/* * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* We need to use some engine deprecated APIs */ #define OPENSSL_SUPPRESS_DEPRECATED #include #include "crypto/ctype.h" #include #include "internal/cryptlib.h" #include #include #include #include #include #include #include #include "crypto/asn1.h" #include #include #define MIN_LENGTH 4 static int load_iv(char **fromp, unsigned char *to, int num); static int check_pem(const char *nm, const char *name); int ossl_pem_check_suffix(const char *pem_str, const char *suffix); int PEM_def_callback(char *buf, int num, int rwflag, void *userdata) { int i, min_len; const char *prompt; /* We assume that the user passes a default password as userdata */ if (userdata) { i = strlen(userdata); i = (i > num) ? num : i; memcpy(buf, userdata, i); return i; } prompt = EVP_get_pw_prompt(); if (prompt == NULL) prompt = "Enter PEM pass phrase:"; /* * rwflag == 0 means decryption * rwflag == 1 means encryption * * We assume that for encryption, we want a minimum length, while for * decryption, we cannot know any minimum length, so we assume zero. */ min_len = rwflag ? MIN_LENGTH : 0; i = EVP_read_pw_string_min(buf, min_len, num, prompt, rwflag); if (i != 0) { ERR_raise(ERR_LIB_PEM, PEM_R_PROBLEMS_GETTING_PASSWORD); memset(buf, 0, (unsigned int)num); return -1; } return strlen(buf); } void PEM_proc_type(char *buf, int type) { const char *str; char *p = buf + strlen(buf); if (type == PEM_TYPE_ENCRYPTED) str = "ENCRYPTED"; else if (type == PEM_TYPE_MIC_CLEAR) str = "MIC-CLEAR"; else if (type == PEM_TYPE_MIC_ONLY) str = "MIC-ONLY"; else str = "BAD-TYPE"; BIO_snprintf(p, PEM_BUFSIZE - (size_t)(p - buf), "Proc-Type: 4,%s\n", str); } void PEM_dek_info(char *buf, const char *type, int len, const char *str) { long i; char *p = buf + strlen(buf); int j = PEM_BUFSIZE - (size_t)(p - buf), n; n = BIO_snprintf(p, j, "DEK-Info: %s,", type); if (n > 0) { j -= n; p += n; for (i = 0; i < len; i++) { n = BIO_snprintf(p, j, "%02X", 0xff & str[i]); if (n <= 0) return; j -= n; p += n; } if (j > 1) strcpy(p, "\n"); } } #ifndef OPENSSL_NO_STDIO void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x, pem_password_cb *cb, void *u) { BIO *b; void *ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u); BIO_free(b); return ret; } #endif static int check_pem(const char *nm, const char *name) { /* Normal matching nm and name */ if (strcmp(nm, name) == 0) return 1; /* Make PEM_STRING_EVP_PKEY match any private key */ if (strcmp(name, PEM_STRING_EVP_PKEY) == 0) { int slen; const EVP_PKEY_ASN1_METHOD *ameth; if (strcmp(nm, PEM_STRING_PKCS8) == 0) return 1; if (strcmp(nm, PEM_STRING_PKCS8INF) == 0) return 1; slen = ossl_pem_check_suffix(nm, "PRIVATE KEY"); if (slen > 0) { /* * NB: ENGINE implementations won't contain a deprecated old * private key decode function so don't look for them. */ ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen); if (ameth && ameth->old_priv_decode) return 1; } return 0; } if (strcmp(name, PEM_STRING_PARAMETERS) == 0) { int slen; const EVP_PKEY_ASN1_METHOD *ameth; slen = ossl_pem_check_suffix(nm, "PARAMETERS"); if (slen > 0) { ENGINE *e; ameth = EVP_PKEY_asn1_find_str(&e, nm, slen); if (ameth) { int r; if (ameth->param_decode) r = 1; else r = 0; #ifndef OPENSSL_NO_ENGINE ENGINE_finish(e); #endif return r; } } return 0; } /* If reading DH parameters handle X9.42 DH format too */ if (strcmp(nm, PEM_STRING_DHXPARAMS) == 