/* * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include #include #include "ssl_locl.h" #include SSL3_ENC_METHOD const TLSv1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, 0, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_1_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_2_enc_data = { tls1_enc, tls1_mac, tls1_setup_key_block, tls1_generate_master_secret, tls1_change_cipher_state, tls1_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls1_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF | SSL_ENC_FLAG_TLS1_2_CIPHERS, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; SSL3_ENC_METHOD const TLSv1_3_enc_data = { tls13_enc, tls1_mac, tls13_setup_key_block, tls13_generate_master_secret, tls13_change_cipher_state, tls13_final_finish_mac, TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, tls13_alert_code, tls1_export_keying_material, SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, ssl3_set_handshake_header, tls_close_construct_packet, ssl3_handshake_write }; long tls1_default_timeout(void) { /* * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for * http, the cache would over fill */ return (60 * 60 * 2); } int tls1_new(SSL *s) { if (!ssl3_new(s)) return (0); s->method->ssl_clear(s); return (1); } void tls1_free(SSL *s) { OPENSSL_free(s->ext.session_ticket); ssl3_free(s); } void tls1_clear(SSL *s) { ssl3_clear(s); if (s->method->version == TLS_ANY_VERSION) s->version = TLS_MAX_VERSION; else s->version = s->method->version; } #ifndef OPENSSL_NO_EC typedef struct { int nid; /* Curve NID */ int secbits; /* Bits of security (from SP800-57) */ unsigned int flags; /* Flags: currently just field type */ } tls_curve_info; /* * Table of curve information. * Do not delete entries or reorder this array! It is used as a lookup * table: the index of each entry is one less than the TLS curve id. */ static const tls_curve_info nid_list[] = { {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */ {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */ {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */ {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */ {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */ {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */ {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */ {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */ {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */ {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */ {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */ {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */ {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */ {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */ {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */ {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */ {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */ {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */ {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */ {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */ {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */ {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */ {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */ {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */ {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */ {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */ {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */ {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */ {NID_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */ }; static const unsigned char ecformats_default[] = { TLSEXT_ECPOINTFORMAT_uncompressed, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 }; /* The default curves */ static const unsigned char eccurves_default[] = { 0, 29, /* X25519 (29) */ 0, 23, /* secp256r1 (23) */ 0, 25, /* secp521r1 (25) */ 0, 24, /* secp384r1 (24) */ }; static const unsigned char suiteb_curves[] = { 0, TLSEXT_curve_P_256, 0, TLSEXT_curve_P_384 }; int tls1_ec_curve_id2nid(int curve_id, unsigned int *pflags) { const tls_curve_info *cinfo; /* ECC curves from RFC 4492 and RFC 7027 */ if ((curve_id < 1) || ((unsigned int)curve_id > OSSL_NELEM(nid_list))) return 0; cinfo = nid_list + curve_id - 1; if (pflags) *pflags = cinfo->flags; return cinfo->nid; } int tls1_ec_nid2curve_id(int nid) { size_t i; for (i = 0; i < OSSL_NELEM(nid_list); i++) { if (nid_list[i].nid == nid) return (int)(i + 1); } return 0; } /* * Get curves list, if "sess" is set return client curves otherwise * preferred list. * Sets |num_curves| to the number of curves in the list, i.e., * the length of |pcurves| is 2 * num_curves. * Returns 1 on success and 0 if the client curves list has invalid format. * The latter indicates an internal error: we should not be accepting such * lists in the first place. * TODO(emilia): we should really be storing the curves list in explicitly * parsed form instead. (However, this would affect binary compatibility * so cannot happen in the 1.0.x series.) */ int tls1_get_curvelist(SSL *s, int sess, const unsigned char **pcurves, size_t *num_curves) { size_t pcurveslen = 0; if (sess) { *pcurves = s->session->ext.supportedgroups; pcurveslen = s->session->ext.supportedgroups_len; } else { /* For Suite B mode only include P-256, P-384 */ switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *pcurves = suiteb_curves; pcurveslen = sizeof(suiteb_curves); break; case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *pcurves = suiteb_curves; pcurveslen = 2; break; case SSL_CERT_FLAG_SUITEB_192_LOS: *pcurves = suiteb_curves + 2; pcurveslen = 2; break; default: *pcurves = s->ext.supportedgroups; pcurveslen = s->ext.supportedgroups_len; } if (!*pcurves) { *pcurves = eccurves_default; pcurveslen = sizeof(eccurves_default); } } /* We do not allow odd length arrays to enter the system. */ if (pcurveslen & 1) { SSLerr(SSL_F_TLS1_GET_CURVELIST, ERR_R_INTERNAL_ERROR); *num_curves = 0; return 0; } *num_curves = pcurveslen / 2; return 1; } /* See if curve is allowed by security callback */ int tls_curve_allowed(SSL *s, const unsigned char *curve, int op) { const tls_curve_info *cinfo; if (curve[0]) return 1; if ((curve[1] < 1) || ((size_t)curve[1] > OSSL_NELEM(nid_list))) return 0; cinfo = &nid_list[curve[1] - 1]; # ifdef OPENSSL_NO_EC2M if (cinfo->flags & TLS_CURVE_CHAR2) return 0; # endif return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)curve); } /* Check a curve is one of our preferences */ int tls1_check_curve(SSL *s, const unsigned char *p, size_t len) { const unsigned char *curves; size_t num_curves, i; unsigned int suiteb_flags = tls1_suiteb(s); if (len != 3 || p[0] != NAMED_CURVE_TYPE) return 0; /* Check curve matches Suite B preferences */ if (suiteb_flags) { unsigned long cid = s->s3->tmp.new_cipher->id; if (p[1]) return 0; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { if (p[2] != TLSEXT_curve_P_256) return 0; } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { if (p[2] != TLSEXT_curve_P_384) return 