/* * Copyright 1995-2020 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ /* * RSA low level APIs are deprecated for public use, but still ok for * internal use. */ #include "internal/deprecated.h" #include #include "internal/cryptlib.h" #include #include #include #include #include "crypto/x509.h" #ifndef OPENSSL_NO_MD2 # include /* uses MD2_DIGEST_LENGTH */ #endif #ifndef OPENSSL_NO_MD4 # include /* uses MD4_DIGEST_LENGTH */ #endif #ifndef OPENSSL_NO_MD5 # include /* uses MD5_DIGEST_LENGTH */ #endif #ifndef OPENSSL_NO_MDC2 # include /* uses MDC2_DIGEST_LENGTH */ #endif #ifndef OPENSSL_NO_RMD160 # include /* uses RIPEMD160_DIGEST_LENGTH */ #endif #include /* uses SHA???_DIGEST_LENGTH */ #include "crypto/rsa.h" #include "rsa_local.h" /* * The general purpose ASN1 code is not available inside the FIPS provider. * To remove the dependency RSASSA-PKCS1-v1_5 DigestInfo encodings can be * treated as a special case by pregenerating the required ASN1 encoding. * This encoding will also be shared by the default provider. * * The EMSA-PKCS1-v1_5 encoding method includes an ASN.1 value of type * DigestInfo, where the type DigestInfo has the syntax * * DigestInfo ::= SEQUENCE { * digestAlgorithm DigestAlgorithm, * digest OCTET STRING * } * * DigestAlgorithm ::= AlgorithmIdentifier { * {PKCS1-v1-5DigestAlgorithms} * } * * The AlgorithmIdentifier is a sequence containing the digest OID and * parameters (a value of type NULL). * * The ENCODE_DIGESTINFO_SHA() and ENCODE_DIGESTINFO_MD() macros define an * initialized array containing the DER encoded DigestInfo for the specified * SHA or MD digest. The content of the OCTET STRING is not included. * |name| is the digest name. * |n| is last byte in the encoded OID for the digest. * |sz| is the digest length in bytes. It must not be greater than 110. */ #define ASN1_SEQUENCE 0x30 #define ASN1_OCTET_STRING 0x04 #define ASN1_NULL 0x05 #define ASN1_OID 0x06 /* SHA OIDs are of the form: (2 16 840 1 101 3 4 2 |n|) */ #define ENCODE_DIGESTINFO_SHA(name, n, sz) \ static const unsigned char digestinfo_##name##_der[] = { \ ASN1_SEQUENCE, 0x11 + sz, \ ASN1_SEQUENCE, 0x0d, \ ASN1_OID, 0x09, 2 * 40 + 16, 0x86, 0x48, 1, 101, 3, 4, 2, n, \ ASN1_NULL, 0x00, \ ASN1_OCTET_STRING, sz \ }; /* MD2, MD4 and MD5 OIDs are of the form: (1 2 840 113549 2 |n|) */ #define ENCODE_DIGESTINFO_MD(name, n, sz) \ static const unsigned char digestinfo_##name##_der[] = { \ ASN1_SEQUENCE, 0x10 + sz, \ ASN1_SEQUENCE, 0x0c, \ ASN1_OID, 0x08, 1 * 40 + 2, 0x86, 0x48, 0x86, 0xf7, 0x0d, 2, n, \ ASN1_NULL, 0x00, \ ASN1_OCTET_STRING, sz \ }; #ifndef FIPS_MODULE # ifndef OPENSSL_NO_MD2 ENCODE_DIGESTINFO_MD(md2, 0x02, MD2_DIGEST_LENGTH) # endif # ifndef OPENSSL_NO_MD4 ENCODE_DIGESTINFO_MD(md4, 0x03, MD4_DIGEST_LENGTH) # endif # ifndef OPENSSL_NO_MD5 ENCODE_DIGESTINFO_MD(md5, 0x05, MD5_DIGEST_LENGTH) # endif # ifndef OPENSSL_NO_MDC2 /* MDC-2 (2 5 8 3 101) */ static const unsigned char digestinfo_mdc2_der[] = { ASN1_SEQUENCE, 0x0c + MDC2_DIGEST_LENGTH, ASN1_SEQUENCE, 0x08, ASN1_OID, 0x04, 2 * 40 + 5, 8, 3, 101, ASN1_NULL, 0x00, ASN1_OCTET_STRING, MDC2_DIGEST_LENGTH }; # endif # ifndef OPENSSL_NO_RMD160 /* RIPEMD160 (1 3 36 3 2 1) */ static const unsigned char digestinfo_ripemd160_der[] = { ASN1_SEQUENCE, 0x0d + RIPEMD160_DIGEST_LENGTH, ASN1_SEQUENCE, 0x09, ASN1_OID, 0x05, 1 * 40 + 3, 36, 3, 2, 1, ASN1_NULL, 0x00, ASN1_OCTET_STRING, RIPEMD160_DIGEST_LENGTH }; # endif #endif /* FIPS_MODULE */ /* SHA-1 (1 3 14 3 2 26) */ static const unsigned char digestinfo_sha1_der[] = { ASN1_SEQUENCE, 0x0d + SHA_DIGEST_LENGTH, ASN1_SEQUENCE, 0x09, ASN1_OID, 0x05, 1 * 40 + 3, 14, 3, 2, 26, ASN1_NULL, 0x00, ASN1_OCTET_STRING, SHA_DIGEST_LENGTH }; ENCODE_DIGESTINFO_SHA(sha256, 0x01, SHA256_DIGEST_LENGTH) ENCODE_DIGESTINFO_SHA(sha384, 0x02, SHA384_DIGEST_LENGTH) ENCODE_DIGESTINFO_SHA(sha512, 0x03, SHA512_DIGEST_LENGTH) ENCODE_DIGESTINFO_SHA(sha224, 0x04, SHA224_DIGEST_LENGTH) ENCODE_DIGESTINFO_SHA(sha512_224, 0x05, SHA224_DIGEST_LENGTH) ENCODE_DIGESTINFO_SHA(sha512_256, 0x06, SHA256_DIGEST_LENGTH) ENCODE_DIGESTINFO_SHA(sha3_224, 0x07, SHA224_DIGEST_LENGTH) ENCODE_DIGESTINFO_SHA(sha3_256, 0x08, SHA256_DIGEST_LENGTH) ENCODE_DIGESTINFO_SHA(sha3_384, 0x09, SHA384_DIGEST_LENGTH) ENCODE_DIGESTINFO_SHA(sha3_512, 0x0a, SHA512_DIGEST_LENGTH) #define MD_CASE(name) \ case NID_##name: \ *len = sizeof(digestinfo_##name##_der); \ return digestinfo_##name##_der; const unsigned char *ossl_rsa_digestinfo_encoding(int md_nid, size_t *len) { switch (md_nid) { #ifndef FIPS_MODULE # ifndef OPENSSL_NO_MDC2 MD_CASE(mdc2) # endif # ifndef OPENSSL_NO_MD2 MD_CASE(md2) # endif # ifndef OPENSSL_NO_MD4 MD_CASE(md4) # endif # ifndef OPENSSL_NO_MD5 MD_CASE(md5) # endif # ifndef OPENSSL_NO_RMD160 MD_CASE(ripemd160) # endif #endif /* FIPS_MODULE */ MD_CASE(sha1) MD_CASE(sha224) MD_CASE(sha256) MD_CASE(sha384) MD_CASE(sha512) MD_CASE(sha512_224) MD_CASE(sha512_256) MD_CASE(sha3_224) MD_CASE(sha3_256) MD_CASE(sha3_384) MD_CASE(sha3_512) default: return NULL; } } #define MD_NID_CASE(name, sz) \ case NID_##name: \ return sz; static int digest_sz_from_nid(int nid) { switch (nid) { #ifndef FIPS_MODULE # ifndef OPENSSL_NO_MDC2 MD_NID_CASE(mdc2, MDC2_DIGEST_LENGTH) # endif # ifndef OPENSSL_NO_MD2 MD_NID_CASE(md2, MD2_DIGEST_LENGTH) # endif # ifndef OPENSSL_NO_MD4 MD_NID_CASE(md4, MD4_DIGEST_LENGTH) # endif # ifndef OPENSSL_NO_MD5 MD_NID_CASE(md5, MD5_DIGEST_LENGTH) # endif # ifndef OPENSSL_NO_RMD160 MD_NID_CASE(ripemd160, RIPEMD160_DIGEST_LENGTH) # endif #endif /* FIPS_MODULE */ MD_NID_CASE(sha1, SHA_DIGEST_LENGTH) MD_NID_CASE(sha224, SHA224_DIGEST_LENGTH) MD_NID_CASE(sha256, SHA256_DIGEST_LENGTH) MD_NID_CASE(sha384, SHA384_DIGEST_LENGTH) MD_NID_CASE(sha512, SHA512_DIGEST_LENGTH) MD_NID_CASE(sha512_224, SHA224_DIGEST_LENGTH) MD_NID_CASE(sha512_256, SHA256_DIGEST_LENGTH) MD_NID_CASE(sha3_224, SHA224_DIGEST_LENGTH) MD_NID_CASE(sha3_256, SHA256_DIGEST_LENGTH) MD_NID_CASE(sha3_384, SHA384_DIGEST_LENGTH) MD_NID_CASE(sha3_512, SHA512_DIGEST_LENGTH) default: return 0; } } /* Size of an SSL signature: MD5+SHA1 */ #define SSL_SIG_LENGTH 36 /* * Encodes a DigestInfo prefix of hash |type| and digest |m|, as * described in EMSA-PKCS1-v1_5-ENCODE, RFC 3447 section 9.2 step 2. This * encodes the