0 && strcmp(name, PEM_STRING_DHPARAMS) == 0) return 1; /* Permit older strings */ if (strcmp(nm, PEM_STRING_X509_OLD) == 0 && strcmp(name, PEM_STRING_X509) == 0) return 1; if (strcmp(nm, PEM_STRING_X509_REQ_OLD) == 0 && strcmp(name, PEM_STRING_X509_REQ) == 0) return 1; /* Allow normal certs to be read as trusted certs */ if (strcmp(nm, PEM_STRING_X509) == 0 && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) return 1; if (strcmp(nm, PEM_STRING_X509_OLD) == 0 && strcmp(name, PEM_STRING_X509_TRUSTED) == 0) return 1; /* Some CAs use PKCS#7 with CERTIFICATE headers */ if (strcmp(nm, PEM_STRING_X509) == 0 && strcmp(name, PEM_STRING_PKCS7) == 0) return 1; if (strcmp(nm, PEM_STRING_PKCS7_SIGNED) == 0 && strcmp(name, PEM_STRING_PKCS7) == 0) return 1; #ifndef OPENSSL_NO_CMS if (strcmp(nm, PEM_STRING_X509) == 0 && strcmp(name, PEM_STRING_CMS) == 0) return 1; /* Allow CMS to be read from PKCS#7 headers */ if (strcmp(nm, PEM_STRING_PKCS7) == 0 && strcmp(name, PEM_STRING_CMS) == 0) return 1; #endif return 0; } static void pem_free(void *p, unsigned int flags, size_t num) { if (flags & PEM_FLAG_SECURE) OPENSSL_secure_clear_free(p, num); else OPENSSL_free(p); } static void *pem_malloc(int num, unsigned int flags) { return (flags & PEM_FLAG_SECURE) ? OPENSSL_secure_malloc(num) : OPENSSL_malloc(num); } static int pem_bytes_read_bio_flags(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, pem_password_cb *cb, void *u, unsigned int flags) { EVP_CIPHER_INFO cipher; char *nm = NULL, *header = NULL; unsigned char *data = NULL; long len = 0; int ret = 0; do { pem_free(nm, flags, 0); pem_free(header, flags, 0); pem_free(data, flags, len); if (!PEM_read_bio_ex(bp, &nm, &header, &data, &len, flags)) { if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE) ERR_add_error_data(2, "Expecting: ", name); return 0; } } while (!check_pem(nm, name)); if (!PEM_get_EVP_CIPHER_INFO(header, &cipher)) goto err; if (!PEM_do_header(&cipher, data, &len, cb, u)) goto err; *pdata = data; *plen = len; if (pnm != NULL) *pnm = nm; ret = 1; err: if (!ret || pnm == NULL) pem_free(nm, flags, 0); pem_free(header, flags, 0); if (!ret) pem_free(data, flags, len); return ret; } int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, pem_password_cb *cb, void *u) { return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, PEM_FLAG_EAY_COMPATIBLE); } int PEM_bytes_read_bio_secmem(unsigned char **pdata, long *plen, char **pnm, const char *name, BIO *bp, pem_password_cb *cb, void *u) { return pem_bytes_read_bio_flags(pdata, plen, pnm, name, bp, cb, u, PEM_FLAG_SECURE | PEM_FLAG_EAY_COMPATIBLE); } #ifndef OPENSSL_NO_STDIO int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp, const void *x, const EVP_CIPHER *enc, const unsigned char *kstr, int klen, pem_password_cb *callback, void *u) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u); BIO_free(b); return ret; } #endif int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp, const void *x, const EVP_CIPHER *enc, const unsigned char *kstr, int klen, pem_password_cb *callback, void *u) { EVP_CIPHER_CTX *ctx = NULL; int dsize = 0, i = 0, j = 0, ret = 0; unsigned char *p, *data = NULL; const char *objstr = NULL; char buf[PEM_BUFSIZE]; unsigned char key[EVP_MAX_KEY_LENGTH]; unsigned char iv[EVP_MAX_IV_LENGTH]; if (enc != NULL) { objstr = EVP_CIPHER_name(enc); if (objstr == NULL || EVP_CIPHER_iv_length(enc) == 