0; } else /* Should never happen */ return 0; } if (!tls1_get_curvelist(s, 0, &curves, &num_curves)) return 0; for (i = 0; i < num_curves; i++, curves += 2) { if (p[1] == curves[0] && p[2] == curves[1]) return tls_curve_allowed(s, p + 1, SSL_SECOP_CURVE_CHECK); } return 0; } /*- * For nmatch >= 0, return the NID of the |nmatch|th shared group or NID_undef * if there is no match. * For nmatch == -1, return number of matches * For nmatch == -2, return the NID of the group to use for * an EC tmp key, or NID_undef if there is no match. */ int tls1_shared_group(SSL *s, int nmatch) { const unsigned char *pref, *supp; size_t num_pref, num_supp, i, j; int k; /* Can't do anything on client side */ if (s->server == 0) return -1; if (nmatch == -2) { if (tls1_suiteb(s)) { /* * For Suite B ciphersuite determines curve: we already know * these are acceptable due to previous checks. */ unsigned long cid = s->s3->tmp.new_cipher->id; if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) return NID_X9_62_prime256v1; /* P-256 */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) return NID_secp384r1; /* P-384 */ /* Should never happen */ return NID_undef; } /* If not Suite B just return first preference shared curve */ nmatch = 0; } /* * Avoid truncation. tls1_get_curvelist takes an int * but s->options is a long... */ if (!tls1_get_curvelist(s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) != 0, &supp, &num_supp)) /* In practice, NID_undef == 0 but let's be precise. */ return nmatch == -1 ? 0 : NID_undef; if (!tls1_get_curvelist(s, (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) == 0, &pref, &num_pref)) return nmatch == -1 ? 0 : NID_undef; for (k = 0, i = 0; i < num_pref; i++, pref += 2) { const unsigned char *tsupp = supp; for (j = 0; j < num_supp; j++, tsupp += 2) { if (pref[0] == tsupp[0] && pref[1] == tsupp[1]) { if (!tls_curve_allowed(s, pref, SSL_SECOP_CURVE_SHARED)) continue; if (nmatch == k) { int id = (pref[0] << 8) | pref[1]; return tls1_ec_curve_id2nid(id, NULL); } k++; } } } if (nmatch == -1) return k; /* Out of range (nmatch > k). */ return NID_undef; } int tls1_set_groups(unsigned char **pext, size_t *pextlen, int *groups, size_t ngroups) { unsigned char *glist, *p; size_t i; /* * Bitmap of groups included to detect duplicates: only works while group * ids < 32 */ unsigned long dup_list = 0; glist = OPENSSL_malloc(ngroups * 2); if (glist == NULL) return 0; for (i = 0, p = glist; i < ngroups; i++) { unsigned long idmask; int id; /* TODO(TLS1.3): Convert for DH groups */ id = tls1_ec_nid2curve_id(groups[i]); idmask = 1L << id; if (!id || (dup_list & idmask)) { OPENSSL_free(glist); return 0; } dup_list |= idmask; s2n(id, p); } OPENSSL_free(*pext); *pext = glist; *pextlen = ngroups * 2; return 1; } # define MAX_CURVELIST 28 typedef struct { size_t nidcnt; int nid_arr[MAX_CURVELIST]; } nid_cb_st; static int nid_cb(const char *elem, int len, void *arg) { nid_cb_st *narg = arg; size_t i; int nid; char etmp[20]; if (elem == NULL) return 0; if (narg->nidcnt == MAX_CURVELIST) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; nid = EC_curve_nist2nid(etmp); if (nid == NID_undef) nid = OBJ_sn2nid(etmp); if (nid == NID_undef) nid = OBJ_ln2nid(etmp); if (nid == NID_undef) return 0; for (i = 0; i < narg->nidcnt; i++) if (narg->nid_arr[i] == nid) return 0; narg->nid_arr[narg->nidcnt++] = nid; return 1; } /* Set groups based on a colon separate list */ int tls1_set_groups_list(unsigned char **pext, size_t *pextlen, const char *str) { nid_cb_st ncb; ncb.nidcnt = 0; if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) return 0; if (pext == NULL) return 1; return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt); } /* For an EC key set TLS id and required compression based on parameters */ static int tls1_set_ec_id(unsigned char *curve_id, unsigned char *comp_id, EC_KEY *ec) { int id; const EC_GROUP *grp; if (!ec) return 0; /* Determine if it is a prime field */ grp = EC_KEY_get0_group(ec); if (!grp) return 0; /* Determine curve ID */ id = EC_GROUP_get_curve_name(grp); id = tls1_ec_nid2curve_id(id); /* If no id return error: we don't support arbitrary explicit curves */ if (id == 0) return 0; curve_id[0] = 0; curve_id[1] = (unsigned char)id; if (comp_id) { if (EC_KEY_get0_public_key(ec) == NULL) return 0; if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) { *comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; } else { if ((nid_list[id - 1].flags & TLS_CURVE_TYPE) == TLS_CURVE_PRIME) *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; else *comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; } } return 1; } /* Check an EC key is compatible with extensions */ static int tls1_check_ec_key(SSL *s, unsigned char *curve_id, unsigned char *comp_id) { const unsigned char *pformats, *pcurves; size_t num_formats, num_curves, i; int j; /* * If point formats extension present check it, otherwise everything is * supported (see RFC4492). */ if (comp_id && s->session->ext.ecpointformats) { pformats = s->session->ext.ecpointformats; num_formats = s->session->ext.ecpointformats_len; for (i = 0; i < num_formats; i++, pformats++) { if (*comp_id == *pformats) break; } if (i == num_formats) return 0; } if (!curve_id) return 1; /* Check curve is consistent with client and server preferences */ for (j = 0; j <= 1; j++) { if (!tls1_get_curvelist(s, j, &pcurves, &num_curves)) return 0; if (j == 1 && num_curves == 0) { /* * If we've not received any curves then skip this check. * RFC 4492 does not require the supported elliptic curves extension * so if it is not sent we can just choose any curve. * It is invalid to send an empty list in the elliptic curves * extension, so num_curves == 0 always means no extension. */ break; } for (i = 0; i < num_curves; i++, pcurves += 2) { if (pcurves[0] == curve_id[0] && pcurves[1] == curve_id[1]) break; } if (i == num_curves) return 0; /* For clients can only check sent curve list */ if (!s->server) break; } return 1; } void tls1_get_formatlist(SSL *s, const unsigned char **pformats, size_t *num_formats) { /* * If we have a custom point format list use it otherwise use default */ if (s->ext.ecpointformats) { *pformats = s->ext.ecpointformats; *num_formats = s->ext.ecpointformats_len; } else { *pformats = ecformats_default; /* For Suite B we don't support char2 fields */ if (tls1_suiteb(s)) *num_formats = sizeof(ecformats_default) - 1; else *num_formats = sizeof(ecformats_default); } } /* * Check cert parameters compatible with extensions: currently just checks EC * certificates have compatible curves and compression. */ static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) { unsigned char comp_id, curve_id[2]; EVP_PKEY *pkey; int rv; pkey = X509_get0_pubkey(x); if (!pkey) return 0; /* If not EC nothing to do */ if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) return 1; rv = tls1_set_ec_id(curve_id, &comp_id, EVP_PKEY_get0_EC_KEY(pkey)); if (!rv) return 0; /* * Can't check curve_id for client certs