aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) aes_t4_encrypt); cctx->str = NULL; cctx->key_set = 1; } if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } # define aes_t4_ccm_cipher aes_ccm_cipher static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # ifndef OPENSSL_NO_OCB static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); if (!iv && !key) return 1; if (key) { do { /* * We set both the encrypt and decrypt key here because decrypt * needs both. We could possibly optimise to remove setting the * decrypt for an encryption operation. */ aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) aes_t4_encrypt, (block128_f) aes_t4_decrypt, NULL)) return 0; } while (0); /* * If we have an iv we can set it directly, otherwise use saved IV. */ if (iv == NULL && octx->iv_set) iv = octx->iv; if (iv) { if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) != 1) return 0; octx->iv_set = 1; } octx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (octx->key_set) CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); else memcpy(octx->iv, iv, octx->ivlen); octx->iv_set = 1; } return 1; } # define aes_t4_ocb_cipher aes_ocb_cipher static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # endif /* OPENSSL_NO_OCB */ # ifndef OPENSSL_NO_SIV # define aes_t4_siv_init_key aes_siv_init_key # define aes_t4_siv_cipher aes_siv_cipher # endif /* OPENSSL_NO_SIV */ # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_t4_init_key, \ aes_t4_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aes_t4_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_t4_##mode##_init_key, \ aes_t4_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; } #elif defined(S390X_aes_128_CAPABLE) /* IBM S390X support */ typedef struct { union { OSSL_UNION_ALIGN; /*- * KM-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-06) */ struct { unsigned char k[32]; } param; /* KM-AES parameter block - end */ } km; unsigned int fc; } S390X_AES_ECB_CTX; typedef struct { union { OSSL_UNION_ALIGN; /*- * KMO-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-08) */ struct { unsigned char cv[16]; unsigned char k[32]; } param; /* KMO-AES parameter block - end */ } kmo; unsigned int fc; int res; } S390X_AES_OFB_CTX; typedef struct { union { OSSL_UNION_ALIGN; /*- * KMF-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-08) */ struct { unsigned char cv[16]; unsigned char k[32]; } param; /* KMF-AES parameter block - end */ } kmf; unsigned int fc; int res; } S390X_AES_CFB_CTX; typedef struct { union { OSSL_UNION_ALIGN; /*- * KMA-GCM-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-11) */ struct { unsigned char reserved[12]; union { unsigned int w; unsigned char b[4]; } cv; union { unsigned long long g[2]; unsigned char b[16]; } t; unsigned char h[16]; unsigned long long taadl; unsigned long long tpcl; union { unsigned long long g[2]; unsigned int w[4]; } j0; unsigned char k[32]; } param; /* KMA-GCM-AES parameter block - end */ } kma; unsigned int fc; int key_set; unsigned char *iv; int ivlen; int iv_set; int iv_gen; int taglen; unsigned char ares[16]; unsigned char mres[16]; unsigned char kres[16]; int areslen; int mreslen; int kreslen; int tls_aad_len; uint64_t tls_enc_records; /* Number of TLS records encrypted */ } S390X_AES_GCM_CTX; typedef struct { union { OSSL_UNION_ALIGN; /*- * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's * rounds field is used to store the function code and that the key * schedule is not stored (if aes hardware support is detected). */ struct { unsigned char pad[16]; AES_KEY k; } key; struct { /*- * KMAC-AES parameter block - begin * (see z/Architecture Principles of Operation >= SA22-7832-08) */ struct { union { unsigned long long g[2]; unsigned char b[16]; } icv; unsigned char k[32]; } kmac_param; /* KMAC-AES parameter block - end */ union { unsigned long long g[2]; unsigned char b[16]; } nonce; union { unsigned long long g[2]; unsigned char b[16]; } buf; unsigned long long blocks; int l; int m; int tls_aad_len; int iv_set; int tag_set; int len_set; int key_set; unsigned char pad[140]; unsigned int fc; } ccm; } aes; } S390X_AES_CCM_CTX; # define s390x_aes_init_key aes_init_key static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); # define S390X_AES_CBC_CTX EVP_AES_KEY # define s390x_aes_cbc_init_key aes_init_key # define s390x_aes_cbc_cipher aes_cbc_cipher static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); const int keylen = EVP_CIPHER_CTX_key_length(ctx); cctx->fc = S390X_AES_FC(keylen); if (!enc) cctx->fc |= S390X_DECRYPT; memcpy(cctx->km.param.k, key, keylen); return 1; } static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx); s390x_km(in, len, out, cctx->fc, &cctx->km.param); return 1; } static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *ivec, int enc) { S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); const unsigned char *iv = ctx->oiv; const int keylen = EVP_CIPHER_CTX_key_length(ctx); const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); memcpy(cctx->kmo.param.cv, iv, ivlen); memcpy(cctx->kmo.param.k, key, keylen); cctx->fc = S390X_AES_FC(keylen); cctx->res = 0; return 1; } static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx); int n = cctx->res; int rem; while (n && len) { *out = *in ^ cctx->kmo.param.cv[n]; n = (n + 1) & 0xf; --len; ++in; ++out; } rem = len & 0xf; len &= ~(size_t)0xf; if (len) { s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param); out += len; in += len; } if (rem) { s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc, cctx->kmo.param.k); while (rem--) { out[n] = in[n] ^ cctx->kmo.param.cv[n]; ++n; } } cctx->res = n; return 1; } static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *ivec, int enc) { S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); const unsigned char *iv = ctx->oiv; const int keylen = EVP_CIPHER_CTX_key_length(ctx); const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); cctx->fc = S390X_AES_FC(keylen); cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */ if (!enc) cctx->fc |= S390X_DECRYPT; cctx->res = 0; memcpy(cctx->kmf.param.cv, iv, ivlen); memcpy(cctx->kmf.param.k, key, keylen); return 1; } static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); const int keylen = EVP_CIPHER_CTX_key_length(ctx); const int enc = EVP_CIPHER_CTX_encrypting(ctx); int n = cctx->res; int rem; unsigned char tmp; while (n && len) { tmp = *in; *out = cctx->kmf.param.cv[n] ^ tmp; cctx->kmf.param.cv[n] = enc ? *out : tmp; n = (n + 1) & 0xf; --len; ++in; ++out; } rem = len & 0xf; len &= ~(size_t)0xf; if (len) { s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); out += len; in += len; } if (rem) { s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv, S390X_AES_FC(keylen), cctx->kmf.param.k); while (rem--) { tmp = in[n]; out[n] = cctx->kmf.param.cv[n] ^ tmp; cctx->kmf.param.cv[n] = enc ? out[n] : tmp; ++n; } } cctx->res = n; return 1; } static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *ivec, int enc) { S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); const unsigned char *iv = ctx->oiv; const int keylen = EVP_CIPHER_CTX_key_length(ctx); const int ivlen = EVP_CIPHER_CTX_iv_length(ctx); cctx->fc = S390X_AES_FC(keylen); cctx->fc |= 1 << 24; /* 1 byte cipher feedback */ if (!enc) cctx->fc |= S390X_DECRYPT; memcpy(cctx->kmf.param.cv, iv, ivlen); memcpy(cctx->kmf.param.k, key, keylen); return 1; } static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx); s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param); return 1; } # define s390x_aes_cfb1_init_key aes_init_key # define s390x_aes_cfb1_cipher aes_cfb1_cipher static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define S390X_AES_CTR_CTX EVP_AES_KEY # define s390x_aes_ctr_init_key aes_init_key # define s390x_aes_ctr_cipher aes_ctr_cipher static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); /* iv + padding length for iv lengths != 12 */ # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16) /*- * Process additional authenticated data. Returns 0 on success. Code is * big-endian. */ static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad, size_t len) { unsigned long long