0 || EVP_CIPHER_iv_length(enc) > (int)sizeof(iv) /* * Check "Proc-Type: 4,Encrypted\nDEK-Info: objstr,hex-iv\n" * fits into buf */ || (strlen(objstr) + 23 + 2 * EVP_CIPHER_iv_length(enc) + 13) > sizeof(buf)) { ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_CIPHER); goto err; } } if ((dsize = i2d(x, NULL)) <= 0) { ERR_raise(ERR_LIB_PEM, ERR_R_ASN1_LIB); dsize = 0; goto err; } /* dsize + 8 bytes are needed */ /* actually it needs the cipher block size extra... */ data = OPENSSL_malloc((unsigned int)dsize + 20); if (data == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); goto err; } p = data; i = i2d(x, &p); if (enc != NULL) { if (kstr == NULL) { if (callback == NULL) klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u); else klen = (*callback) (buf, PEM_BUFSIZE, 1, u); if (klen <= 0) { ERR_raise(ERR_LIB_PEM, PEM_R_READ_KEY); goto err; } #ifdef CHARSET_EBCDIC /* Convert the pass phrase from EBCDIC */ ebcdic2ascii(buf, buf, klen); #endif kstr = (unsigned char *)buf; } if (RAND_bytes(iv, EVP_CIPHER_iv_length(enc)) <= 0) /* Generate a salt */ goto err; /* * The 'iv' is used as the iv and as a salt. It is NOT taken from * the BytesToKey function */ if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL)) goto err; if (kstr == (unsigned char *)buf) OPENSSL_cleanse(buf, PEM_BUFSIZE); buf[0] = '\0'; PEM_proc_type(buf, PEM_TYPE_ENCRYPTED); PEM_dek_info(buf, objstr, EVP_CIPHER_iv_length(enc), (char *)iv); /* k=strlen(buf); */ ret = 1; if ((ctx = EVP_CIPHER_CTX_new()) == NULL || !EVP_EncryptInit_ex(ctx, enc, NULL, key, iv) || !EVP_EncryptUpdate(ctx, data, &j, data, i) || !EVP_EncryptFinal_ex(ctx, &(data[j]), &i)) ret = 0; if (ret == 0) goto err; i += j; } else { ret = 1; buf[0] = '\0'; } i = PEM_write_bio(bp, name, buf, data, i); if (i <= 0) ret = 0; err: OPENSSL_cleanse(key, sizeof(key)); OPENSSL_cleanse(iv, sizeof(iv)); EVP_CIPHER_CTX_free(ctx); OPENSSL_cleanse(buf, PEM_BUFSIZE); OPENSSL_clear_free(data, (unsigned int)dsize); return ret; } int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen, pem_password_cb *callback, void *u) { int ok; int keylen; long len = *plen; int ilen = (int) len; /* EVP_DecryptUpdate etc. take int lengths */ EVP_CIPHER_CTX *ctx; unsigned char key[EVP_MAX_KEY_LENGTH]; char buf[PEM_BUFSIZE]; #if LONG_MAX > INT_MAX /* Check that we did not truncate the length */ if (len > INT_MAX) { ERR_raise(ERR_LIB_PEM, PEM_R_HEADER_TOO_LONG); return 0; } #endif if (cipher->cipher == NULL) return 1; if (callback == NULL) keylen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u); else keylen = callback(buf, PEM_BUFSIZE, 0, u); if (keylen < 0) { ERR_raise(ERR_LIB_PEM, PEM_R_BAD_PASSWORD_READ); return 0; } #ifdef CHARSET_EBCDIC /* Convert the pass phrase from EBCDIC */ ebcdic2ascii(buf, buf, keylen); #endif if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]), (unsigned char *)buf, keylen, 1, key, NULL)) return 0; ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) return 0; ok = EVP_DecryptInit_ex(ctx, cipher->cipher, NULL, key, &(cipher->iv[0])); if (ok) ok = EVP_DecryptUpdate(ctx, data, &ilen, data, ilen); if (ok) { /* Squirrel away the length of data decrypted so far. */ *plen = ilen; ok = EVP_DecryptFinal_ex(ctx, &(data[ilen]), &ilen); } if (ok) *plen += ilen; else ERR_raise(ERR_LIB_PEM, PEM_R_BAD_DECRYPT); EVP_CIPHER_CTX_free(ctx); OPENSSL_cleanse((char *)buf, sizeof(buf)); OPENSSL_cleanse((char *)key, sizeof(key)); return ok; } /* * This implements a very limited PEM header parser that does not support the * full grammar of rfc1421. In particular, folded headers are not supported, * nor is additional whitespace. * * A robust implementation would make use of a library that turns the headers * into a BIO from which one folded line is read at a time, and is then split * into a header label and content. We would then parse the content of the * headers we care about. This is overkill for just this limited use-case, but * presumably we also parse rfc822-style headers for S/MIME, so a common * abstraction might well be more generally useful. */ int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher) { static const char ProcType[] = "Proc-Type:"; static const char ENCRYPTED[] = "ENCRYPTED"; static const char DEKInfo[] = "DEK-Info:"; const EVP_CIPHER *enc = NULL; int ivlen; char *dekinfostart, c; cipher->cipher = NULL; memset(cipher->iv, 0, sizeof(cipher->iv)); if ((header == NULL) || (*header == '\0') || (*header == '\n')) return 1; if (strncmp(header, ProcType, sizeof(ProcType)-1) != 0) { ERR_raise(ERR_LIB_PEM, PEM_R_NOT_PROC_TYPE); return 0; } header += sizeof(ProcType)-1; header += strspn(header, " \t"); if (*header++ != '4' || *header++ != ',') return 0; header += strspn(header, " \t"); /* We expect "ENCRYPTED" followed by optional white-space + line break */ if (strncmp(header, ENCRYPTED, sizeof(ENCRYPTED)-1) != 0 || strspn(header+sizeof(ENCRYPTED)-1, " \t\r\n") == 0) { ERR_raise(ERR_LIB_PEM, PEM_R_NOT_ENCRYPTED); return 0; } header += sizeof(ENCRYPTED)-1; header += strspn(header, " \t\r"); if (*header++ != '\n') { ERR_raise(ERR_LIB_PEM, PEM_R_SHORT_HEADER); return 0; } /*- * https://tools.ietf.org/html/rfc1421#section-4.6.1.3 * We expect "DEK-Info: algo[,hex-parameters]" */ if (strncmp(header, DEKInfo, sizeof(DEKInfo)-1) != 0) { ERR_raise(ERR_LIB_PEM, PEM_R_NOT_DEK_INFO); return 0; } header += sizeof(DEKInfo)-1; header += strspn(header, " \t"); /* * DEK-INFO is a comma-separated combination of algorithm name and optional * parameters. */ dekinfostart = header; header += strcspn(header, " \t,"); c = *header; *header = '\0'; cipher->cipher = enc = EVP_get_cipherbyname(dekinfostart); *header = c; header += strspn(header, " \t"); if (enc == NULL) { ERR_raise(ERR_LIB_PEM, PEM_R_UNSUPPORTED_ENCRYPTION); return 0; } ivlen = EVP_CIPHER_iv_length(enc); if (ivlen > 0 && *header++ != ',') { ERR_raise(ERR_LIB_PEM, PEM_R_MISSING_DEK_IV); return 0; } else if (ivlen == 0 && *header == ',') { ERR_raise(ERR_LIB_PEM, PEM_R_UNEXPECTED_DEK_IV); return 0; } if (!load_iv(&header, cipher->iv, EVP_CIPHER_iv_length(enc))) return 0; return 1; } static int load_iv(char **fromp, unsigned char *to, int num) { int v, i; char *from; from = *fromp; for (i = 0; i < num; i++) to[i] = 0; num *= 2; for (i = 0; i < num; i++) { v = OPENSSL_hexchar2int(*from); if (v < 0) { ERR_raise(ERR_LIB_PEM, PEM_R_BAD_IV_CHARS); return 0; } from++; to[i / 2] |= v << (long)((!