as we don't have a supported * curves extension. */ rv = tls1_check_ec_key(s, s->server ? curve_id : NULL, &comp_id); if (!rv) return 0; /* * Special case for suite B. We *MUST* sign using SHA256+P-256 or * SHA384+P-384, adjust digest if necessary. */ if (set_ee_md && tls1_suiteb(s)) { int check_md; size_t i; CERT *c = s->cert; if (curve_id[0]) return 0; /* Check to see we have necessary signing algorithm */ if (curve_id[1] == TLSEXT_curve_P_256) check_md = NID_ecdsa_with_SHA256; else if (curve_id[1] == TLSEXT_curve_P_384) check_md = NID_ecdsa_with_SHA384; else return 0; /* Should never happen */ for (i = 0; i < c->shared_sigalgslen; i++) if (check_md == c->shared_sigalgs[i]->sigandhash) break; if (i == c->shared_sigalgslen) return 0; if (set_ee_md == 2) { if (check_md == NID_ecdsa_with_SHA256) s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha256(); else s->s3->tmp.md[SSL_PKEY_ECC] = EVP_sha384(); } } return rv; } # ifndef OPENSSL_NO_EC /* * tls1_check_ec_tmp_key - Check EC temporary key compatibility * @s: SSL connection * @cid: Cipher ID we're considering using * * Checks that the kECDHE cipher suite we're considering using * is compatible with the client extensions. * * Returns 0 when the cipher can't be used or 1 when it can. */ int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) { /* * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other * curves permitted. */ if (tls1_suiteb(s)) { unsigned char curve_id[2]; /* Curve to check determined by ciphersuite */ if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) curve_id[1] = TLSEXT_curve_P_256; else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) curve_id[1] = TLSEXT_curve_P_384; else return 0; curve_id[0] = 0; /* Check this curve is acceptable */ if (!tls1_check_ec_key(s, curve_id, NULL)) return 0; return 1; } /* Need a shared curve */ if (tls1_shared_group(s, 0)) return 1; return 0; } # endif /* OPENSSL_NO_EC */ #else static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) { return 1; } #endif /* OPENSSL_NO_EC */ /* Default sigalg schemes */ static const uint16_t tls12_sigalgs[] = { #ifndef OPENSSL_NO_EC TLSEXT_SIGALG_ecdsa_secp256r1_sha256, TLSEXT_SIGALG_ecdsa_secp384r1_sha384, TLSEXT_SIGALG_ecdsa_secp521r1_sha512, #endif TLSEXT_SIGALG_rsa_pss_sha256, TLSEXT_SIGALG_rsa_pss_sha384, TLSEXT_SIGALG_rsa_pss_sha512, TLSEXT_SIGALG_rsa_pkcs1_sha256, TLSEXT_SIGALG_rsa_pkcs1_sha384, TLSEXT_SIGALG_rsa_pkcs1_sha512, #ifndef OPENSSL_NO_EC TLSEXT_SIGALG_ecdsa_sha1, #endif TLSEXT_SIGALG_rsa_pkcs1_sha1, #ifndef OPENSSL_NO_DSA TLSEXT_SIGALG_dsa_sha1, TLSEXT_SIGALG_dsa_sha256, TLSEXT_SIGALG_dsa_sha384, TLSEXT_SIGALG_dsa_sha512 #endif }; #ifndef OPENSSL_NO_EC static const uint16_t suiteb_sigalgs[] = { TLSEXT_SIGALG_ecdsa_secp256r1_sha256, TLSEXT_SIGALG_ecdsa_secp384r1_sha384 }; #endif static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { #ifndef OPENSSL_NO_EC {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA256, NID_X9_62_prime256v1}, {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA384, NID_secp384r1}, {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA512, NID_secp521r1}, {NULL, TLSEXT_SIGALG_ecdsa_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, NID_ecdsa_with_SHA1, NID_undef}, #endif {"rsa_pss_sha256", TLSEXT_SIGALG_rsa_pss_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, NID_undef, NID_undef}, {"rsa_pss_sha384", TLSEXT_SIGALG_rsa_pss_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, NID_undef, NID_undef}, {"rsa_pss_sha512", TLSEXT_SIGALG_rsa_pss_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, NID_undef, NID_undef}, {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha256WithRSAEncryption, NID_undef}, {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha384WithRSAEncryption, NID_undef}, {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha512WithRSAEncryption, NID_undef}, {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, NID_sha1WithRSAEncryption, NID_undef}, #ifndef OPENSSL_NO_DSA {NULL, TLSEXT_SIGALG_dsa_sha256, NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_dsa_with_SHA256, NID_undef}, {NULL, TLSEXT_SIGALG_dsa_sha384, NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_dsa_sha512, NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_dsa_sha1, NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, NID_dsaWithSHA1, NID_undef}, #endif #ifndef OPENSSL_NO_GOST {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, NID_undef, NID_undef}, {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, NID_id_GostR3411_94, SSL_MD_GOST94_IDX, NID_id_GostR3410_2001, SSL_PKEY_GOST01, NID_undef, NID_undef} #endif }; /* Lookup TLS signature algorithm */ static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg) { size_t i; const SIGALG_LOOKUP *s; for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { if (s->sigalg == sigalg) return s; } return NULL; } static int tls_sigalg_get_sig(uint16_t sigalg) { const SIGALG_LOOKUP *r = tls1_lookup_sigalg(sigalg); return r != NULL ? r->sig : 0; } size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) { /* * If Suite B mode use Suite B sigalgs only, ignore any other * preferences. */ #ifndef OPENSSL_NO_EC switch (tls1_suiteb(s)) { case SSL_CERT_FLAG_SUITEB_128_LOS: *psigs = suiteb_sigalgs; return OSSL_NELEM(suiteb_sigalgs); case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: *psigs = suiteb_sigalgs; return 1; case SSL_CERT_FLAG_SUITEB_192_LOS: *psigs = suiteb_sigalgs + 1; return 1; } #endif /* * We use client_sigalgs (if not NULL) if we're a server * and sending a certificate request or if we're a client and * determining which shared algorithm to use. */ if ((s->server == sent) && s->cert->client_sigalgs != NULL) { *psigs = s->cert->client_sigalgs; return s->cert->client_sigalgslen; } else if (s->cert->conf_sigalgs) { *psigs = s->cert->conf_sigalgs; return s->cert->conf_sigalgslen; } else { *psigs = tls12_sigalgs; return OSSL_NELEM(tls12_sigalgs); } } /* * Check signature algorithm is consistent with sent supported signature * algorithms and if so set relevant digest and signature scheme in * s. */ int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) { const uint16_t *sent_sigs; const EVP_MD *md = NULL; char sigalgstr[2]; size_t sent_sigslen, i; int pkeyid = EVP_PKEY_id(pkey); const SIGALG_LOOKUP *lu; /* Should never happen */ if (pkeyid == -1) return -1; /* Only allow PSS for TLS 1.3 */ if (SSL_IS_TLS13(s) && pkeyid == EVP_PKEY_RSA) pkeyid = EVP_PKEY_RSA_PSS; lu = tls1_lookup_sigalg(sig); /* * Check sigalgs is known and key type is consistent with signature: * RSA keys can be used for RSA-PSS */ if (lu == NULL || (pkeyid != lu->sig && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } #ifndef OPENSSL_NO_EC if (pkeyid == EVP_PKEY_EC) { EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); if (SSL_IS_TLS13(s)) { /* For TLS 1.3 check curve matches signature algorithm */ if (curve != lu->curve) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); return 0; } } else { unsigned