alen; int n, rem; if (ctx->kma.param.tpcl) return -2; alen = ctx->kma.param.taadl + len; if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len)) return -1; ctx->kma.param.taadl = alen; n = ctx->areslen; if (n) { while (n && len) { ctx->ares[n] = *aad; n = (n + 1) & 0xf; ++aad; --len; } /* ctx->ares contains a complete block if offset has wrapped around */ if (!n) { s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param); ctx->fc |= S390X_KMA_HS; } ctx->areslen = n; } rem = len & 0xf; len &= ~(size_t)0xf; if (len) { s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param); aad += len; ctx->fc |= S390X_KMA_HS; } if (rem) { ctx->areslen = rem; do { --rem; ctx->ares[rem] = aad[rem]; } while (rem); } return 0; } /*- * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for * success. Code is big-endian. */ static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in, unsigned char *out, size_t len) { const unsigned char *inptr; unsigned long long mlen; union { unsigned int w[4]; unsigned char b[16]; } buf; size_t inlen; int n, rem, i; mlen = ctx->kma.param.tpcl + len; if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len)) return -1; ctx->kma.param.tpcl = mlen; n = ctx->mreslen; if (n) { inptr = in; inlen = len; while (n && inlen) { ctx->mres[n] = *inptr; n = (n + 1) & 0xf; ++inptr; --inlen; } /* ctx->mres contains a complete block if offset has wrapped around */ if (!n) { s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b, ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); ctx->fc |= S390X_KMA_HS; ctx->areslen = 0; /* previous call already encrypted/decrypted its remainder, * see comment below */ n = ctx->mreslen; while (n) { *out = buf.b[n]; n = (n + 1) & 0xf; ++out; ++in; --len; } ctx->mreslen = 0; } } rem = len & 0xf; len &= ~(size_t)0xf; if (len) { s390x_kma(ctx->ares, ctx->areslen, in, len, out, ctx->fc | S390X_KMA_LAAD, &ctx->kma.param); in += len; out += len; ctx->fc |= S390X_KMA_HS; ctx->areslen = 0; } /*- * If there is a remainder, it has to be saved such that it can be * processed by kma later. However, we also have to do the for-now * unauthenticated encryption/decryption part here and now... */ if (rem) { if (!ctx->mreslen) { buf.w[0] = ctx->kma.param.j0.w[0]; buf.w[1] = ctx->kma.param.j0.w[1]; buf.w[2] = ctx->kma.param.j0.w[2]; buf.w[3] = ctx->kma.param.cv.w + 1; s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k); } n = ctx->mreslen; for (i = 0; i < rem; i++) { ctx->mres[n + i] = in[i]; out[i] = in[i] ^ ctx->kres[n + i]; } ctx->mreslen += rem; } return 0; } /*- * Initialize context structure. Code is big-endian. */ static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx, const unsigned char *iv) { ctx->kma.param.t.g[0] = 0; ctx->kma.param.t.g[1] = 0; ctx->kma.param.tpcl = 0; ctx->kma.param.taadl = 0; ctx->mreslen = 0; ctx->areslen = 0; ctx->kreslen = 0; if (ctx->ivlen == 12) { memcpy(&ctx->kma.param.j0, iv, ctx->ivlen); ctx->kma.param.j0.w[3] = 1; ctx->kma.param.cv.w = 1; } else { /* ctx->iv has the right size and is already padded. */ memcpy(ctx->iv, iv, ctx->ivlen); s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL, ctx->fc, &ctx->kma.param); ctx->fc |= S390X_KMA_HS; ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0]; ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1]; ctx->kma.param.cv.w = ctx->kma.param.j0.w[3]; ctx->kma.param.t.g[0] = 0; ctx->kma.param.t.g[1] = 0; } } /*- * Performs various operations on the context structure depending on control * type. Returns 1 for success, 0 for failure and -1 for unknown control type. * Code is big-endian. */ static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); S390X_AES_GCM_CTX *gctx_out; EVP_CIPHER_CTX *out; unsigned char *buf; int ivlen, enc, len; switch (type) { case EVP_CTRL_INIT: ivlen = EVP_CIPHER_iv_length(c->cipher); gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = ivlen; gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; gctx->tls_aad_len = -1; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = gctx->ivlen; return 1; case EVP_CTRL_AEAD_SET_IVLEN: if (arg <= 0) return 0; if (arg != 12) { len = S390X_gcm_ivpadlen(arg); /* Allocate memory for iv if needed. */ if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) { if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); if ((gctx->iv = OPENSSL_malloc(len)) == NULL) { EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } } /* Add padding. */ memset(gctx->iv + arg, 0, len - arg - 8); *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3; } gctx->ivlen = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: buf = EVP_CIPHER_CTX_buf_noconst(c); enc = EVP_CIPHER_CTX_encrypting(c); if (arg <= 0 || arg > 16 || enc) return 0; memcpy(buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: enc = EVP_CIPHER_CTX_encrypting(c); if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0) return 0; memcpy(ptr, gctx->kma.param.t.b, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole iv */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* * Fixed field must be at least 4 bytes and invocation field at least * 8. */ if ((arg < 4) || (gctx->ivlen - arg) < 8) return 0; if (arg) memcpy(gctx->iv, ptr, arg); enc = EVP_CIPHER_CTX_encrypting(c); if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) return 0; gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) return 0; s390x_aes_gcm_setiv(gctx, gctx->iv); if (arg <= 0 || arg > gctx->ivlen) arg = gctx->ivlen; memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* * Invocation field will be at least 8 bytes in size and so no need * to check wrap around or increment more than last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: enc = EVP_CIPHER_CTX_encrypting(c); if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc) return 0; memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); s390x_aes_gcm_setiv(gctx, gctx->iv); gctx->iv_set = 1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the aad for later use. */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; buf = EVP_CIPHER_CTX_buf_noconst(c); memcpy(buf, ptr, arg); gctx->tls_aad_len = arg; gctx->tls_enc_records = 0; len = buf[arg - 2] << 8 | buf[arg - 1]; /* Correct length for explicit iv. */ if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) return 0; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too. */ enc = EVP_CIPHER_CTX_encrypting(c); if (!enc) { if (len < EVP_GCM_TLS_TAG_LEN) return 0; len -= EVP_GCM_TLS_TAG_LEN; } buf[arg - 2] = len >> 8; buf[arg - 1] = len & 0xff; /* Extra padding: tag appended to record. */ return EVP_GCM_TLS_TAG_LEN; case EVP_CTRL_COPY: out = ptr; gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out); if (gctx->iv == c->iv) { gctx_out->iv = out->iv; } else { len = S390X_gcm_ivpadlen(gctx->ivlen); if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) { EVPerr(EVP_F_S390X_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } memcpy(gctx_out->iv, gctx->iv, len); } return 1; default: return -1; } } /*- * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned. */ static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); int keylen; if (iv == NULL && key == NULL) return 1; if (key != NULL) { keylen = EVP_CIPHER_CTX_key_length(ctx); memcpy(&gctx->kma.param.k, key, keylen); gctx->fc = S390X_AES_FC(keylen); if (!enc) gctx->fc |= S390X_DECRYPT; if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv != NULL) { s390x_aes_gcm_setiv(gctx, iv); gctx->iv_set = 1; } gctx->key_set = 1; } else { if (gctx->key_set) s390x_aes_gcm_setiv(gctx, iv); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } /*- * En/de-crypt and authenticate TLS packet. Returns the number of bytes written * if successful. Otherwise -1 is returned. Code is big-endian. */ static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); const int enc = EVP_CIPHER_CTX_encrypting(ctx); int rv = -1; if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) return -1; /* * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness * Requirements from SP 800-38D". The requirements is for one party to the * communication to fail after 2^64 - 1 keys. We do this on the encrypting * side only. */ if (ctx->encrypt && ++gctx->tls_enc_records == 0) { EVPerr(EVP_F_S390X_AES_GCM_TLS_CIPHER, EVP_R_TOO_MANY_RECORDS); goto err; } if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) goto err; in += EVP_GCM_TLS_EXPLICIT_IV_LEN; out += EVP_GCM_TLS_EXPLICIT_IV_LEN; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; gctx->kma.param.taadl = gctx->tls_aad_len << 3; gctx->kma.param.tpcl = len << 3; s390x_kma(buf, gctx->tls_aad_len, in, len, out, gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); if (enc) { memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN); rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; } else { if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len, EVP_GCM_TLS_TAG_LEN)) { OPENSSL_cleanse(out, len); goto err; } rv = len; } err: gctx->iv_set = 0; gctx->tls_aad_len = -1; return rv; } /*- * Called from EVP layer to initialize context, process additional * authenticated data, en/de-crypt plain/cipher-text and authenticate * ciphertext or process a TLS packet, depending on context. Returns bytes * written on success. Otherwise -1 is returned. Code is big-endian. */ static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx); unsigned char *buf, tmp[16]; int enc; if (!gctx->key_set) return -1; if (gctx->tls_aad_len >= 0) return s390x_aes_gcm_tls_cipher(ctx, out, in, len); if (!gctx->iv_set) return -1; if (in != NULL) { if (out == NULL) { if (s390x_aes_gcm_aad(gctx, in, len)) return -1; } else { if (s390x_aes_gcm(gctx, in, out, len)) return -1; } return len; } else { gctx->kma.param.taadl <<= 3; gctx->kma.param.tpcl <<= 3; s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp, gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param); /* recall that we already did en-/decrypt gctx->mres * and returned it to caller... */ OPENSSL_cleanse(tmp, gctx->mreslen); gctx->iv_set = 0; enc = EVP_CIPHER_CTX_encrypting(ctx); if (enc) { gctx->taglen = 16; } else { if (gctx->taglen < 0) return -1; buf = EVP_CIPHER_CTX_buf_noconst(ctx); if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen)) return -1; } return 0; } } static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c) { S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c); if (gctx == NULL) return 0; if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); OPENSSL_cleanse(gctx, sizeof(*gctx)); return 1; } # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX # define s390x_aes_xts_init_key aes_xts_init_key static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); # define s390x_aes_xts_cipher aes_xts_cipher static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define s390x_aes_xts_ctrl aes_xts_ctrl static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); # define s390x_aes_xts_cleanup aes_xts_cleanup /*- * Set nonce and length fields. Code is big-endian. */ static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx, const unsigned char *nonce, size_t mlen) { ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG; ctx->aes.ccm.nonce.g[1] = mlen; memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l); } /*- * Process additional authenticated data. Code is big-endian. */ static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad, size_t alen) { unsigned char *ptr; int i, rem; if (!alen) return; ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG; /* Suppress 'type-punned pointer dereference' warning. */ ptr = ctx->aes.ccm.buf.b; if (alen < ((1 << 16) - (1 << 8))) { *(uint16_t *)ptr = alen; i = 2; } else if (sizeof(alen) == 8 && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) { *(uint16_t *)ptr = 0xffff; *(uint64_t *)(ptr + 2) = alen; i = 10; } else { *(uint16_t *)ptr = 0xfffe; *(uint32_t *)(ptr + 2) = alen; i = 6; } while (i < 16 && alen) { ctx->aes.ccm.buf.b[i] = *aad; ++aad; --alen; ++i; } while (i < 16) { ctx->aes.ccm.buf.b[i] = 0; ++i; } ctx->aes.ccm.kmac_param.icv.g[0] = 0; ctx->aes.ccm.kmac_param.icv.g[1] = 0; s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); ctx->aes.ccm.blocks += 2; rem = alen & 0xf; alen &= ~(size_t)0xf; if (alen) { s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); ctx->aes.ccm.blocks += alen >> 4; aad += alen; } if (rem) { for (i = 0; i < rem; i++) ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i]; s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); ctx->aes.ccm.blocks++; } } /*- * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for * success. */ static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in, unsigned char *out, size_t len, int enc) { size_t n, rem; unsigned int i, l, num; unsigned char flags; flags = ctx->aes.ccm.nonce.b[0]; if (!(flags & S390X_CCM_AAD_FLAG)) { s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); ctx->aes.ccm.blocks++; } l = flags & 0x7; ctx->aes.ccm.nonce.b[0] = l; /*- * Reconstruct length from encoded length field * and initialize it with counter value. */ n = 0; for (i = 15 - l; i < 15; i++) { n |= ctx->aes.ccm.nonce.b[i]; ctx->aes.ccm.nonce.b[i] = 0; n <<= 8; } n |= ctx->aes.ccm.nonce.b[15]; ctx->aes.ccm.nonce.b[15] = 1; if (n != len) return -1; /* length mismatch */ if (enc) { /* Two operations per block plus one for tag encryption */ ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1; if (ctx->aes.ccm.blocks > (1ULL << 61)) return -2; /* too much data */ } num = 0; rem = len & 0xf; len &= ~(size_t)0xf; if (enc) { /* mac-then-encrypt */ if (len) s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); if (rem) { for (i = 0; i < rem; i++) ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i]; s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); } CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, &num, (ctr128_f)AES_ctr32_encrypt); } else { /* decrypt-then-mac */ CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k, ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b, &num, (ctr128_f)AES_ctr32_encrypt); if (len) s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param); if (rem) { for (i = 0; i < rem; i++) ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i]; s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16, ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); } } /* encrypt tag */ for (i = 15 - l; i < 16; i++) ctx->aes.ccm.nonce.b[i] = 0; s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k); ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0]; ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1]; ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */ return 0; } /*- * En/de-crypt and authenticate TLS packet. Returns the number of bytes written * if successful. Otherwise -1 is returned. */ static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); unsigned char *ivec = ctx->iv; unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx); const int enc = EVP_CIPHER_CTX_encrypting(ctx); if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m)) return -1; if (enc) { /* Set explicit iv (sequence number). */ memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN); } len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; /*- * Get explicit iv (sequence number). We already have fixed iv * (server/client_write_iv) here. */ memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); s390x_aes_ccm_setiv(cctx, ivec, len); /* Process aad (sequence number|type|version|length) */ s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len); in += EVP_CCM_TLS_EXPLICIT_IV_LEN; out += EVP_CCM_TLS_EXPLICIT_IV_LEN; if (enc) { if (s390x_aes_ccm(cctx, in, out, len, enc)) return -1; memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m; } else { if (!s390x_aes_ccm(cctx, in, out, len, enc)) { if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len, cctx->aes.ccm.m)) return len; } OPENSSL_cleanse(out, len); return -1; } } /*- * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is * returned. */ static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); int keylen; if (iv == NULL && key == NULL) return 1; if (key != NULL) { keylen = EVP_CIPHER_CTX_key_length(ctx); cctx->aes.ccm.fc = S390X_AES_FC(keylen); memcpy(cctx->aes.ccm.kmac_param.k, key, keylen); /* Store encoded m and l. */ cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7) | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3; memset(cctx->aes.ccm.nonce.b + 1, 0, sizeof(cctx->aes.ccm.nonce.b)); cctx->aes.ccm.blocks = 0; cctx->aes.ccm.key_set = 1; } if (iv != NULL) { memcpy(ctx->iv, iv, 15 - cctx->aes.ccm.l); cctx->aes.ccm.iv_set = 1; } return 1; } /*- * Called from EVP layer to initialize context, process additional * authenticated data, en/de-crypt plain/cipher-text and authenticate * plaintext or process a TLS packet, depending on context. Returns bytes * written on success. Otherwise -1 is returned. */ static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx); const int enc = EVP_CIPHER_CTX_encrypting(ctx); int rv; unsigned char *buf; if (!cctx->aes.ccm.key_set) return -1; if (cctx->aes.ccm.tls_aad_len >= 0) return s390x_aes_ccm_tls_cipher(ctx, out, in, len); /*- * Final(): Does not return any data. Recall that ccm is mac-then-encrypt * so integrity must be checked already at Update() i.e., before * potentially corrupted data is output. */ if (in == NULL && out != NULL) return 0; if (!cctx->aes.ccm.iv_set) return -1; if (out == NULL) { /* Update(): Pass message length. */ if (in == NULL) { s390x_aes_ccm_setiv(cctx, ctx->iv, len); cctx->aes.ccm.len_set = 1; return len; } /* Update(): Process aad. */ if (!cctx->aes.ccm.len_set && len) return -1; s390x_aes_ccm_aad(cctx, in, len); return len; } /* The tag must be set before actually decrypting data */ if (!enc && !cctx->aes.ccm.tag_set) return -1; /* Update(): Process message. */ if (!cctx->aes.ccm.len_set) { /*- * In case message length was not previously set explicitly via * Update(), set it now. */ s390x_aes_ccm_setiv(cctx, ctx->iv, len); cctx->aes.ccm.len_set = 1; } if (enc) { if (s390x_aes_ccm(cctx, in, out, len, enc)) return -1; cctx->aes.ccm.tag_set = 1; return len; } else { rv = -1; if (!s390x_aes_ccm(cctx, in, out, len, enc)) { buf = EVP_CIPHER_CTX_buf_noconst(ctx); if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf, cctx->aes.ccm.m)) rv = len; } if (rv == -1) OPENSSL_cleanse(out, len); cctx->aes.ccm.iv_set = 0; cctx->aes.ccm.tag_set = 0; cctx->aes.ccm.len_set = 0; return rv; } } /*- * Performs various operations on the context structure depending on control * type. Returns 1 for success, 0 for failure and -1 for unknown control type. * Code is big-endian. */ static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c); unsigned char *buf; int enc, len; switch (type) { case EVP_CTRL_INIT: cctx->aes.ccm.key_set = 0; cctx->aes.ccm.iv_set = 0; cctx->aes.ccm.l = 8; cctx->aes.ccm.m = 12; cctx->aes.ccm.tag_set = 0; cctx->aes.ccm.len_set = 0; cctx->aes.ccm.tls_aad_len = -1; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = 15 - cctx->aes.ccm.l; return 1; case EVP_CTRL_AEAD_TLS1_AAD: if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; /* Save the aad for later use. */ buf = EVP_CIPHER_CTX_buf_noconst(c); memcpy(buf, ptr, arg); cctx->aes.ccm.tls_aad_len = arg; len = buf[arg - 2] << 8 | buf[arg - 1]; if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) return 0; /* Correct length for explicit iv. */ len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; enc = EVP_CIPHER_CTX_encrypting(c); if (!enc) { if (len < cctx->aes.ccm.m) return 0; /* Correct length for tag. */ len -= cctx->aes.ccm.m; } buf[arg - 2] = len >> 8; buf[arg - 1] = len & 0xff; /* Extra padding: tag appended to record. */ return cctx->aes.ccm.m; case EVP_CTRL_CCM_SET_IV_FIXED: if (arg != EVP_CCM_TLS_FIXED_IV_LEN) return 0; /* Copy to first part of the iv. */ memcpy(c->iv, ptr, arg); return 1; case EVP_CTRL_AEAD_SET_IVLEN: arg = 15 - arg; /* fall-through */ case EVP_CTRL_CCM_SET_L: if (arg < 2 || arg > 8) return 0; cctx->aes.ccm.l = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if ((arg & 1) || arg < 4 || arg > 16) return 0; enc = EVP_CIPHER_CTX_encrypting(c); if (enc && ptr) return 0; if (ptr) { cctx->aes.ccm.tag_set = 1; buf = EVP_CIPHER_CTX_buf_noconst(c); memcpy(buf, ptr, arg); } cctx->aes.ccm.m = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: enc = EVP_CIPHER_CTX_encrypting(c); if (!enc || !cctx->aes.ccm.tag_set) return 0; if(arg < cctx->aes.ccm.m) return 0; memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m); cctx->aes.ccm.tag_set = 0; cctx->aes.ccm.iv_set = 0; cctx->aes.ccm.len_set = 0; return 1; case EVP_CTRL_COPY: return 1; default: return -1; } } # define s390x_aes_ccm_cleanup aes_ccm_cleanup # ifndef OPENSSL_NO_OCB # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX # define s390x_aes_ocb_init_key aes_ocb_init_key static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc); # define s390x_aes_ocb_cipher aes_ocb_cipher static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len); # define s390x_aes_ocb_cleanup aes_ocb_cleanup static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *); # define s390x_aes_ocb_ctrl aes_ocb_ctrl static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr); # endif # ifndef OPENSSL_NO_SIV # define S390X_AES_SIV_CTX EVP_AES_SIV_CTX # define s390x_aes_siv_init_key aes_siv_init_key # define s390x_aes_siv_cipher aes_siv_cipher # define s390x_aes_siv_cleanup aes_siv_cleanup # define s390x_aes_siv_ctrl aes_siv_ctrl # endif # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \ MODE,flags) \ static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize, \ keylen / 8, \ ivlen, \ flags | EVP_CIPH_##MODE##_MODE, \ s390x_aes_##mode##_init_key, \ s390x_aes_##mode##_cipher, \ NULL, \ sizeof(S390X_AES_##MODE##_CTX), \ NULL, \ NULL, \ NULL, \ NULL \ }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode, \ blocksize, \ keylen / 8, \ ivlen, \ flags | EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL, \ NULL, \ NULL, \ NULL \ }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { \ return S390X_aes_##keylen##_##mode##_CAPABLE ? \ &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\ static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \ nid##_##keylen##_##mode, \ blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ ivlen, \ flags | EVP_CIPH_##MODE##_MODE, \ s390x_aes_##mode##_init_key, \ s390x_aes_##mode##_cipher, \ s390x_aes_##mode##_cleanup, \ sizeof(S390X_AES_##MODE##_CTX), \ NULL, \ NULL, \ s390x_aes_##mode##_ctrl, \ NULL \ }; \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \ ivlen, \ flags | EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL, \ NULL, \ aes_##mode##_ctrl, \ NULL \ }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { \ return S390X_aes_##keylen##_##mode##_CAPABLE ? \ &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \ } #else # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_init_key, \ aes_##mode##_cipher, \ NULL, \ sizeof(EVP_AES_KEY), \ NULL,NULL,NULL,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \ static const EVP_CIPHER aes_##keylen##_##mode = { \ nid##_##keylen##_##mode,blocksize, \ (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \ ivlen, \ flags|EVP_CIPH_##MODE##_MODE, \ aes_##mode##_init_key, \ aes_##mode##_cipher, \ aes_##mode##_cleanup, \ sizeof(EVP_AES_##MODE##_CTX), \ NULL,NULL,aes_##mode##_ctrl,NULL }; \ const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \ { return &aes_##keylen##_##mode; } #endif #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \ BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \ BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags) static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { int ret, mode; EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); mode = EVP_CIPHER_CTX_mode(ctx); if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) { #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { ret = HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) HWAES_decrypt; dat->stream.cbc = NULL; # ifdef HWAES_cbc_encrypt if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; # endif } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) { ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) AES_decrypt; dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) vpaes_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) vpaes_cbc_encrypt : NULL; } else #endif { ret = AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) AES_decrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) AES_cbc_encrypt : NULL; } } else #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { ret = HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) HWAES_encrypt; dat->stream.cbc = NULL; # ifdef HWAES_cbc_encrypt if (mode == EVP_CIPH_CBC_MODE) dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt; else # endif # ifdef HWAES_ctr32_encrypt_blocks if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; else # endif (void)0; /* terminate potentially open 'else' */ } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) { ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) AES_encrypt; dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { ret = vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) vpaes_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) vpaes_cbc_encrypt : NULL; } else #endif { ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &dat->ks.ks); dat->block = (block128_f) AES_encrypt; dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ? (cbc128_f) AES_cbc_encrypt : NULL; #ifdef AES_CTR_ASM if (mode == EVP_CIPH_CTR_MODE) dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt; #endif } if (ret < 0) { EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED); return 0; } return 1; } static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); if (dat->stream.cbc) (*dat->stream.cbc) (in, out, len, &dat->ks, ctx->iv, EVP_CIPHER_CTX_encrypting(ctx)); else if (EVP_CIPHER_CTX_encrypting(ctx)) CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block); else CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block); return 1; } static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { size_t bl = EVP_CIPHER_CTX_block_size(ctx); size_t i; EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); if (len < bl) return 1; for (i = 0, len -= bl; i <= len; i += bl) (*dat->block) (in + i, out + i, &dat->ks); return 1; } static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_ofb128_encrypt(in, out, len, &dat->ks, ctx->iv, &num, dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_encrypt(in, out, len, &dat->ks, ctx->iv, &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks, ctx->iv, &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) { int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks, ctx->iv, &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } while (len >= MAXBITCHUNK) { int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks, ctx->iv, &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); len -= MAXBITCHUNK; out += MAXBITCHUNK; in += MAXBITCHUNK; } if (len) { int num = EVP_CIPHER_CTX_num(ctx); CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks, ctx->iv, &num, EVP_CIPHER_CTX_encrypting(ctx), dat->block); EVP_CIPHER_CTX_set_num(ctx, num); } return 1; } static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned int num = EVP_CIPHER_CTX_num(ctx); EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx); if (dat->stream.ctr) CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks, ctx->iv, EVP_CIPHER_CTX_buf_noconst(ctx), &num, dat->stream.ctr); else CRYPTO_ctr128_encrypt(in, out, len, &dat->ks, ctx->iv, EVP_CIPHER_CTX_buf_noconst(ctx), &num, dat->block); EVP_CIPHER_CTX_set_num(ctx, num); return 1; } BLOCK_CIPHER_generic_pack(NID_aes, 128, 0) BLOCK_CIPHER_generic_pack(NID_aes, 192, 0) BLOCK_CIPHER_generic_pack(NID_aes, 256, 0) static int aes_gcm_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); if (gctx == NULL) return 0; OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm)); if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); return 1; } static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c); switch (type) { case EVP_CTRL_INIT: gctx->key_set = 0; gctx->iv_set = 0; gctx->ivlen = EVP_CIPHER_iv_length(c->cipher); gctx->iv = c->iv; gctx->taglen = -1; gctx->iv_gen = 0; gctx->tls_aad_len = -1; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = gctx->ivlen; return 1; case EVP_CTRL_AEAD_SET_IVLEN: if (arg <= 0) return 0; /* Allocate memory for IV if needed */ if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) { if (gctx->iv != c->iv) OPENSSL_free(gctx->iv); if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) { EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } } gctx->ivlen = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if (arg <= 0 || arg > 16 || c->encrypt) return 0; memcpy(c->buf, ptr, arg); gctx->taglen = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) return 0; memcpy(ptr, c->buf, arg); return 1; case EVP_CTRL_GCM_SET_IV_FIXED: /* Special case: -1 length restores whole IV */ if (arg == -1) { memcpy(gctx->iv, ptr, gctx->ivlen); gctx->iv_gen = 1; return 1; } /* * Fixed field must be at least 4 bytes and invocation field at least * 8. */ if ((arg < 4) || (gctx->ivlen - arg) < 8) return 0; if (arg) memcpy(gctx->iv, ptr, arg); if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0) return 0; gctx->iv_gen = 1; return 1; case EVP_CTRL_GCM_IV_GEN: if (gctx->iv_gen == 0 || gctx->key_set == 0) return 0; CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); if (arg <= 0 || arg > gctx->ivlen) arg = gctx->ivlen; memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg); /* * Invocation field will be at least 8 bytes in size and so no need * to check wrap around or increment more than last 8 bytes. */ ctr64_inc(gctx->iv + gctx->ivlen - 8); gctx->iv_set = 1; return 1; case EVP_CTRL_GCM_SET_IV_INV: if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) return 0; memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg); CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); gctx->iv_set = 1; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; memcpy(c->buf, ptr, arg); gctx->tls_aad_len = arg; gctx->tls_enc_records = 0; { unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1]; /* Correct length for explicit IV */ if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN) return 0; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!c->encrypt) { if (len < EVP_GCM_TLS_TAG_LEN) return 0; len -= EVP_GCM_TLS_TAG_LEN; } c->buf[arg - 2] = len >> 8; c->buf[arg - 1] = len & 0xff; } /* Extra padding: tag appended to record */ return EVP_GCM_TLS_TAG_LEN; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out); if (gctx->gcm.key) { if (gctx->gcm.key != &gctx->ks) return 0; gctx_out->gcm.key = &gctx_out->ks; } if (gctx->iv == c->iv) gctx_out->iv = out->iv; else { if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) { EVPerr(EVP_F_AES_GCM_CTRL, ERR_R_MALLOC_FAILURE); return 0; } memcpy(gctx_out->iv, gctx->iv, gctx->ivlen); } return 1; } default: return -1; } } static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); if (!iv && !key) return 1; if (key) { do { #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) HWAES_encrypt); # ifdef HWAES_ctr32_encrypt_blocks gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks; # else gctx->ctr = NULL; # endif break; } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE) { AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) AES_encrypt); gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks; break; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) vpaes_encrypt); gctx->ctr = NULL; break; } else #endif (void)0; /* terminate potentially open 'else' */ AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks); CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) AES_encrypt); #ifdef AES_CTR_ASM gctx->ctr = (ctr128_f) AES_ctr32_encrypt; #else gctx->ctr = NULL; #endif } while (0); /* * If we have an iv can set it directly, otherwise use saved IV. */ if (iv == NULL && gctx->iv_set) iv = gctx->iv; if (iv) { CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); gctx->iv_set = 1; } gctx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (gctx->key_set) CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen); else memcpy(gctx->iv, iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen = 0; } return 1; } /* * Handle TLS GCM packet format. This consists of the last portion of the IV * followed by the payload and finally the tag. On encrypt generate IV, * encrypt payload and write the tag. On verify retrieve