/* * Copyright 2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/evp_int.h" #ifndef OPENSSL_NO_SCRYPT static int atou64(const char *nptr, uint64_t *result); typedef struct { unsigned char *pass; size_t pass_len; unsigned char *salt; size_t salt_len; uint64_t N, r, p; uint64_t maxmem_bytes; } SCRYPT_PKEY_CTX; /* Custom uint64_t parser since we do not have strtoull */ static int atou64(const char *nptr, uint64_t *result) { uint64_t value = 0; while (*nptr) { unsigned int digit; uint64_t new_value; if ((*nptr < '0') || (*nptr > '9')) { return 0; } digit = (unsigned int)(*nptr - '0'); new_value = (value * 10) + digit; if ((new_value < digit) || ((new_value - digit) / 10 != value)) { /* Overflow */ return 0; } value = new_value; nptr++; } *result = value; return 1; } static int pkey_scrypt_init(EVP_PKEY_CTX *ctx) { SCRYPT_PKEY_CTX *kctx; kctx = OPENSSL_zalloc(sizeof(*kctx)); if (kctx == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_INIT, ERR_R_MALLOC_FAILURE); return 0; } /* Default values are the most conservative recommendation given in the * original paper of C. Percival. Derivation uses roughly 1 GiB of memory * for this parameter choice (approx. 128 * r * (N + p) bytes). */ kctx->N = 1 << 20; kctx->r = 8; kctx->p = 1; kctx->maxmem_bytes = 1025 * 1024 * 1024; ctx->data = kctx; return 1; } static void pkey_scrypt_cleanup(EVP_PKEY_CTX *ctx) { SCRYPT_PKEY_CTX *kctx = ctx->data; OPENSSL_clear_free(kctx->salt, kctx->salt_len); OPENSSL_clear_free(kctx->pass, kctx->pass_len); OPENSSL_free(kctx); } static int pkey_scrypt_set_membuf(unsigned char **buffer, size_t *buflen, const unsigned char *new_buffer, const int new_buflen) { if (new_buffer == NULL) return 1; if (new_buflen < 0) return 0; if (*buffer != NULL) OPENSSL_clear_free(*buffer, *buflen); if (new_buflen > 0) { *buffer = OPENSSL_memdup(new_buffer, new_buflen); } else { *buffer = OPENSSL_malloc(1); } if (*buffer == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_SET_MEMBUF, ERR_R_MALLOC_FAILURE); return 0; } *buflen = new_buflen; return 1; } static int is_power_of_two(uint64_t value) { return (value != 0) && ((value & (value - 1)) == 0); } static int pkey_scrypt_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) { SCRYPT_PKEY_CTX *kctx = ctx->data; uint64_t u64_value; switch (type) { case EVP_PKEY_CTRL_PASS: return pkey_scrypt_set_membuf(&kctx->pass, &kctx->pass_len, p2, p1); case EVP_PKEY_CTRL_SCRYPT_SALT: return pkey_scrypt_set_membuf(&kctx->salt, &kctx->salt_len, p2, p1); case EVP_PKEY_CTRL_SCRYPT_N: u64_value = *((uint64_t *)p2); if ((u64_value <= 1) || !is_power_of_two(u64_value)) return 0; kctx->N = u64_value; return 1; case EVP_PKEY_CTRL_SCRYPT_R: u64_value = *((uint64_t *)p2); if (u64_value < 1) return 0; kctx->r = u64_value; return 1; case EVP_PKEY_CTRL_SCRYPT_P: u64_value = *((uint64_t *)p2); if (u64_value < 1) return 0; kctx->p = u64_value; return 1; case EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES: u64_value = *((uint64_t *)p2); if (u64_value < 1) return 0; kctx->maxmem_bytes = u64_value; return 1; default: return -2; } } static int pkey_scrypt_ctrl_uint64(EVP_PKEY_CTX *ctx, int type, const char *value) { uint64_t int_value; if (!atou64(value, &int_value)) { KDFerr(KDF_F_PKEY_SCRYPT_CTRL_UINT64, KDF_R_VALUE_ERROR); return 0; } return pkey_scrypt_ctrl(ctx, type, 0, &int_value); } static int pkey_scrypt_ctrl_str(EVP_PKEY_CTX *ctx, const char *type, const char *value) { if (value == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_VALUE_MISSING); return 0; } if (strcmp(type, "pass") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); if (strcmp(type, "hexpass") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_PASS, value); if (strcmp(type, "salt") == 0) return EVP_PKEY_CTX_str2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); if (strcmp(type, "hexsalt") == 0) return EVP_PKEY_CTX_hex2ctrl(ctx, EVP_PKEY_CTRL_SCRYPT_SALT, value); if (strcmp(type, "N") == 0) return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_N, value); if (strcmp(type, "r") == 0) return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_R, value); if (strcmp(type, "p") == 0) return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_P, value); if (strcmp(type, "maxmem_bytes") == 0) return pkey_scrypt_ctrl_uint64(ctx, EVP_PKEY_CTRL_SCRYPT_MAXMEM_BYTES, value); KDFerr(KDF_F_PKEY_SCRYPT_CTRL_STR, KDF_R_UNKNOWN_PARAMETER_TYPE); return -2; } static int pkey_scrypt_derive(EVP_PKEY_CTX *ctx, unsigned char *key, size_t *keylen) { SCRYPT_PKEY_CTX *kctx = ctx->data; if (kctx->pass == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_PASS); return 0; } if (kctx->salt == NULL) { KDFerr(KDF_F_PKEY_SCRYPT_DERIVE, KDF_R_MISSING_SALT); return 0; } return EVP_PBE_scrypt((char *)kctx->pass, kctx->pass_len, kctx->salt, kctx->salt_len, kctx->N, kctx->r, kctx->p, kctx->maxmem_bytes, key, *keylen); } const EVP_PKEY_METHOD scrypt_pkey_meth = { EVP_PKEY_SCRYPT, 0, pkey_scrypt_init, 0, pkey_scrypt_cleanup, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, pkey_scrypt_derive, pkey_scrypt_ctrl, pkey_scrypt_ctrl_str }; #endif