char curve_id[2], comp_id; /* Check compression and curve matches extensions */ if (!tls1_set_ec_id(curve_id, &comp_id, ec)) return 0; if (!s->server && !tls1_check_ec_key(s, curve_id, &comp_id)) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); return 0; } if (tls1_suiteb(s)) { /* Check sigalg matches a permissible Suite B value */ if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* * Suite B also requires P-256+SHA256 and P-384+SHA384: * this matches the TLS 1.3 requirements so we can just * check the curve is the expected TLS 1.3 value. * If this fails an inappropriate digest is being used. */ if (curve != lu->curve) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_ILLEGAL_SUITEB_DIGEST); return 0; } } } } else if (tls1_suiteb(s)) { return 0; } #endif /* Check signature matches a type we sent */ sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); for (i = 0; i < sent_sigslen; i++, sent_sigs++) { if (sig == *sent_sigs) break; } /* Allow fallback to SHA1 if not strict mode */ if (i == sent_sigslen && (lu->hash != NID_sha1 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } md = ssl_md(lu->hash_idx); if (md == NULL) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_UNKNOWN_DIGEST); return 0; } /* * Make sure security callback allows algorithm. For historical reasons we * have to pass the sigalg as a two byte char array. */ sigalgstr[0] = (sig >> 8) & 0xff; sigalgstr[1] = sig & 0xff; if (!ssl_security(s, SSL_SECOP_SIGALG_CHECK, EVP_MD_size(md) * 4, EVP_MD_type(md), (void *)sigalgstr)) { SSLerr(SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_SIGNATURE_TYPE); return 0; } /* Store the sigalg the peer uses */ s->s3->tmp.peer_sigalg = lu; return 1; } int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) { if (s->s3->tmp.peer_sigalg == NULL) return 0; *pnid = s->s3->tmp.peer_sigalg->sig; return 1; } /* * Set a mask of disabled algorithms: an algorithm is disabled if it isn't * supported, doesn't appear in supported signature algorithms, isn't supported * by the enabled protocol versions or by the security level. * * This function should only be used for checking which ciphers are supported * by the client. * * Call ssl_cipher_disabled() to check that it's enabled or not. */ void ssl_set_client_disabled(SSL *s) { s->s3->tmp.mask_a = 0; s->s3->tmp.mask_k = 0; ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); ssl_get_client_min_max_version(s, &s->s3->tmp.min_ver, &s->s3->tmp.max_ver); #ifndef OPENSSL_NO_PSK /* with PSK there must be client callback set */ if (!s->psk_client_callback) { s->s3->tmp.mask_a |= SSL_aPSK; s->s3->tmp.mask_k |= SSL_PSK; } #endif /* OPENSSL_NO_PSK */ #ifndef OPENSSL_NO_SRP if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { s->s3->tmp.mask_a |= SSL_aSRP; s->s3->tmp.mask_k |= SSL_kSRP; } #endif } /* * ssl_cipher_disabled - check that a cipher is disabled or not * @s: SSL connection that you want to use the cipher on * @c: cipher to check * @op: Security check that you want to do * * Returns 1 when it's disabled, 0 when enabled. */ int ssl_cipher_disabled(SSL *s, const SSL_CIPHER *c, int op) { if (c->algorithm_mkey & s->s3->tmp.mask_k || c->algorithm_auth & s->s3->tmp.mask_a) return 1; if (s->s3->tmp.max_ver == 0) return 1; if (!SSL_IS_DTLS(s) && ((c->min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver))) return 1; if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver) || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver))) return 1; return !ssl_security(s, op, c->strength_bits, 0, (void *)c); } int tls_use_ticket(SSL *s) { if ((s->options & SSL_OP_NO_TICKET)) return 0; return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); } /* Initialise digests to default values */ void ssl_set_default_md(SSL *s) { const EVP_MD **pmd = s->s3->tmp.md; #ifndef OPENSSL_NO_DSA pmd[SSL_PKEY_DSA_SIGN] = ssl_md(SSL_MD_SHA1_IDX); #endif #ifndef OPENSSL_NO_RSA if (SSL_USE_SIGALGS(s)) pmd[SSL_PKEY_RSA] = ssl_md(SSL_MD_SHA1_IDX); else pmd[SSL_PKEY_RSA] = ssl_md(SSL_MD_MD5_SHA1_IDX); #endif #ifndef OPENSSL_NO_EC pmd[SSL_PKEY_ECC] = ssl_md(SSL_MD_SHA1_IDX); #endif #ifndef OPENSSL_NO_GOST pmd[SSL_PKEY_GOST01] = ssl_md(SSL_MD_GOST94_IDX); pmd[SSL_PKEY_GOST12_256] = ssl_md(SSL_MD_GOST12_256_IDX); pmd[SSL_PKEY_GOST12_512] = ssl_md(SSL_MD_GOST12_512_IDX); #endif } int tls1_set_server_sigalgs(SSL *s) { int al; size_t i; /* Clear any shared signature algorithms */ OPENSSL_free(s->cert->shared_sigalgs); s->cert->shared_sigalgs = NULL; s->cert->shared_sigalgslen = 0; /* Clear certificate digests and validity flags */ for (i = 0; i < SSL_PKEY_NUM; i++) { s->s3->tmp.md[i] = NULL; s->s3->tmp.valid_flags[i] = 0; } /* If sigalgs received process it. */ if (s->s3->tmp.peer_sigalgs) { if (!tls1_process_sigalgs(s)) { SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_MALLOC_FAILURE); al = SSL_AD_INTERNAL_ERROR; goto err; } /* Fatal error is no shared signature algorithms */ if (!s->cert->shared_sigalgs) { SSLerr(SSL_F_TLS1_SET_SERVER_SIGALGS, SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); al = SSL_AD_ILLEGAL_PARAMETER; goto err; } } else { ssl_set_default_md(s); } return 1; err: ssl3_send_alert(s, SSL3_AL_FATAL, al); return 0; } /*- * Gets the ticket information supplied by the client if any. * * hello: The parsed ClientHello data * ret: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. * * If s->tls_session_secret_cb is set then we are expecting a pre-shared key * ciphersuite, in which case we have no use for session tickets and one will * never be decrypted, nor will s->ext.ticket_expected be set to 1. * * Returns: * -1: fatal error, either from parsing or decrypting the ticket. * 0: no ticket was found (or was ignored, based on settings). * 1: a zero length extension was found, indicating that the client supports * session tickets but doesn't currently have one to offer. * 2: either s->tls_session_secret_cb was set, or a ticket was offered but * couldn't be decrypted because of a non-fatal error. * 3: a ticket was successfully decrypted and *ret was set. * * Side effects: * Sets s->ext.ticket_expected to 1 if the server will have to issue * a new session ticket to the client because the client indicated support * (and s->tls_session_secret_cb is NULL) but the client either doesn't have * a session ticket or we couldn't use the one it gave us, or if * s->ctx->ext.ticket_key_cb asked to renew the client's ticket. * Otherwise, s->ext.ticket_expected is set to 0. */ TICKET_RETURN tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, SSL_SESSION **ret) { int retv; size_t size; RAW_EXTENSION *ticketext; *ret = NULL; s->ext.ticket_expected = 0; /* * If tickets disabled or not supported by the protocol version * (e.g. TLSv1.3) behave as if no ticket present to permit stateful * resumption. */ if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) return TICKET_NONE; ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; if (!ticketext->present) return TICKET_NONE; size = PACKET_remaining(&ticketext->data); if (size == 0) { /* * The client will accept a ticket but doesn't currently have * one. */ s->ext.ticket_expected = 1; return TICKET_EMPTY; } if (s->ext.session_secret_cb) { /* * Indicate that the ticket couldn't be decrypted rather than * generating the session from ticket now, trigger * abbreviated handshake based on external mechanism to * calculate the master secret later. */ return TICKET_NO_DECRYPT; } retv = tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, hello->session_id, hello->session_id_len, ret); switch (retv) { case TICKET_NO_DECRYPT: s->ext.ticket_expected = 1; return TICKET_NO_DECRYPT; case TICKET_SUCCESS: return TICKET_SUCCESS; case TICKET_SUCCESS_RENEW: s->ext.ticket_expected = 1; return TICKET_SUCCESS; default: return TICKET_FATAL_ERR_OTHER; } } /*- * tls_decrypt_ticket attempts to decrypt a session ticket. * * etick: points to the body of the session ticket extension. * eticklen: the length of the session tickets extension. * sess_id: points at the session ID. * sesslen: the length of the session ID. * psess: (output) on return, if a ticket was decrypted, then this is set to * point to the resulting session. */ TICKET_RETURN tls_decrypt_ticket(SSL *s, const unsigned char *etick, size_t eticklen, const unsigned char *sess_id, size_t sesslen, SSL_SESSION **psess) { SSL_SESSION *sess; unsigned char *sdec; const unsigned char *p; int slen, renew_ticket = 0, declen; TICKET_RETURN ret = TICKET_FATAL_ERR_OTHER; size_t mlen; unsigned char tick_hmac[EVP_MAX_MD_SIZE]; HMAC_CTX *hctx = NULL; EVP_CIPHER_CTX *ctx; SSL_CTX *tctx = s->session_ctx; /* Initialize session ticket encryption and HMAC contexts */ hctx = HMAC_CTX_new(); if (hctx == NULL) return TICKET_FATAL_ERR_MALLOC; ctx = EVP_CIPHER_CTX_new(); if (ctx == NULL) { ret = TICKET_FATAL_ERR_MALLOC; goto err; } if (tctx->ext.ticket_key_cb) { unsigned char *nctick = (unsigned char *)etick; int rv = tctx->ext.ticket_key_cb(s, nctick, nctick + 16, ctx, hctx, 0); if (rv < 0) goto err; if (rv == 0) { ret = TICKET_NO_DECRYPT; goto err; } if (rv == 2) renew_ticket = 1; } else { /* Check key name matches */ if (memcmp(etick, tctx->ext.tick_key_name, sizeof(tctx->ext.tick_key_name)) != 0) { ret = TICKET_NO_DECRYPT; goto err; } if (HMAC_Init_ex(hctx, tctx->ext.tick_hmac_key, sizeof(tctx->ext.tick_hmac_key), EVP_sha256(), NULL) <= 0 || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, tctx->ext.tick_aes_key, etick + sizeof(tctx->ext.tick_key_name)) <= 0) { goto err; } } /* * Attempt to process session ticket, first conduct sanity and integrity * checks on ticket. */ mlen = HMAC_size(hctx); if (mlen == 0) { goto err; } /* Sanity check ticket length: must exceed keyname + IV + HMAC */ if (eticklen <= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) { ret = TICKET_NO_DECRYPT; goto err; } eticklen -= mlen; /* Check HMAC of encrypted ticket */ if (HMAC_Update(hctx, etick, eticklen) <= 0 || HMAC_Final(hctx, tick_hmac, NULL) <= 0) { goto err; } HMAC_CTX_free(hctx); if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { EVP_CIPHER_CTX_free(ctx); return TICKET_NO_DECRYPT; } /* Attempt to decrypt session data */ /* Move p after IV to start of encrypted ticket, update length */ p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); sdec = OPENSSL_malloc(eticklen); if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, (int)eticklen) <= 0) { EVP_CIPHER_CTX_free(ctx); OPENSSL_free(sdec); return TICKET_FATAL_ERR_OTHER; } if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { EVP_CIPHER_CTX_free(ctx); OPENSSL_free(sdec); return TICKET_NO_DECRYPT; } slen += declen; EVP_CIPHER_CTX_free(ctx); ctx = NULL; p = sdec; sess = d2i_SSL_SESSION(NULL, &p, slen); OPENSSL_free(sdec); if (sess) { /* * The session ID, if non-empty, is used by some clients to detect * that the ticket has been accepted. So we copy it to the session * structure. If it is empty set length to zero as required by * standard. */ if (sesslen) memcpy(sess->session_id, sess_id, sesslen); sess->session_id_length = sesslen; *psess = sess; if (renew_ticket) return TICKET_SUCCESS_RENEW; else return TICKET_SUCCESS; } ERR_clear_error(); /* * For session parse failure, indicate that we need to send a new ticket. */ return TICKET_NO_DECRYPT; err: EVP_CIPHER_CTX_free(ctx); HMAC_CTX_free(hctx); return ret; } int tls12_get_sigandhash(SSL *s, WPACKET *pkt, const EVP_PKEY *pk, const EVP_MD *md, int *ispss) { int md_id, sig_id; size_t i; const SIGALG_LOOKUP *curr; if (md == NULL) return 0; md_id = EVP_MD_type(md); sig_id = EVP_PKEY_id(pk); if (md_id == NID_undef) return 0; /* For TLS 1.3 only allow RSA-PSS */ if (SSL_IS_TLS13(s) && sig_id == EVP_PKEY_RSA) sig_id = EVP_PKEY_RSA_PSS; if (s->s3->tmp.peer_sigalgs == NULL) { /* Should never happen: we abort if no sigalgs extension and TLS 1.3 */ if (SSL_IS_TLS13(s)) return 0; /* For TLS 1.2 and no sigalgs lookup using complete table */ for (i = 0, curr = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); i++, curr++) { if (curr->hash == md_id && curr->sig == sig_id) { if (!WPACKET_put_bytes_u16(pkt, curr->sigalg)) return 0; *ispss = curr->sig == EVP_PKEY_RSA_PSS; return 1; } } return 0; } for (i = 0; i < s->cert->shared_sigalgslen; i++) { curr = s->cert->shared_sigalgs[i]; /* * Look for matching key and hash. If key type is RSA also match PSS * signature type. */ if (curr->hash == md_id && (curr->sig == sig_id || (sig_id == EVP_PKEY_RSA && curr->sig == EVP_PKEY_RSA_PSS))){ if (!WPACKET_put_bytes_u16(pkt, curr->sigalg)) return 0; *ispss = curr->sig == EVP_PKEY_RSA_PSS; return 1; } } return 0; } static int tls12_get_pkey_idx(int sig_nid) { switch (sig_nid) { #ifndef OPENSSL_NO_RSA case EVP_PKEY_RSA: return SSL_PKEY_RSA; /* * For now return RSA key for PSS. When we support PSS only keys * this will need to be updated. */ case EVP_PKEY_RSA_PSS: return SSL_PKEY_RSA; #endif #ifndef OPENSSL_NO_DSA case EVP_PKEY_DSA: return SSL_PKEY_DSA_SIGN; #endif #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: return SSL_PKEY_ECC; #endif #ifndef OPENSSL_NO_GOST case NID_id_GostR3410_2001: return SSL_PKEY_GOST01; case NID_id_GostR3410_2012_256: return SSL_PKEY_GOST12_256; case NID_id_GostR3410_2012_512: return SSL_PKEY_GOST12_512; #endif } return -1; } /* Check to see if a signature algorithm is allowed */ static int tls12_sigalg_allowed(SSL *s, int op, uint16_t ptmp) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(ptmp); unsigned char sigalgstr[2]; int secbits; /* See if sigalgs is recognised and if hash is enabled */ if (lu == NULL || ssl_md(lu->hash_idx) == NULL) return 0; /* See if public key algorithm allowed */ if (tls12_get_pkey_idx(lu->sig) == -1) return 0; /* Security bits: half digest bits */ secbits = EVP_MD_size(ssl_md(lu->hash_idx)) * 4; /* Finally see if security callback allows it */ sigalgstr[0] = (ptmp >> 8) & 0xff; sigalgstr[1] = ptmp & 0xff; return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); } /* * Get a mask of disabled public key algorithms based on supported signature * algorithms. For example