IV, decrypt payload * and verify tag. */ static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); int rv = -1; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN)) return -1; /* * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness * Requirements from SP 800-38D". The requirements is for one party to the * communication to fail after 2^64 - 1 keys. We do this on the encrypting * side only. */ if (ctx->encrypt && ++gctx->tls_enc_records == 0) { EVPerr(EVP_F_AES_GCM_TLS_CIPHER, EVP_R_TOO_MANY_RECORDS); goto err; } /* * Set IV from start of buffer or generate IV and write to start of * buffer. */ if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV, EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0) goto err; /* Use saved AAD */ if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len)) goto err; /* Fix buffer and length to point to payload */ in += EVP_GCM_TLS_EXPLICIT_IV_LEN; out += EVP_GCM_TLS_EXPLICIT_IV_LEN; len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; if (ctx->encrypt) { /* Encrypt payload */ if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 32 && AES_GCM_ASM(gctx)) { if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_encrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) goto err; } else { size_t bulk = 0; #if defined(AES_GCM_ASM2) if (len >= 32 && AES_GCM_ASM2(gctx)) { if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_encrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) goto err; } out += len; /* Finally write tag */ CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN); rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN; } else { /* Decrypt */ if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 16 && AES_GCM_ASM(gctx)) { if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_decrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) goto err; } else { size_t bulk = 0; #if defined(AES_GCM_ASM2) if (len >= 16 && AES_GCM_ASM2(gctx)) { if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0)) return -1; bulk = AES_gcm_decrypt(in, out, len, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; } #endif if (CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) goto err; } /* Retrieve tag */ CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN); /* If tag mismatch wipe buffer */ if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) { OPENSSL_cleanse(out, len); goto err; } rv = len; } err: gctx->iv_set = 0; gctx->tls_aad_len = -1; return rv; } #ifdef FIPS_MODULE /* * See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys" * * See also 8.2.2 RBG-based construction. * Random construction consists of a free field (which can be NULL) and a * random field which will use a DRBG that can return at least 96 bits of * entropy strength. (The DRBG must be seeded by the FIPS module). */ static int aes_gcm_iv_generate(EVP_AES_GCM_CTX *gctx, int offset) { int sz = gctx->ivlen - offset; /* Must be at least 96 bits */ if (sz <= 0 || gctx->ivlen < 12) return 0; /* Use DRBG to generate random iv */ if (RAND_bytes(gctx->iv + offset, sz) <= 0) return 0; return 1; } #endif /* FIPS_MODULE */ static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx); /* If not set up, return error */ if (!gctx->key_set) return -1; if (gctx->tls_aad_len >= 0) return aes_gcm_tls_cipher(ctx, out, in, len); #ifdef FIPS_MODULE /* * FIPS requires generation of AES-GCM IV's inside the FIPS module. * The IV can still be set externally (the security policy will state that * this is not FIPS compliant). There are some applications * where setting the IV externally is the only option available. */ if (!gctx->iv_set) { if (!ctx->encrypt || !aes_gcm_iv_generate(gctx, 0)) return -1; CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen); gctx->iv_set = 1; gctx->iv_gen_rand = 1; } #else if (!gctx->iv_set) return -1; #endif /* FIPS_MODULE */ if (in) { if (out == NULL) { if (CRYPTO_gcm128_aad(&gctx->gcm, in, len)) return -1; } else if (ctx->encrypt) { if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 32 && AES_GCM_ASM(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) return -1; } else { size_t bulk = 0; #if defined(AES_GCM_ASM2) if (len >= 32 && AES_GCM_ASM2(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_encrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_encrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) return -1; } } else { if (gctx->ctr) { size_t bulk = 0; #if defined(AES_GCM_ASM) if (len >= 16 && AES_GCM_ASM(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, in + bulk, out + bulk, len - bulk, gctx->ctr)) return -1; } else { size_t bulk = 0; #if defined(AES_GCM_ASM2) if (len >= 16 && AES_GCM_ASM2(gctx)) { size_t res = (16 - gctx->gcm.mres) % 16; if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res)) return -1; bulk = AES_gcm_decrypt(in + res, out + res, len - res, gctx->gcm.key, gctx->gcm.Yi.c, gctx->gcm.Xi.u); gctx->gcm.len.u[1] += bulk; bulk += res; } #endif if (CRYPTO_gcm128_decrypt(&gctx->gcm, in + bulk, out + bulk, len - bulk)) return -1; } } return len; } else { if (!ctx->encrypt) { if (gctx->taglen < 0) return -1; if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0) return -1; gctx->iv_set = 0; return 0; } CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16); gctx->taglen = 16; /* Don't reuse the IV */ gctx->iv_set = 0; return 0; } } #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH) BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c); if (type == EVP_CTRL_COPY) { EVP_CIPHER_CTX *out = ptr; EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out); if (xctx->xts.key1) { if (xctx->xts.key1 != &xctx->ks1) return 0; xctx_out->xts.key1 = &xctx_out->ks1; } if (xctx->xts.key2) { if (xctx->xts.key2 != &xctx->ks2) return 0; xctx_out->xts.key2 = &xctx_out->ks2; } return 1; } else if (type != EVP_CTRL_INIT) return -1; /* key1 and key2 are used as an indicator both key and IV are set */ xctx->xts.key1 = NULL; xctx->xts.key2 = NULL; return 1; } static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); if (!iv && !key) return 1; if (key) { do { /* The key is two half length keys in reality */ const int bytes = EVP_CIPHER_CTX_key_length(ctx) / 2; const int bits = bytes * 8; /* * Verify that the two keys are different. * * This addresses the vulnerability described in Rogaway's * September 2004 paper: * * "Efficient Instantiations of Tweakable Blockciphers and * Refinements to Modes OCB and PMAC". * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf) * * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states * that: * "The check for Key_1 != Key_2 shall be done at any place * BEFORE using the keys in the XTS-AES algorithm to process * data with them." */ if ((!allow_insecure_decrypt || enc) && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { EVPerr(EVP_F_AES_XTS_INIT_KEY, EVP_R_XTS_DUPLICATED_KEYS); return 0; } #ifdef AES_XTS_ASM xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt; #else xctx->stream = NULL; #endif /* key_len is two AES keys */ #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { if (enc) { HWAES_set_encrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) HWAES_encrypt; # ifdef HWAES_xts_encrypt xctx->stream = HWAES_xts_encrypt; # endif } else { HWAES_set_decrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) HWAES_decrypt; # ifdef HWAES_xts_decrypt xctx->stream = HWAES_xts_decrypt; #endif } HWAES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) HWAES_encrypt; xctx->xts.key1 = &xctx->ks1; break; } else #endif #ifdef BSAES_CAPABLE if (BSAES_CAPABLE) xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt; else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { if (enc) { vpaes_set_encrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) vpaes_encrypt; } else { vpaes_set_decrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) vpaes_decrypt; } vpaes_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) vpaes_encrypt; xctx->xts.key1 = &xctx->ks1; break; } else #endif (void)0; /* terminate potentially open 'else' */ if (enc) { AES_set_encrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) AES_encrypt; } else { AES_set_decrypt_key(key, bits, &xctx->ks1.ks); xctx->xts.block1 = (block128_f) AES_decrypt; } AES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks); xctx->xts.block2 = (block128_f) AES_encrypt; xctx->xts.key1 = &xctx->ks1; } while (0); } if (iv) { xctx->xts.key2 = &xctx->ks2; memcpy(ctx->iv, iv, 16); } return 1; } static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx); if (xctx->xts.key1 == NULL || xctx->xts.key2 == NULL || out == NULL || in == NULL || len < AES_BLOCK_SIZE) return 0; /* * Impose a limit of 2^20 blocks per data unit as specified by * IEEE Std 1619-2018. The earlier and obsolete IEEE Std 1619-2007 * indicated that this was a SHOULD NOT rather than a MUST NOT. * NIST SP 800-38E mandates the same limit. */ if (len > XTS_MAX_BLOCKS_PER_DATA_UNIT * AES_BLOCK_SIZE) { EVPerr(EVP_F_AES_XTS_CIPHER, EVP_R_XTS_DATA_UNIT_IS_TOO_LARGE); return 0; } if (xctx->stream) (*xctx->stream) (in, out, len, xctx->xts.key1, xctx->xts.key2, ctx->iv); else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len, EVP_CIPHER_CTX_encrypting(ctx))) return 0; return 1; } #define aes_xts_cleanup NULL #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | EVP_CIPH_CUSTOM_COPY) BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS) static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c); switch (type) { case EVP_CTRL_INIT: cctx->key_set = 0; cctx->iv_set = 0; cctx->L = 8; cctx->M = 12; cctx->tag_set = 0; cctx->len_set = 0; cctx->tls_aad_len = -1; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = 15 - cctx->L; return 1; case EVP_CTRL_AEAD_TLS1_AAD: /* Save the AAD for later use */ if (arg != EVP_AEAD_TLS1_AAD_LEN) return 0; memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); cctx->tls_aad_len = arg; { uint16_t len = EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1]; /* Correct length for explicit IV */ if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN) return 0; len -= EVP_CCM_TLS_EXPLICIT_IV_LEN; /* If decrypting correct for tag too */ if (!EVP_CIPHER_CTX_encrypting(c)) { if (len < cctx->M) return 0; len -= cctx->M; } EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8; EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff; } /* Extra padding: tag appended to record */ return cctx->M; case EVP_CTRL_CCM_SET_IV_FIXED: /* Sanity check length */ if (arg != EVP_CCM_TLS_FIXED_IV_LEN) return 0; /* Just copy to first part of IV */ memcpy(c->iv, ptr, arg); return 1; case EVP_CTRL_AEAD_SET_IVLEN: arg = 15 - arg; /* fall thru */ case EVP_CTRL_CCM_SET_L: if (arg < 2 || arg > 8) return 0; cctx->L = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if ((arg & 1) || arg < 4 || arg > 16) return 0; if (EVP_CIPHER_CTX_encrypting(c) && ptr) return 0; if (ptr) { cctx->tag_set = 1; memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg); } cctx->M = arg; return 1; case EVP_CTRL_AEAD_GET_TAG: if (!EVP_CIPHER_CTX_encrypting(c) || !cctx->tag_set) return 0; if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg)) return 0; cctx->tag_set = 0; cctx->iv_set = 0; cctx->len_set = 0; return 1; case EVP_CTRL_COPY: { EVP_CIPHER_CTX *out = ptr; EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out); if (cctx->ccm.key) { if (cctx->ccm.key != &cctx->ks) return 0; cctx_out->ccm.key = &cctx_out->ks; } return 1; } default: return -1; } } static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); if (!iv && !key) return 1; if (key) do { #ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) HWAES_encrypt); cctx->str = NULL; cctx->key_set = 1; break; } else #endif #ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) vpaes_encrypt); cctx->str = NULL; cctx->key_set = 1; break; } #endif AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &cctx->ks.ks); CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L, &cctx->ks, (block128_f) AES_encrypt); cctx->str = NULL; cctx->key_set = 1; } while (0); if (iv) { memcpy(ctx->iv, iv, 15 - cctx->L); cctx->iv_set = 1; } return 1; } static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); CCM128_CONTEXT *ccm = &cctx->ccm; /* Encrypt/decrypt must be performed in place */ if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M)) return -1; /* If encrypting set explicit IV from sequence number (start of AAD) */ if (EVP_CIPHER_CTX_encrypting(ctx)) memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx), EVP_CCM_TLS_EXPLICIT_IV_LEN); /* Get rest of IV from explicit IV */ memcpy(ctx->iv + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN); /* Correct length value */ len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; /* Use saved AAD */ CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->tls_aad_len); /* Fix buffer to point to payload */ in += EVP_CCM_TLS_EXPLICIT_IV_LEN; out += EVP_CCM_TLS_EXPLICIT_IV_LEN; if (EVP_CIPHER_CTX_encrypting(ctx)) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M)) return -1; return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M; } else { if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!CRYPTO_memcmp(tag, in + len, cctx->M)) return len; } } OPENSSL_cleanse(out, len); return -1; } } static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx); CCM128_CONTEXT *ccm = &cctx->ccm; /* If not set up, return error */ if (!cctx->key_set) return -1; if (cctx->tls_aad_len >= 0) return aes_ccm_tls_cipher(ctx, out, in, len); /* EVP_*Final() doesn't return any data */ if (in == NULL && out != NULL) return 0; if (!cctx->iv_set) return -1; if (!out) { if (!in) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; cctx->len_set = 1; return len; } /* If have AAD need message length */ if (!cctx->len_set && len) return -1; CRYPTO_ccm128_aad(ccm, in, len); return len; } /* The tag must be set before actually decrypting data */ if (!EVP_CIPHER_CTX_encrypting(ctx) && !cctx->tag_set) return -1; /* If not set length yet do it */ if (!cctx->len_set) { if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len)) return -1; cctx->len_set = 1; } if (EVP_CIPHER_CTX_encrypting(ctx)) { if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len, cctx->str) : CRYPTO_ccm128_encrypt(ccm, in, out, len)) return -1; cctx->tag_set = 1; return len; } else { int rv = -1; if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len, cctx->str) : !CRYPTO_ccm128_decrypt(ccm, in, out, len)) { unsigned char tag[16]; if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) { if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx), cctx->M)) rv = len; } } if (rv == -1) OPENSSL_cleanse(out, len); cctx->iv_set = 0; cctx->tag_set = 0; cctx->len_set = 0; return rv; } } #define aes_ccm_cleanup NULL BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) typedef struct { union { OSSL_UNION_ALIGN; AES_KEY ks; } ks; /* Indicates if IV has been set */ unsigned char *iv; } EVP_AES_WRAP_CTX; static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); if (!iv && !key) return 1; if (key) { if (EVP_CIPHER_CTX_encrypting(ctx)) AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &wctx->ks.ks); else AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &wctx->ks.ks); if (!iv) wctx->iv = NULL; } if (iv) { memcpy(ctx->iv, iv, EVP_CIPHER_CTX_iv_length(ctx)); wctx->iv = ctx->iv; } return 1; } static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t inlen) { EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx); size_t rv; /* AES wrap with padding has IV length of 4, without padding 8 */ int pad = EVP_CIPHER_CTX_iv_length(ctx) == 4; /* No final operation so always return zero length */ if (!in) return 0; /* Input length must always be non-zero */ if (!inlen) return -1; /* If decrypting need at least 16 bytes and multiple of 8 */ if (!EVP_CIPHER_CTX_encrypting(ctx) && (inlen < 16 || inlen & 0x7)) return -1; /* If not padding input must be multiple of 8 */ if (!pad && inlen & 0x7) return -1; if (is_partially_overlapping(out, in, inlen)) { EVPerr(EVP_F_AES_WRAP_CIPHER, EVP_R_PARTIALLY_OVERLAPPING); return 0; } if (!out) { if (EVP_CIPHER_CTX_encrypting(ctx)) { /* If padding round up to multiple of 8 */ if (pad) inlen = (inlen + 7) / 8 * 8; /* 8 byte prefix */ return inlen + 8; } else { /* * If not padding output will be exactly 8 bytes smaller than * input. If padding it will be at least 8 bytes smaller