(i & 1)) * 4); } *fromp = from; return 1; } #ifndef OPENSSL_NO_STDIO int PEM_write(FILE *fp, const char *name, const char *header, const unsigned char *data, long len) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_write_bio(b, name, header, data, len); BIO_free(b); return ret; } #endif int PEM_write_bio(BIO *bp, const char *name, const char *header, const unsigned char *data, long len) { int nlen, n, i, j, outl; unsigned char *buf = NULL; EVP_ENCODE_CTX *ctx = EVP_ENCODE_CTX_new(); int reason = ERR_R_BUF_LIB; int retval = 0; if (ctx == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } EVP_EncodeInit(ctx); nlen = strlen(name); if ((BIO_write(bp, "-----BEGIN ", 11) != 11) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) goto err; i = strlen(header); if (i > 0) { if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1)) goto err; } buf = OPENSSL_malloc(PEM_BUFSIZE * 8); if (buf == NULL) { reason = ERR_R_MALLOC_FAILURE; goto err; } i = j = 0; while (len > 0) { n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len); if (!EVP_EncodeUpdate(ctx, buf, &outl, &(data[j]), n)) goto err; if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl)) goto err; i += outl; len -= n; j += n; } EVP_EncodeFinal(ctx, buf, &outl); if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl)) goto err; if ((BIO_write(bp, "-----END ", 9) != 9) || (BIO_write(bp, name, nlen) != nlen) || (BIO_write(bp, "-----\n", 6) != 6)) goto err; retval = i + outl; err: if (retval == 0) ERR_raise(ERR_LIB_PEM, reason); EVP_ENCODE_CTX_free(ctx); OPENSSL_clear_free(buf, PEM_BUFSIZE * 8); return retval; } #ifndef OPENSSL_NO_STDIO int PEM_read(FILE *fp, char **name, char **header, unsigned char **data, long *len) { BIO *b; int ret; if ((b = BIO_new(BIO_s_file())) == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_BUF_LIB); return 0; } BIO_set_fp(b, fp, BIO_NOCLOSE); ret = PEM_read_bio(b, name, header, data, len); BIO_free(b); return ret; } #endif /* Some helpers for PEM_read_bio_ex(). */ static int sanitize_line(char *linebuf, int len, unsigned int flags, int first_call) { int i; if (first_call) { /* Other BOMs imply unsupported multibyte encoding, * so don't strip them and let the error raise */ const unsigned char utf8_bom[3] = {0xEF, 0xBB, 0xBF}; if (len > 3 && memcmp(linebuf, utf8_bom, 3) == 0) { memmove(linebuf, linebuf + 3, len - 3); linebuf[len - 3] = 0; len -= 3; } } if (flags & PEM_FLAG_EAY_COMPATIBLE) { /* Strip trailing whitespace */ while ((len >= 0) && (linebuf[len] <= ' ')) len--; /* Go back to whitespace before applying uniform line ending. */ len++; } else if (flags & PEM_FLAG_ONLY_B64) { for (i = 0; i < len; ++i) { if (!ossl_isbase64(linebuf[i]) || linebuf[i] == '\n' || linebuf[i] == '\r') break; } len = i; } else { /* EVP_DecodeBlock strips leading and trailing whitespace, so just strip * control characters in-place and let everything through. */ for (i = 0; i < len; ++i) { if (linebuf[i] == '\n' || linebuf[i] == '\r') break; if (ossl_iscntrl(linebuf[i])) linebuf[i] = ' '; } len = i; } /* The caller allocated LINESIZE+1, so this is safe. */ linebuf[len++] = '\n'; linebuf[len] = '\0'; return len; } #define LINESIZE 255 /* Note trailing spaces for begin and end. */ static const char beginstr[] = "-----BEGIN "; static const char endstr[] = "-----END "; static const char tailstr[] = "-----\n"; #define BEGINLEN ((int)(sizeof(beginstr) - 1)) #define ENDLEN ((int)(sizeof(endstr) - 1)) #define TAILLEN ((int)(sizeof(tailstr) - 1)) static int get_name(BIO *bp, char **name, unsigned int flags) { char *linebuf; int ret = 0; int len; int first_call = 1; /* * Need to hold trailing NUL (accounted for by BIO_gets() and the newline * that will be added by sanitize_line() (the extra '1'). */ linebuf = pem_malloc(LINESIZE + 1, flags); if (linebuf == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); return 0; } do { len = BIO_gets(bp, linebuf, LINESIZE); if (len <= 0) { ERR_raise(ERR_LIB_PEM, PEM_R_NO_START_LINE); goto err; } /* Strip trailing garbage and standardize ending. */ len = sanitize_line(linebuf, len, flags & ~PEM_FLAG_ONLY_B64, first_call); first_call = 0; /* Allow leading empty or non-matching lines. */ } while (strncmp(linebuf, beginstr, BEGINLEN) != 0 || len < TAILLEN || strncmp(linebuf + len - TAILLEN, tailstr, TAILLEN) != 0); linebuf[len - TAILLEN] = '\0'; len = len - BEGINLEN - TAILLEN + 1; *name = pem_malloc(len, flags); if (*name == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); goto err; } memcpy(*name, linebuf + BEGINLEN, len); ret = 1; err: pem_free(linebuf, flags, LINESIZE + 1); return ret; } /* Keep track of how much of a header we've seen. */ enum header_status { MAYBE_HEADER, IN_HEADER, POST_HEADER }; /** * Extract the optional PEM header, with details on the type of content and * any encryption used on the contents, and the bulk of the data from the bio. * The end of the header is marked by a blank line; if the end-of-input marker * is reached prior to a blank line, there is no header. * * The header and data arguments are BIO** since we may have to swap them * if there is no header, for efficiency. * * We need the name of the PEM-encoded type to verify the end string. */ static int get_header_and_data(BIO *bp, BIO **header, BIO **data, char *name, unsigned int flags) { BIO *tmp = *header; char *linebuf, *p; int len, line, ret = 0, end = 0, prev_partial_line_read = 0, partial_line_read = 0; /* 0 if not seen (yet), 1 if reading header, 2 if finished header */ enum header_status got_header = MAYBE_HEADER; unsigned int flags_mask; size_t namelen; /* Need to hold trailing NUL (accounted for by BIO_gets() and the newline * that will be added by sanitize_line() (the extra '1'). */ linebuf = pem_malloc(LINESIZE + 1, flags); if (linebuf == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); return 0; } for (line = 0; ; line++) { flags_mask = ~0u; len = BIO_gets(bp, linebuf, LINESIZE); if (len <= 0) { ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); goto err; } /* * Check if line has been read completely or if only part of the line * has been read. Keep the previous value to ignore newlines that * appear due to reading a line up until the char before the newline. */ prev_partial_line_read = partial_line_read; partial_line_read = len == LINESIZE-1 && linebuf[LINESIZE-2] != '\n'; if (got_header == MAYBE_HEADER) { if (memchr(linebuf, ':', len) != NULL) got_header = IN_HEADER; } if (!strncmp(linebuf, endstr, ENDLEN) || got_header == IN_HEADER) flags_mask &= ~PEM_FLAG_ONLY_B64; len = sanitize_line(linebuf, len, flags & flags_mask, 0); /* Check for end of header. */ if (linebuf[0] == '\n') { /* * If previous line has been read only partially this newline is a * regular newline at the end of a line and not an empty line. */ if (!prev_partial_line_read) { if (got_header == POST_HEADER) { /* Another blank line is an error. */ ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); goto err; } got_header = POST_HEADER; tmp = *data; } continue; } /* Check for end of stream (which means there is no header). */ if (strncmp(linebuf, endstr, ENDLEN) == 0) { p = linebuf + ENDLEN; namelen = strlen(name); if (strncmp(p, name, namelen) != 0 || strncmp(p + namelen, tailstr, TAILLEN) != 0) { ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); goto err; } if (got_header == MAYBE_HEADER) { *header = *data; *data = tmp; } break; } else if (end) { /* Malformed input; short line not at end of data. */ ERR_raise(ERR_LIB_PEM, PEM_R_BAD_END_LINE); goto err; } /* * Else, a line of text -- could be header or data; we don't * know yet. Just pass it through. */ if (BIO_puts(tmp, linebuf) < 0) goto err; /* * Only encrypted files need the line length check applied. */ if (got_header == POST_HEADER) { /* 65 includes the trailing newline */ if (len > 65) goto err; if (len < 65) end = 1; } } ret = 1; err: pem_free(linebuf, flags, LINESIZE + 1); return ret; } /** * Read in PEM-formatted data from the given BIO. * * By nature of the PEM format, all content must be printable ASCII (except * for line endings). Other characters are malformed input and will be rejected. */ int PEM_read_bio_ex(BIO *bp, char **name_out, char **header, unsigned char **data, long *len_out, unsigned int flags) { EVP_ENCODE_CTX *ctx = NULL; const BIO_METHOD *bmeth; BIO *headerB = NULL, *dataB = NULL; char *name = NULL; int len, taillen, headerlen, ret = 0; BUF_MEM * buf_mem; *len_out = 0; *name_out = *header = NULL; *data = NULL; if ((flags & PEM_FLAG_EAY_COMPATIBLE) && (flags & PEM_FLAG_ONLY_B64)) { /* These two are mutually incompatible; bail out. */ ERR_raise(ERR_LIB_PEM, ERR_R_PASSED_INVALID_ARGUMENT); goto end; } bmeth = (flags & PEM_FLAG_SECURE) ? BIO_s_secmem() : BIO_s_mem(); headerB = BIO_new(bmeth); dataB = BIO_new(bmeth); if (headerB == NULL || dataB == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); goto end; } if (!get_name(bp, &name, flags)) goto end; if (!get_header_and_data(bp, &headerB, &dataB, name, flags)) goto end; BIO_get_mem_ptr(dataB, &buf_mem); len = buf_mem->length; /* There was no data in the PEM file */ if (len == 0) goto end; ctx = EVP_ENCODE_CTX_new(); if (ctx == NULL) { ERR_raise(ERR_LIB_PEM, ERR_R_MALLOC_FAILURE); goto end; } EVP_DecodeInit(ctx); if (EVP_DecodeUpdate(ctx, (unsigned char*)buf_mem->data, &len, (unsigned char*)buf_mem->data, len) < 0 || EVP_DecodeFinal(ctx, (unsigned char*)&(buf_mem->data[len]), &taillen) < 0) { ERR_raise(ERR_LIB_PEM, PEM_R_BAD_BASE64_DECODE); goto end; } len += taillen; buf_mem->length = len; headerlen = BIO_get_mem_data(headerB, NULL); *header = pem_malloc(headerlen + 1, flags); *data = pem_malloc(len, flags); if (*header == NULL || *data == NULL) { pem_free(*header, flags, 0); pem_free(*data, flags, 0); goto end; } BIO_read(headerB, *header, headerlen); (*header)[headerlen] = '\0'; BIO_read(dataB, *data, len); *len_out = len; *name_out = name; name = NULL; ret = 1; end: EVP_ENCODE_CTX_free(ctx); pem_free(name, flags, 0); BIO_free(headerB); BIO_free(dataB); return ret; } int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data, long *len) { return PEM_read_bio_ex(bp, name, header, data, len, PEM_FLAG_EAY_COMPATIBLE); } /* * Check pem string and return prefix length. If for example the pem_str == * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the * string "RSA". */ int ossl_pem_check_suffix(const char *pem_str, const char *suffix) { int pem_len = strlen(pem_str); int suffix_len = strlen(suffix); const char *p; if (suffix_len + 1 >= pem_len) return 0; p = pem_str + pem_len - suffix_len; if (strcmp(p, suffix)) return 0; p--; if (*p != ' ') return 0; return p - pem_str; }