if no signature algorithm supports RSA then RSA is * disabled. */ void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) { const uint16_t *sigalgs; size_t i, sigalgslen; int have_rsa = 0, have_dsa = 0, have_ecdsa = 0; /* * Now go through all signature algorithms seeing if we support any for * RSA, DSA, ECDSA. Do this for all versions not just TLS 1.2. To keep * down calls to security callback only check if we have to. */ sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); for (i = 0; i < sigalgslen; i ++, sigalgs++) { switch (tls_sigalg_get_sig(*sigalgs)) { #ifndef OPENSSL_NO_RSA /* Any RSA-PSS signature algorithms also mean we allow RSA */ case EVP_PKEY_RSA_PSS: case EVP_PKEY_RSA: if (!have_rsa && tls12_sigalg_allowed(s, op, *sigalgs)) have_rsa = 1; break; #endif #ifndef OPENSSL_NO_DSA case EVP_PKEY_DSA: if (!have_dsa && tls12_sigalg_allowed(s, op, *sigalgs)) have_dsa = 1; break; #endif #ifndef OPENSSL_NO_EC case EVP_PKEY_EC: if (!have_ecdsa && tls12_sigalg_allowed(s, op, *sigalgs)) have_ecdsa = 1; break; #endif } } if (!have_rsa) *pmask_a |= SSL_aRSA; if (!have_dsa) *pmask_a |= SSL_aDSS; if (!have_ecdsa) *pmask_a |= SSL_aECDSA; } int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, const uint16_t *psig, size_t psiglen) { size_t i; for (i = 0; i < psiglen; i++, psig++) { if (tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, *psig)) { if (!WPACKET_put_bytes_u16(pkt, *psig)) return 0; } } return 1; } /* Given preference and allowed sigalgs set shared sigalgs */ static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, const uint16_t *pref, size_t preflen, const uint16_t *allow, size_t allowlen) { const uint16_t *ptmp, *atmp; size_t i, j, nmatch = 0; for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { /* Skip disabled hashes or signature algorithms */ if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, *ptmp)) continue; for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { if (*ptmp == *atmp) { nmatch++; if (shsig) { *shsig = tls1_lookup_sigalg(*ptmp); shsig++; } break; } } } return nmatch; } /* Set shared signature algorithms for SSL structures */ static int tls1_set_shared_sigalgs(SSL *s) { const uint16_t *pref, *allow, *conf; size_t preflen, allowlen, conflen; size_t nmatch; const SIGALG_LOOKUP **salgs = NULL; CERT *c = s->cert; unsigned int is_suiteb = tls1_suiteb(s); OPENSSL_free(c->shared_sigalgs); c->shared_sigalgs = NULL; c->shared_sigalgslen = 0; /* If client use client signature algorithms if not NULL */ if (!s->server && c->client_sigalgs && !is_suiteb) { conf = c->client_sigalgs; conflen = c->client_sigalgslen; } else if (c->conf_sigalgs && !is_suiteb) { conf = c->conf_sigalgs; conflen = c->conf_sigalgslen; } else conflen = tls12_get_psigalgs(s, 0, &conf); if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { pref = conf; preflen = conflen; allow = s->s3->tmp.peer_sigalgs; allowlen = s->s3->tmp.peer_sigalgslen; } else { allow = conf; allowlen = conflen; pref = s->s3->tmp.peer_sigalgs; preflen = s->s3->tmp.peer_sigalgslen; } nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); if (nmatch) { salgs = OPENSSL_malloc(nmatch * sizeof(*salgs)); if (salgs == NULL) return 0; nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); } else { salgs = NULL; } c->shared_sigalgs = salgs; c->shared_sigalgslen = nmatch; return 1; } /* Set preferred digest for each key type */ int tls1_save_sigalgs(SSL *s, PACKET *pkt) { CERT *c = s->cert; unsigned int stmp; size_t size, i; /* Extension ignored for inappropriate versions */ if (!SSL_USE_SIGALGS(s)) return 1; /* Should never happen */ if (!c) return 0; size = PACKET_remaining(pkt); /* Invalid data length */ if ((size & 1) != 0) return 0; size >>= 1; OPENSSL_free(s->s3->tmp.peer_sigalgs); s->s3->tmp.peer_sigalgs = OPENSSL_malloc(size * sizeof(*s->s3->tmp.peer_sigalgs)); if (s->s3->tmp.peer_sigalgs == NULL) return 0; s->s3->tmp.peer_sigalgslen = size; for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) s->s3->tmp.peer_sigalgs[i] = stmp; if (i != size) return 0; return 1; } int tls1_process_sigalgs(SSL *s) { int idx; size_t i; const EVP_MD *md; const EVP_MD **pmd = s->s3->tmp.md; uint32_t *pvalid = s->s3->tmp.valid_flags; CERT *c = s->cert; if (!tls1_set_shared_sigalgs(s)) return 0; for (i = 0; i < c->shared_sigalgslen; i++) { const SIGALG_LOOKUP *sigptr = c->shared_sigalgs[i]; /* Ignore PKCS1 based sig algs in TLSv1.3 */ if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) continue; idx = tls12_get_pkey_idx(sigptr->sig); if (idx >= 0 && pmd[idx] == NULL) { md = ssl_md(sigptr->hash_idx); pmd[idx] = md; pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN; } } /* * In strict mode or TLS1.3 leave unset digests as NULL to indicate we can't * use the certificate for signing. */ if (!(s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) && !SSL_IS_TLS13(s)) { /* * Set any remaining keys to default values. NOTE: if alg is not * supported it stays as NULL. */ #ifndef OPENSSL_NO_DSA if (pmd[SSL_PKEY_DSA_SIGN] == NULL) pmd[SSL_PKEY_DSA_SIGN] = EVP_sha1(); #endif #ifndef OPENSSL_NO_RSA if (pmd[SSL_PKEY_RSA] == NULL) { pmd[SSL_PKEY_RSA] = EVP_sha1(); } #endif #ifndef OPENSSL_NO_EC if (pmd[SSL_PKEY_ECC] == NULL) pmd[SSL_PKEY_ECC] = EVP_sha1(); #endif #ifndef OPENSSL_NO_GOST if (pmd[SSL_PKEY_GOST01] == NULL) pmd[SSL_PKEY_GOST01] = EVP_get_digestbynid(NID_id_GostR3411_94); if (pmd[SSL_PKEY_GOST12_256] == NULL) pmd[SSL_PKEY_GOST12_256] = EVP_get_digestbynid(NID_id_GostR3411_2012_256); if (pmd[SSL_PKEY_GOST12_512] == NULL) pmd[SSL_PKEY_GOST12_512] = EVP_get_digestbynid(NID_id_GostR3411_2012_512); #endif } return 1; } int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { uint16_t *psig = s->s3->tmp.peer_sigalgs; size_t numsigalgs = s->s3->tmp.peer_sigalgslen; if (psig == NULL || numsigalgs > INT_MAX) return 0; if (idx >= 0) { const SIGALG_LOOKUP *lu; if (idx >= (int)numsigalgs) return 0; psig += idx; if (rhash != NULL) *rhash = (unsigned char)((*psig >> 8) & 0xff); if (rsig != NULL) *rsig = (unsigned char)(*psig & 0xff); lu = tls1_lookup_sigalg(*psig); if (psign != NULL) *psign = lu != NULL ? lu->sig : NID_undef; if (phash != NULL) *phash = lu != NULL ? lu->hash : NID_undef; if (psignhash != NULL) *psignhash = lu != NULL ? lu->sigandhash : NID_undef; } return (int)numsigalgs; } int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash, unsigned char *rsig, unsigned char *rhash) { const SIGALG_LOOKUP *shsigalgs; if (s->cert->shared_sigalgs == NULL || idx < 0 || idx >= (int)s->cert->shared_sigalgslen || s->cert->shared_sigalgslen > INT_MAX) return 0; shsigalgs = s->cert->shared_sigalgs[idx]; if (phash != NULL) *phash = shsigalgs->hash; if (psign != NULL) *psign = shsigalgs->sig; if (psignhash != NULL) *psignhash = shsigalgs->sigandhash; if (rsig != NULL) *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); if (rhash != NULL) *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); return (int)s->cert->shared_sigalgslen; } /* Maximum possible number of unique entries in sigalgs