but we * don't know how much. */ return inlen - 8; } } if (pad) { if (EVP_CIPHER_CTX_encrypting(ctx)) rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_encrypt); else rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_decrypt); } else { if (EVP_CIPHER_CTX_encrypting(ctx)) rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_encrypt); else rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, out, in, inlen, (block128_f) AES_decrypt); } return rv ? (int)rv : -1; } #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \ | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1) static const EVP_CIPHER aes_128_wrap = { NID_id_aes128_wrap, 8, 16, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_128_wrap(void) { return &aes_128_wrap; } static const EVP_CIPHER aes_192_wrap = { NID_id_aes192_wrap, 8, 24, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_192_wrap(void) { return &aes_192_wrap; } static const EVP_CIPHER aes_256_wrap = { NID_id_aes256_wrap, 8, 32, 8, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_256_wrap(void) { return &aes_256_wrap; } static const EVP_CIPHER aes_128_wrap_pad = { NID_id_aes128_wrap_pad, 8, 16, 4, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_128_wrap_pad(void) { return &aes_128_wrap_pad; } static const EVP_CIPHER aes_192_wrap_pad = { NID_id_aes192_wrap_pad, 8, 24, 4, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_192_wrap_pad(void) { return &aes_192_wrap_pad; } static const EVP_CIPHER aes_256_wrap_pad = { NID_id_aes256_wrap_pad, 8, 32, 4, WRAP_FLAGS, aes_wrap_init_key, aes_wrap_cipher, NULL, sizeof(EVP_AES_WRAP_CTX), NULL, NULL, NULL, NULL }; const EVP_CIPHER *EVP_aes_256_wrap_pad(void) { return &aes_256_wrap_pad; } #ifndef OPENSSL_NO_OCB static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); EVP_CIPHER_CTX *newc; EVP_AES_OCB_CTX *new_octx; switch (type) { case EVP_CTRL_INIT: octx->key_set = 0; octx->iv_set = 0; octx->ivlen = EVP_CIPHER_iv_length(c->cipher); octx->iv = c->iv; octx->taglen = 16; octx->data_buf_len = 0; octx->aad_buf_len = 0; return 1; case EVP_CTRL_GET_IVLEN: *(int *)ptr = octx->ivlen; return 1; case EVP_CTRL_AEAD_SET_IVLEN: /* IV len must be 1 to 15 */ if (arg <= 0 || arg > 15) return 0; octx->ivlen = arg; return 1; case EVP_CTRL_AEAD_SET_TAG: if (ptr == NULL) { /* Tag len must be 0 to 16 */ if (arg < 0 || arg > 16) return 0; octx->taglen = arg; return 1; } if (arg != octx->taglen || EVP_CIPHER_CTX_encrypting(c)) return 0; memcpy(octx->tag, ptr, arg); return 1; case EVP_CTRL_AEAD_GET_TAG: if (arg != octx->taglen || !EVP_CIPHER_CTX_encrypting(c)) return 0; memcpy(ptr, octx->tag, arg); return 1; case EVP_CTRL_COPY: newc = (EVP_CIPHER_CTX *)ptr; new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc); return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb, &new_octx->ksenc.ks, &new_octx->ksdec.ks); default: return -1; } } static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key, const unsigned char *iv, int enc) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); if (!iv && !key) return 1; if (key) { do { /* * We set both the encrypt and decrypt key here because decrypt * needs both. We could possibly optimise to remove setting the * decrypt for an encryption operation. */ # ifdef HWAES_CAPABLE if (HWAES_CAPABLE) { HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) HWAES_encrypt, (block128_f) HWAES_decrypt, enc ? HWAES_ocb_encrypt : HWAES_ocb_decrypt)) return 0; break; } # endif # ifdef VPAES_CAPABLE if (VPAES_CAPABLE) { vpaes_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); vpaes_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) vpaes_encrypt, (block128_f) vpaes_decrypt, NULL)) return 0; break; } # endif AES_set_encrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksenc.ks); AES_set_decrypt_key(key, EVP_CIPHER_CTX_key_length(ctx) * 8, &octx->ksdec.ks); if (!CRYPTO_ocb128_init(&octx->ocb, &octx->ksenc.ks, &octx->ksdec.ks, (block128_f) AES_encrypt, (block128_f) AES_decrypt, NULL)) return 0; } while (0); /* * If we have an iv we can set it directly, otherwise use saved IV. */ if (iv == NULL && octx->iv_set) iv = octx->iv; if (iv) { if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen) != 1) return 0; octx->iv_set = 1; } octx->key_set = 1; } else { /* If key set use IV, otherwise copy */ if (octx->key_set) CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen); else memcpy(octx->iv, iv, octx->ivlen); octx->iv_set = 1; } return 1; } static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out, const unsigned char *in, size_t len) { unsigned char *buf; int *buf_len; int written_len = 0; size_t trailing_len; EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx); /* If IV or Key not set then return error */ if (!octx->iv_set) return -1; if (!octx->key_set) return -1; if (in != NULL) { /* * Need to ensure we are only passing full blocks to low level OCB * routines. We do it here rather than in EVP_EncryptUpdate/ * EVP_DecryptUpdate because we need to pass full blocks of AAD too * and those routines don't support that */ /* Are we dealing with AAD or normal data here? */ if (out == NULL) { buf = octx->aad_buf; buf_len = &(octx->aad_buf_len); } else { buf = octx->data_buf; buf_len = &(octx->data_buf_len); if (is_partially_overlapping(out + *buf_len, in, len)) { EVPerr(EVP_F_AES_OCB_CIPHER, EVP_R_PARTIALLY_OVERLAPPING); return 0; } } /* * If we've got a partially filled buffer from a previous call then * use that data first */ if (*buf_len > 0) { unsigned int remaining; remaining = AES_BLOCK_SIZE - (*buf_len); if (remaining > len) { memcpy(buf + (*buf_len), in, len); *(buf_len) += len; return 0; } memcpy(buf + (*buf_len), in, remaining); /* * If we get here we've filled the buffer, so process it */ len -= remaining; in += remaining; if (out == NULL) { if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE)) return -1; } else if (EVP_CIPHER_CTX_encrypting(ctx)) { if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out, AES_BLOCK_SIZE)) return -1; } else { if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out, AES_BLOCK_SIZE)) return -1; } written_len = AES_BLOCK_SIZE; *buf_len = 0; if (out != NULL) out += AES_BLOCK_SIZE; } /* Do we have a partial block to handle at the end? */ trailing_len = len % AES_BLOCK_SIZE; /* * If we've got some full blocks to handle, then process these first */ if (len != trailing_len) { if (out == NULL) { if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len)) return -1; } else if (EVP_CIPHER_CTX_encrypting(ctx)) { if (!CRYPTO_ocb128_encrypt (&octx->ocb, in, out, len - trailing_len)) return -1; } else { if (!CRYPTO_ocb128_decrypt (&octx->ocb, in, out, len - trailing_len)) return -1; } written_len += len - trailing_len; in += len - trailing_len; } /* Handle any trailing partial block */ if (trailing_len > 0) { memcpy(buf, in, trailing_len); *buf_len = trailing_len; } return written_len; } else { /* * First of all empty the buffer of any partial block that we might * have been provided - both for data and AAD */ if (octx->data_buf_len > 0) { if (EVP_CIPHER_CTX_encrypting(ctx)) { if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out, octx->data_buf_len)) return -1; } else { if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out, octx->data_buf_len)) return -1; } written_len = octx->data_buf_len; octx->data_buf_len = 0; } if (octx->aad_buf_len > 0) { if (!CRYPTO_ocb128_aad (&octx->ocb, octx->aad_buf, octx->aad_buf_len)) return -1; octx->aad_buf_len = 0; } /* If decrypting then verify */ if (!EVP_CIPHER_CTX_encrypting(ctx)) { if (octx->taglen < 0) return -1; if (CRYPTO_ocb128_finish(&octx->ocb, octx->tag, octx->taglen) != 0) return -1; octx->iv_set = 0; return written_len; } /* If encrypting then just get the tag */ if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1) return -1; /* Don't reuse the IV */ octx->iv_set = 0; return written_len; } } static int aes_ocb_cleanup(EVP_CIPHER_CTX *c) { EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c); CRYPTO_ocb128_cleanup(&octx->ocb); return 1; } BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB, EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS) #endif /* OPENSSL_NO_OCB */