/* * Copyright 2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "cipher_aes_xts.h" #include "internal/provider_algs.h" #include "internal/providercommonerr.h" /* TODO (3.0) Figure out what flags need to be set */ #define AES_XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \ | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \ | EVP_CIPH_CUSTOM_COPY) #define AES_XTS_IV_BITS 128 #define AES_XTS_BLOCK_BITS 8 #ifdef FIPS_MODE static const int allow_insecure_decrypt = 0; #else static const int allow_insecure_decrypt = 1; #endif /* FIPS_MODE */ /* forward declarations */ static OSSL_OP_cipher_encrypt_init_fn aes_xts_einit; static OSSL_OP_cipher_decrypt_init_fn aes_xts_dinit; static OSSL_OP_cipher_update_fn aes_xts_stream_update; static OSSL_OP_cipher_final_fn aes_xts_stream_final; static OSSL_OP_cipher_cipher_fn aes_xts_cipher; static OSSL_OP_cipher_freectx_fn aes_xts_freectx; static OSSL_OP_cipher_dupctx_fn aes_xts_dupctx; static OSSL_OP_cipher_set_ctx_params_fn aes_xts_set_ctx_params; static OSSL_OP_cipher_settable_ctx_params_fn aes_xts_settable_ctx_params; /* * Verify that the two keys are different. * * This addresses the vulnerability described in Rogaway's * September 2004 paper: * * "Efficient Instantiations of Tweakable Blockciphers and * Refinements to Modes OCB and PMAC". * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf) * * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states * that: * "The check for Key_1 != Key_2 shall be done at any place * BEFORE using the keys in the XTS-AES algorithm to process * data with them." */ static int aes_xts_check_keys_differ(const unsigned char *key, size_t bytes, int enc) { if ((!allow_insecure_decrypt || enc) && CRYPTO_memcmp(key, key + bytes, bytes) == 0) { ERR_raise(ERR_LIB_PROV, PROV_R_XTS_DUPLICATED_KEYS); return 0; } return 1; } /*- * Provider dispatch functions */ static int aes_xts_init(void *vctx, const unsigned char *key, size_t keylen, const unsigned char *iv, size_t ivlen, int enc) { PROV_AES_XTS_CTX *xctx = (PROV_AES_XTS_CTX *)vctx; PROV_CIPHER_CTX *ctx = &xctx->base; ctx->enc = enc; if (iv != NULL) { if (ivlen != ctx->ivlen) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_IV_LENGTH); return 0; } memcpy(ctx->iv, iv, ivlen); xctx->iv_set = 1; } if (key != NULL) { if (keylen != ctx->keylen) { ERR_raise(ERR_LIB_PROV, PROV_R_INVALID_KEY_LENGTH); return 0; } if (!aes_xts_check_keys_differ(key, keylen / 2, enc)) return 0; return ctx->hw->init(ctx, key, keylen); } return 1; } static int aes_xts_einit(void *vctx, const unsigned char *key, size_t keylen, const unsigned char *iv, size_t ivlen) { return aes_xts_init(vctx, key, keylen, iv, ivlen, 1); } static int aes_xts_dinit(void *vctx, const unsigned char *key, size_t keylen, const unsigned char *iv, size_t ivlen) { return aes_xts_init(vctx, key, keylen, iv, ivlen, 0); } static void *aes_xts_newctx(void *provctx, unsigned int mode, size_t kbits, size_t blkbits, size_t ivbits) { PROV_AES_XTS_CTX *ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx != NULL) { cipher_generic_initkey(&ctx->base, kbits, blkbits, ivbits, mode, PROV_CIPHER_HW_aes_xts(kbits), NULL); } return ctx; } static void aes_xts_freectx(void *vctx) { PROV_AES_XTS_CTX *ctx = (PROV_AES_XTS_CTX *)vctx; OPENSSL_clear_free(ctx, sizeof(*ctx)); } static void *aes_xts_dupctx(void *vctx) { PROV_AES_XTS_CTX *in = (PROV_AES_XTS_CTX *)vctx; PROV_AES_XTS_CTX *ret = NULL; if (in->xts.key1 != NULL) { if (in->xts.key1 != &in->ks1) return NULL; } if (in->xts.key2 != NULL) { if (in->xts.key2 != &in->ks2) return NULL; } ret = OPENSSL_malloc(sizeof(*ret)); if (ret == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return NULL; } *ret = *in; return ret; } static int aes_xts_cipher(void *vctx, unsigned char *out, size_t *outl, size_t outsize, const unsigned char *in, size_t inl) { PROV_AES_XTS_CTX *ctx = (PROV_AES_XTS_CTX *)vctx; if (ctx->xts.key1 == NULL || ctx->xts.key2 == NULL || !ctx->iv_set || out == NULL || in == NULL || inl < AES_BLOCK_SIZE) return 0; /* * Impose a limit of 2^20 blocks per data unit as specifed by * IEEE Std 1619-2018. The earlier and obsolete IEEE Std 1619-2007 * indicated that this was a SHOULD NOT rather than a MUST NOT. * NIST SP 800-38E mandates the same limit. */ if (inl > XTS_MAX_BLOCKS_PER_DATA_UNIT * AES_BLOCK_SIZE) { ERR_raise(ERR_LIB_PROV, PROV_R_XTS_DATA_UNIT_IS_TOO_LARGE); return 0; } if (ctx->stream != NULL) (*ctx->stream)(in, out, inl, ctx->xts.key1, ctx->xts.key2, ctx->base.iv); else if (CRYPTO_xts128_encrypt(&ctx->xts, ctx->base.iv, in, out, inl, ctx->base.enc)) return 0; return 1; *outl = inl; return 1; } static int aes_xts_stream_update(void *vctx, unsigned char *out, size_t *outl, size_t outsize, const unsigned char *in, size_t inl) { PROV_AES_XTS_CTX *ctx = (PROV_AES_XTS_CTX *)vctx; if (outsize < inl) { ERR_raise(ERR_LIB_PROV, PROV_R_OUTPUT_BUFFER_TOO_SMALL); return 0; } if (!aes_xts_cipher(ctx, out, outl, outsize, in, inl)) { ERR_raise(ERR_LIB_PROV, PROV_R_CIPHER_OPERATION_FAILED); return 0; } *outl = inl; return 1; } static int aes_xts_stream_final(void *vctx, unsigned char *out, size_t *outl, size_t outsize) { *outl = 0; return 1; } static const OSSL_PARAM aes_xts_known_settable_ctx_params[] = { OSSL_PARAM_size_t(OSSL_CIPHER_PARAM_KEYLEN, NULL), OSSL_PARAM_END }; static const OSSL_PARAM *aes_xts_settable_ctx_params(void) { return aes_xts_known_settable_ctx_params; } static int aes_xts_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { PROV_CIPHER_CTX *ctx = (PROV_CIPHER_CTX *)vctx; const OSSL_PARAM *p; /* * TODO(3.0) We need a general solution for handling missing parameters * inside set_params and get_params methods. */ p = OSSL_PARAM_locate_const(params, OSSL_CIPHER_PARAM_KEYLEN); if (p != NULL) { size_t keylen; if (!OSSL_PARAM_get_size_t(p, &keylen)) { ERR_raise(ERR_LIB_PROV, PROV_R_FAILED_TO_GET_PARAMETER); return 0; } /* The key length can not be modified for xts mode */ if (keylen != ctx->keylen) return 0; } return 1; } #define IMPLEMENT_cipher(lcmode, UCMODE, kbits, flags) \ static OSSL_OP_cipher_get_params_fn aes_##kbits##_##lcmode##_get_params; \ static int aes_##kbits##_##lcmode##_get_params(OSSL_PARAM params[]) \ { \ return cipher_generic_get_params(params, EVP_CIPH_##UCMODE##_MODE, \ flags, 2 * kbits, AES_XTS_BLOCK_BITS, \ AES_XTS_IV_BITS); \ } \ static OSSL_OP_cipher_newctx_fn aes_##kbits##_xts_newctx; \ static void *aes_##kbits##_xts_newctx(void *provctx) \ { \ return aes_xts_newctx(provctx, EVP_CIPH_##UCMODE##_MODE, 2 * kbits, \ AES_XTS_BLOCK_BITS, AES_XTS_IV_BITS); \ } \ const OSSL_DISPATCH aes##kbits##xts_functions[] = { \ { OSSL_FUNC_CIPHER_NEWCTX, (void (*)(void))aes_##kbits##_xts_newctx }, \ { OSSL_FUNC_CIPHER_ENCRYPT_INIT, (void (*)(void))aes_xts_einit }, \ { OSSL_FUNC_CIPHER_DECRYPT_INIT, (void (*)(void))aes_xts_dinit }, \ { OSSL_FUNC_CIPHER_UPDATE, (void (*)(void))aes_xts_stream_update }, \ { OSSL_FUNC_CIPHER_FINAL, (void (*)(void))aes_xts_stream_final }, \ { OSSL_FUNC_CIPHER_CIPHER, (void (*)(void))aes_xts_cipher }, \ { OSSL_FUNC_CIPHER_FREECTX, (void (*)(void))aes_xts_freectx }, \ { OSSL_FUNC_CIPHER_DUPCTX, (void (*)(void))aes_xts_dupctx }, \ { OSSL_FUNC_CIPHER_GET_PARAMS, \ (void (*)(void))aes_##kbits##_##lcmode##_get_params }, \ { OSSL_FUNC_CIPHER_GETTABLE_PARAMS, \ (void (*)(void))cipher_generic_gettable_params }, \ { OSSL_FUNC_CIPHER_GET_CTX_PARAMS, \ (void (*)(void))cipher_generic_get_ctx_params }, \ { OSSL_FUNC_CIPHER_GETTABLE_CTX_PARAMS, \ (void (*)(void))cipher_generic_gettable_ctx_params }, \ { OSSL_FUNC_CIPHER_SET_CTX_PARAMS, \ (void (*)(void))aes_xts_set_ctx_params }, \ { OSSL_FUNC_CIPHER_SETTABLE_CTX_PARAMS, \ (void (*)(void))aes_xts_settable_ctx_params }, \ { 0, NULL } \ } IMPLEMENT_cipher(xts, XTS, 256, AES_XTS_FLAGS); IMPLEMENT_cipher(xts, XTS, 128, AES_XTS_FLAGS);