/* * Copyright 2018-2020 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * According to NIST SP800-131A "Transitioning the use of cryptographic * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer * allowed for signatures (Table 2) or key transport (Table 5). In the code * below any attempt to generate 1024 bit RSA keys will result in an error (Note * that digital signature verification can still use deprecated 1024 bit keys). * * Also see FIPS1402IG A.14 * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that * must be generated before the module generates the RSA primes p and q. * Table B.1 in FIPS 186-4 specifies, for RSA modulus lengths of 2048 and * 3072 bits only, the min/max total length of the auxiliary primes. * When implementing the RSA signature generation algorithm * with other approved RSA modulus sizes, the vendor shall use the limitations * from Table B.1 that apply to the longest RSA modulus shown in Table B.1 of * FIPS 186-4 whose length does not exceed that of the implementation's RSA * modulus. In particular, when generating the primes for the 4096-bit RSA * modulus the limitations stated for the 3072-bit modulus shall apply. */ #include #include #include "bn_local.h" #include "crypto/bn.h" #include "internal/nelem.h" #if BN_BITS2 == 64 # define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo #else # define BN_DEF(lo, hi) lo, hi #endif /* 1 / sqrt(2) * 2^256, rounded up */ static const BN_ULONG inv_sqrt_2_val[] = { BN_DEF(0x83339916UL, 0xED17AC85UL), BN_DEF(0x893BA84CUL, 0x1D6F60BAUL), BN_DEF(0x754ABE9FUL, 0x597D89B3UL), BN_DEF(0xF9DE6484UL, 0xB504F333UL) }; const BIGNUM bn_inv_sqrt_2 = { (BN_ULONG *)inv_sqrt_2_val, OSSL_NELEM(inv_sqrt_2_val), OSSL_NELEM(inv_sqrt_2_val), 0, BN_FLG_STATIC_DATA }; /* * FIPS 186-4 Table B.1. "Min length of auxiliary primes p1, p2, q1, q2". * * Params: * nbits The key size in bits. * Returns: * The minimum size of the auxiliary primes or 0 if nbits is invalid. */ static int bn_rsa_fips186_4_aux_prime_min_size(int nbits) { if (nbits >= 3072) return 171; if (nbits == 2048) return 141; return 0; } /* * FIPS 186-4 Table B.1 "Maximum length of len(p1) + len(p2) and * len(q1) + len(q2) for p,q Probable Primes". * * Params: * nbits The key size in bits. * Returns: * The maximum length or 0 if nbits is invalid. */ static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits) { if (nbits >= 3072) return 1518; if (nbits == 2048) return 1007; return 0; } /* * Find the first odd integer that is a probable prime. * * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2). * * Params: * Xp1 The passed in starting point to find a probably prime. * p1 The returned probable prime (first odd integer >= Xp1) * ctx A BN_CTX object. * cb An optional BIGNUM callback. * Returns: 1 on success otherwise it returns 0. */ static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1, BIGNUM *p1, BN_CTX *ctx, BN_GENCB *cb) { int ret = 0; int i = 0; if (BN_copy(p1, Xp1) == NULL) return 0; BN_set_flags(p1, BN_FLG_CONSTTIME); /* Find the first odd number >= Xp1 that is probably prime */ for(;;) { i++; BN_GENCB_call(cb, 0, i); /* MR test with trial division */ if (BN_check_prime(p1, ctx, cb)) break; /* Get next odd number */ if (!BN_add_word(p1, 2)) goto err; } BN_GENCB_call(cb, 2, i); ret = 1; err: return ret; } /* * Generate a probable prime (p or q). * * See FIPS 186-4 B.3.6 (Steps 4 & 5) * * Params: * p The returned probable prime. * Xpout An optionally returned random number used during generation of p. * p1, p2 The returned auxiliary primes. If NULL they are not returned. * Xp An optional passed in value (that is random number used during * generation of p). * Xp1, Xp2 Optional passed in values that are normally generated * internally. Used to find p1, p2. * nlen The bit length of the modulus (the key size). * e The public exponent. * ctx A BN_CTX object. * cb An optional BIGNUM callback. * Returns: 1 on success otherwise it returns 0. */ int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout, BIGNUM *p1, BIGNUM *p2, const BIGNUM *Xp, const BIGNUM *Xp1, const BIGNUM *Xp2, int nlen, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) { int ret = 0; BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL; int bitlen; if (p == NULL || Xpout == NULL) return 0; BN_CTX_start(ctx); p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx); p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx); Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx); Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx); if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL) goto