array */ #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) typedef struct { size_t sigalgcnt; int sigalgs[TLS_MAX_SIGALGCNT]; } sig_cb_st; static void get_sigorhash(int *psig, int *phash, const char *str) { if (strcmp(str, "RSA") == 0) { *psig = EVP_PKEY_RSA; } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { *psig = EVP_PKEY_RSA_PSS; } else if (strcmp(str, "DSA") == 0) { *psig = EVP_PKEY_DSA; } else if (strcmp(str, "ECDSA") == 0) { *psig = EVP_PKEY_EC; } else { *phash = OBJ_sn2nid(str); if (*phash == NID_undef) *phash = OBJ_ln2nid(str); } } /* Maximum length of a signature algorithm string component */ #define TLS_MAX_SIGSTRING_LEN 40 static int sig_cb(const char *elem, int len, void *arg) { sig_cb_st *sarg = arg; size_t i; char etmp[TLS_MAX_SIGSTRING_LEN], *p; int sig_alg = NID_undef, hash_alg = NID_undef; if (elem == NULL) return 0; if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) return 0; if (len > (int)(sizeof(etmp) - 1)) return 0; memcpy(etmp, elem, len); etmp[len] = 0; p = strchr(etmp, '+'); /* See if we have a match for TLS 1.3 names */ if (p == NULL) { const SIGALG_LOOKUP *s; for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) { if (s->name != NULL && strcmp(etmp, s->name) == 0) { sig_alg = s->sig; hash_alg = s->hash; break; } } } else { *p = 0; p++; if (*p == 0) return 0; get_sigorhash(&sig_alg, &hash_alg, etmp); get_sigorhash(&sig_alg, &hash_alg, p); } if (sig_alg == NID_undef || hash_alg == NID_undef) return 0; for (i = 0; i < sarg->sigalgcnt; i += 2) { if (sarg->sigalgs[i] == sig_alg && sarg->sigalgs[i + 1] == hash_alg) return 0; } sarg->sigalgs[sarg->sigalgcnt++] = hash_alg; sarg->sigalgs[sarg->sigalgcnt++] = sig_alg; return 1; } /* * Set supported signature algorithms based on a colon separated list of the * form sig+hash e.g. RSA+SHA512:DSA+SHA512 */ int tls1_set_sigalgs_list(CERT *c, const char *str, int client) { sig_cb_st sig; sig.sigalgcnt = 0; if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) return 0; if (c == NULL) return 1; return tls1_set_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); } int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) { uint16_t *sigalgs, *sptr; size_t i; if (salglen & 1) return 0; sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs)); if (sigalgs == NULL) return 0; for (i = 0, sptr = sigalgs; i < salglen; i += 2) { size_t j; const SIGALG_LOOKUP *curr; int md_id = *psig_nids++; int sig_id = *psig_nids++; for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); j++, curr++) { if (curr->hash == md_id && curr->sig == sig_id) { *sptr++ = curr->sigalg; break; } } if (j == OSSL_NELEM(sigalg_lookup_tbl)) goto err; } if (client) { OPENSSL_free(c->client_sigalgs); c->client_sigalgs = sigalgs; c->client_sigalgslen = salglen / 2; } else { OPENSSL_free(c->conf_sigalgs); c->conf_sigalgs = sigalgs; c->conf_sigalgslen = salglen / 2; } return 1; err: OPENSSL_free(sigalgs); return 0; } static int tls1_check_sig_alg(CERT *c, X509 *x, int default_nid) { int sig_nid; size_t i; if (default_nid == -1) return 1; sig_nid = X509_get_signature_nid(x); if (default_nid) return sig_nid == default_nid ? 1 : 0; for (i = 0; i < c->shared_sigalgslen; i++) if (sig_nid == c->shared_sigalgs[i]->sigandhash) return 1; return 0; } /* Check to see if a certificate issuer name matches list of CA names */ static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) { X509_NAME *nm; int i; nm = X509_get_issuer_name(x); for (i = 0; i < sk_X509_NAME_num(names); i++) { if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) return 1; } return 0; } /* * Check certificate chain is consistent with TLS extensions and is usable by * server. This servers two purposes: it allows users to check chains before * passing them to the server and it allows the server to check chains before * attempting to use them. */ /* Flags which need to be set for a certificate when stict mode not set */ #define CERT_PKEY_VALID_FLAGS \ (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) /* Strict mode flags */ #define CERT_PKEY_STRICT_FLAGS \ (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, int idx) { int i; int rv = 0; int check_flags = 0, strict_mode; CERT_PKEY *cpk = NULL; CERT *c = s->cert; uint32_t *pvalid; unsigned int suiteb_flags = tls1_suiteb(s); /* idx == -1 means checking server chains */ if (idx != -1) { /* idx == -2 means checking client certificate chains */ if (idx == -2) { cpk = c->key; idx = (int)(cpk - c->pkeys); } else cpk = c->pkeys + idx; pvalid = s->s3->tmp.valid_flags + idx; x = cpk->x509; pk = cpk->privatekey; chain = cpk->chain; strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; /* If no cert or key, forget it */ if (!x || !pk) goto end; } else { if (!x || !pk) return 0; idx = ssl_cert_type(x, pk); if (idx == -1) return 0; pvalid = s->s3->tmp.valid_flags + idx; if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) check_flags = CERT_PKEY_STRICT_FLAGS; else check_flags = CERT_PKEY_VALID_FLAGS; strict_mode = 1; } if (suiteb_flags) { int ok; if (check_flags) check_flags |= CERT_PKEY_SUITEB; ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); if (ok == X509_V_OK) rv |= CERT_PKEY_SUITEB; else if (!check_flags) goto end; } /* * Check all signature algorithms are consistent with signature * algorithms extension if TLS 1.2 or later and strict mode. */ if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { int default_nid; int rsign = 0; if (s->s3->tmp.peer_sigalgs) default_nid = 0; /* If no sigalgs extension use defaults from RFC5246 */ else { switch (idx) { case SSL_PKEY_RSA: rsign = EVP_PKEY_RSA; default_nid = NID_sha1WithRSAEncryption; break; case SSL_PKEY_DSA_SIGN: rsign = EVP_PKEY_DSA; default_nid = NID_dsaWithSHA1; break; case SSL_PKEY_ECC: rsign = EVP_PKEY_EC; default_nid = NID_ecdsa_with_SHA1; break; case SSL_PKEY_GOST01: rsign = NID_id_GostR3410_2001; default_nid = NID_id_GostR3411_94_with_GostR3410_2001; break; case SSL_PKEY_GOST12_256: rsign = NID_id_GostR3410_2012_256; default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; break; case SSL_PKEY_GOST12_512: rsign = NID_id_GostR3410_2012_512; default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; break; default: default_nid = -1; break; } } /* * If peer sent no signature algorithms extension and we have set * preferred signature algorithms check we support sha1. */ if (default_nid > 0 && c->conf_sigalgs) { size_t j; const uint16_t *p = c->conf_sigalgs; for (j = 0; j < c->conf_sigalgslen; j++, p++) { const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p); if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) break; } if (j == c->conf_sigalgslen) { if (check_flags) goto skip_sigs; else goto end; } } /* Check signature algorithm of each cert in chain */ if (!tls1_check_sig_alg(c, x, default_nid)) { if (!check_flags) goto end; } else rv |= CERT_PKEY_EE_SIGNATURE; rv |= CERT_PKEY_CA_SIGNATURE; for (i = 0; i < sk_X509_num(chain); i++) { if (!tls1_check_sig_alg(c, sk_X509_value(chain, i), default_nid)) { if (check_flags) { rv &= ~CERT_PKEY_CA_SIGNATURE; break; } else goto end; } } } /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ else if (check_flags) rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; skip_sigs: /* Check cert parameters are consistent */ if (tls1_check_cert_param(s, x, check_flags ? 