err; bitlen = bn_rsa_fips186_4_aux_prime_min_size(nlen); if (bitlen == 0) goto err; /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */ if (Xp1 == NULL) { /* Set the top and bottom bits to make it odd and the correct size */ if (!BN_priv_rand_ex(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, ctx)) goto err; } /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */ if (Xp2 == NULL) { /* Set the top and bottom bits to make it odd and the correct size */ if (!BN_priv_rand_ex(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD, ctx)) goto err; } /* (Steps 4.2/5.2) - find first auxiliary probable primes */ if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb) || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb)) goto err; /* (Table B.1) auxiliary prime Max length check */ if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >= bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(nlen)) goto err; /* (Steps 4.3/5.3) - generate prime */ if (!bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, ctx, cb)) goto err; ret = 1; err: /* Zeroize any internally generated values that are not returned */ if (p1 == NULL) BN_clear(p1i); if (p2 == NULL) BN_clear(p2i); if (Xp1 == NULL) BN_clear(Xp1i); if (Xp2 == NULL) BN_clear(Xp2i); BN_CTX_end(ctx); return ret; } /* * Constructs a probable prime (a candidate for p or q) using 2 auxiliary * prime numbers and the Chinese Remainder Theorem. * * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q. * * Params: * Y The returned prime factor (private_prime_factor) of the modulus n. * X The returned random number used during generation of the prime factor. * Xin An optional passed in value for X used for testing purposes. * r1 An auxiliary prime. * r2 An auxiliary prime. * nlen The desired length of n (the RSA modulus). * e The public exponent. * ctx A BN_CTX object. * cb An optional BIGNUM callback object. * Returns: 1 on success otherwise it returns 0. * Assumptions: * Y, X, r1, r2, e are not NULL. */ int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin, const BIGNUM *r1, const BIGNUM *r2, int nlen, const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) { int ret = 0; int i, imax; int bits = nlen >> 1; BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2; BIGNUM *base, *range; BN_CTX_start(ctx); base = BN_CTX_get(ctx); range = BN_CTX_get(ctx); R = BN_CTX_get(ctx); tmp = BN_CTX_get(ctx); r1r2x2 = BN_CTX_get(ctx); y1 = BN_CTX_get(ctx); r1x2 = BN_CTX_get(ctx); if (r1x2 == NULL) goto err; if (Xin != NULL && BN_copy(X, Xin) == NULL) goto err; /* * We need to generate a random number X in the range * 1/sqrt(2) * 2^(nlen/2) <= X < 2^(nlen/2). * We can rewrite that as: * base = 1/sqrt(2) * 2^(nlen/2) * range = ((2^(nlen/2))) - (1/sqrt(2) * 2^(nlen/2)) * X = base + random(range) * We only have the first 256 bit of 1/sqrt(2) */ if (Xin == NULL) { if (bits < BN_num_bits(&bn_inv_sqrt_2)) goto err; if (!BN_lshift(base, &bn_inv_sqrt_2, bits - BN_num_bits(&bn_inv_sqrt_2)) || !BN_lshift(range, BN_value_one(), bits) || !BN_sub(range, range, base)) goto err; } if (!(BN_lshift1(r1x2, r1) /* (Step 1) GCD(2r1, r2) = 1 */ && BN_gcd(tmp, r1x2, r2, ctx) && BN_is_one(tmp) /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */ && BN_mod_inverse(R, r2, r1x2, ctx) && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */ && BN_mod_inverse(tmp, r1x2, r2, ctx) && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */ && BN_sub(R, R, tmp) /* Calculate 2r1r2 */ && BN_mul(r1r2x2, r1x2, r2, ctx))) goto err; /* Make positive by adding the modulus */ if (BN_is_negative(R) && !BN_add(R, R, r1r2x2)) goto err; imax = 5 * bits; /* max = 5/2 * nbits */ for (;;) { if (Xin == NULL) { /* * (Step 3) Choose Random X such that * sqrt(2) * 2^(nlen/2-1) <= Random X <= (2^(nlen/2)) - 1. */ if (!BN_priv_rand_range_ex(X, range, ctx) || !BN_add(X, X, base)) goto end; } /* (Step 4) Y = X + ((R - X) mod 2r1r2) */ if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X)) goto err; /* (Step 5) */ i = 0; for (;;) { /* (Step 6) */ if (BN_num_bits(Y) > bits) { if (Xin == NULL) break; /* Randomly Generated X so Go back to Step 3 */ else goto err; /* X is not random so it will always fail */ } BN_GENCB_call(cb, 0, 2); /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */ if (BN_copy(y1, Y) == NULL || !BN_sub_word(y1, 1) || !BN_gcd(tmp, y1, e, ctx)) goto err; if (BN_is_one(tmp) && BN_check_prime(Y, ctx, cb)) goto end; /* (Step 8-10) */ if (++i >= imax || !BN_add(Y, Y, r1r2x2)) goto err; } } end: ret = 1; BN_GENCB_call(cb, 3, 0); err: BN_clear(y1); BN_CTX_end(ctx); return ret; }