1 : 2)) rv |= CERT_PKEY_EE_PARAM; else if (!check_flags) goto end; if (!s->server) rv |= CERT_PKEY_CA_PARAM; /* In strict mode check rest of chain too */ else if (strict_mode) { rv |= CERT_PKEY_CA_PARAM; for (i = 0; i < sk_X509_num(chain); i++) { X509 *ca = sk_X509_value(chain, i); if (!tls1_check_cert_param(s, ca, 0)) { if (check_flags) { rv &= ~CERT_PKEY_CA_PARAM; break; } else goto end; } } } if (!s->server && strict_mode) { STACK_OF(X509_NAME) *ca_dn; int check_type = 0; switch (EVP_PKEY_id(pk)) { case EVP_PKEY_RSA: check_type = TLS_CT_RSA_SIGN; break; case EVP_PKEY_DSA: check_type = TLS_CT_DSS_SIGN; break; case EVP_PKEY_EC: check_type = TLS_CT_ECDSA_SIGN; break; } if (check_type) { const unsigned char *ctypes; int ctypelen; if (c->ctypes) { ctypes = c->ctypes; ctypelen = (int)c->ctype_num; } else { ctypes = (unsigned char *)s->s3->tmp.ctype; ctypelen = s->s3->tmp.ctype_num; } for (i = 0; i < ctypelen; i++) { if (ctypes[i] == check_type) { rv |= CERT_PKEY_CERT_TYPE; break; } } if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) goto end; } else rv |= CERT_PKEY_CERT_TYPE; ca_dn = s->s3->tmp.ca_names; if (!sk_X509_NAME_num(ca_dn)) rv |= CERT_PKEY_ISSUER_NAME; if (!(rv & CERT_PKEY_ISSUER_NAME)) { if (ssl_check_ca_name(ca_dn, x)) rv |= CERT_PKEY_ISSUER_NAME; } if (!(rv & CERT_PKEY_ISSUER_NAME)) { for (i = 0; i < sk_X509_num(chain); i++) { X509 *xtmp = sk_X509_value(chain, i); if (ssl_check_ca_name(ca_dn, xtmp)) { rv |= CERT_PKEY_ISSUER_NAME; break; } } } if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) goto end; } else rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; if (!check_flags || (rv & check_flags) == check_flags) rv |= CERT_PKEY_VALID; end: if (TLS1_get_version(s) >= TLS1_2_VERSION) { if (*pvalid & CERT_PKEY_EXPLICIT_SIGN) rv |= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; else if (s->s3->tmp.md[idx] != NULL) rv |= CERT_PKEY_SIGN; } else rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; /* * When checking a CERT_PKEY structure all flags are irrelevant if the * chain is invalid. */ if (!check_flags) { if (rv & CERT_PKEY_VALID) *pvalid = rv; else { /* Preserve explicit sign flag, clear rest */ *pvalid &= CERT_PKEY_EXPLICIT_SIGN; return 0; } } return rv; } /* Set validity of certificates in an SSL structure */ void tls1_set_cert_validity(SSL *s) { tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); } /* User level utiity function to check a chain is suitable */ int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) { return tls1_check_chain(s, x, pk, chain, -1); } #ifndef OPENSSL_NO_DH DH *ssl_get_auto_dh(SSL *s) { int dh_secbits = 80; if (s->cert->dh_tmp_auto == 2) return DH_get_1024_160(); if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { if (s->s3->tmp.new_cipher->strength_bits == 256) dh_secbits = 128; else dh_secbits = 80; } else { CERT_PKEY *cpk = ssl_get_server_send_pkey(s); dh_secbits = EVP_PKEY_security_bits(cpk->privatekey); } if (dh_secbits >= 128) { DH *dhp = DH_new(); BIGNUM *p, *g; if (dhp == NULL) return NULL; g = BN_new(); if (g != NULL) BN_set_word(g, 2); if (dh_secbits >= 192) p = BN_get_rfc3526_prime_8192(NULL); else p = BN_get_rfc3526_prime_3072(NULL); if (p == NULL || g == NULL || !DH_set0_pqg(dhp, p, NULL, g)) { DH_free(dhp); BN_free(p); BN_free(g); return NULL; } return dhp; } if (dh_secbits >= 112) return DH_get_2048_224(); return DH_get_1024_160(); } #endif static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) { int secbits = -1; EVP_PKEY *pkey = X509_get0_pubkey(x); if (pkey) { /* * If no parameters this will return -1 and fail using the default * security callback for any non-zero security level. This will * reject keys which omit parameters but this only affects DSA and * omission of parameters is never (?) done in practice. */ secbits = EVP_PKEY_security_bits(pkey); } if (s) return ssl_security(s, op, secbits, 0, x); else return ssl_ctx_security(ctx, op, secbits, 0, x); } static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) { /* Lookup signature algorithm digest */ int secbits = -1, md_nid = NID_undef, sig_nid; /* Don't check signature if self signed */ if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) return 1; sig_nid = X509_get_signature_nid(x); if (sig_nid && OBJ_find_sigid_algs(sig_nid, &md_nid, NULL)) { const EVP_MD *md; if (md_nid && (md = EVP_get_digestbynid(md_nid))) secbits = EVP_MD_size(md) * 4; } if (s) return ssl_security(s, op, secbits, md_nid, x); else return ssl_ctx_security(ctx, op, secbits, md_nid, x); } int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) { if (vfy) vfy = SSL_SECOP_PEER; if (is_ee) { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) return SSL_R_EE_KEY_TOO_SMALL; } else { if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) return SSL_R_CA_KEY_TOO_SMALL; } if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) return SSL_R_CA_MD_TOO_WEAK; return 1; } /* * Check security of a chain, if sk includes the end entity certificate then * x is NULL. If vfy is 1 then we are verifying a peer chain and not sending * one to the peer. Return values: 1 if ok otherwise error code to use */ int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) { int rv, start_idx, i; if (x == NULL) { x = sk_X509_value(sk, 0); start_idx = 1; } else start_idx = 0; rv = ssl_security_cert(s, NULL, x, vfy, 1); if (rv != 1) return rv; for (i = start_idx; i < sk_X509_num(sk); i++) { x = sk_X509_value(sk, i); rv = ssl_security_cert(s, NULL, x, vfy, 0); if (rv != 1) return rv; } return 1; } /* * Choose an appropriate signature algorithm based on available certificates * Set current certificate and digest to match chosen algorithm. */ int tls_choose_sigalg(SSL *s) { if (SSL_IS_TLS13(s)) { size_t i; #ifndef OPENSSL_NO_EC int curve = -1; #endif /* Look for a certificate matching shared sigaglgs */ for (i = 0; i < s->cert->shared_sigalgslen; i++) { const SIGALG_LOOKUP *lu = s->cert->shared_sigalgs[i]; int idx; const EVP_MD *md; CERT_PKEY *c; /* Skip RSA if not PSS */ if (lu->sig == EVP_PKEY_RSA) continue; md = ssl_md(lu->hash_idx); if (md == NULL) continue; idx = lu->sig_idx; c = &s->cert->pkeys[idx]; if (c->x509 == NULL || c->privatekey == NULL) continue; if (lu->sig == EVP_PKEY_EC) { #ifndef OPENSSL_NO_EC if (curve == -1) { EC_KEY *ec = EVP_PKEY_get0_EC_KEY(c->privatekey); curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); } if (curve != lu->curve) continue; #else continue; #endif } s->s3->tmp.sigalg = lu; s->s3->tmp.cert_idx = idx; s->s3->tmp.md[idx] = md; s->cert->key = s->cert->pkeys + idx; return 1; } return 0; } /* * FIXME: could handle previous TLS versions in an appropriate way * and tidy up certificate and signature algorithm handling. */ return 1; }