DigestInfo (T and tLen) but does not add the padding. * * On success, it returns one and sets |*out| to a newly allocated buffer * containing the result and |*out_len| to its length. The caller must free * |*out| with OPENSSL_free(). Otherwise, it returns zero. */ static int encode_pkcs1(unsigned char **out, size_t *out_len, int type, const unsigned char *m, size_t m_len) { size_t di_prefix_len, dig_info_len; const unsigned char *di_prefix; unsigned char *dig_info; if (type == NID_undef) { ERR_raise(ERR_LIB_RSA, RSA_R_UNKNOWN_ALGORITHM_TYPE); return 0; } di_prefix = ossl_rsa_digestinfo_encoding(type, &di_prefix_len); if (di_prefix == NULL) { ERR_raise(ERR_LIB_RSA, RSA_R_THE_ASN1_OBJECT_IDENTIFIER_IS_NOT_KNOWN_FOR_THIS_MD); return 0; } dig_info_len = di_prefix_len + m_len; dig_info = OPENSSL_malloc(dig_info_len); if (dig_info == NULL) { ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); return 0; } memcpy(dig_info, di_prefix, di_prefix_len); memcpy(dig_info + di_prefix_len, m, m_len); *out = dig_info; *out_len = dig_info_len; return 1; } int RSA_sign(int type, const unsigned char *m, unsigned int m_len, unsigned char *sigret, unsigned int *siglen, RSA *rsa) { int encrypt_len, ret = 0; size_t encoded_len = 0; unsigned char *tmps = NULL; const unsigned char *encoded = NULL; #ifndef FIPS_MODULE if (rsa->meth->rsa_sign != NULL) return rsa->meth->rsa_sign(type, m, m_len, sigret, siglen, rsa); #endif /* FIPS_MODULE */ /* Compute the encoded digest. */ if (type == NID_md5_sha1) { /* * NID_md5_sha1 corresponds to the MD5/SHA1 combination in TLS 1.1 and * earlier. It has no DigestInfo wrapper but otherwise is * RSASSA-PKCS1-v1_5. */ if (m_len != SSL_SIG_LENGTH) { ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MESSAGE_LENGTH); return 0; } encoded_len = SSL_SIG_LENGTH; encoded = m; } else { if (!encode_pkcs1(&tmps, &encoded_len, type, m, m_len)) goto err; encoded = tmps; } if (encoded_len + RSA_PKCS1_PADDING_SIZE > (size_t)RSA_size(rsa)) { ERR_raise(ERR_LIB_RSA, RSA_R_DIGEST_TOO_BIG_FOR_RSA_KEY); goto err; } encrypt_len = RSA_private_encrypt((int)encoded_len, encoded, sigret, rsa, RSA_PKCS1_PADDING); if (encrypt_len <= 0) goto err; *siglen = encrypt_len; ret = 1; err: OPENSSL_clear_free(tmps, encoded_len); return ret; } /* * Verify an RSA signature in |sigbuf| using |rsa|. * |type| is the NID of the digest algorithm to use. * If |rm| is NULL, it verifies the signature for digest |m|, otherwise * it recovers the digest from the signature, writing the digest to |rm| and * the length to |*prm_len|. * * It returns one on successful verification or zero otherwise. */ int ossl_rsa_verify(int type, const unsigned char *m, unsigned int m_len, unsigned char *rm, size_t *prm_len, const unsigned char *sigbuf, size_t siglen, RSA *rsa) { int len, ret = 0; size_t decrypt_len, encoded_len = 0; unsigned char *decrypt_buf = NULL, *encoded = NULL; if (siglen != (size_t)RSA_size(rsa)) { ERR_raise(ERR_LIB_RSA, RSA_R_WRONG_SIGNATURE_LENGTH); return 0; } /* Recover the encoded digest. */ decrypt_buf = OPENSSL_malloc(siglen); if (decrypt_buf == NULL) { ERR_raise(ERR_LIB_RSA, ERR_R_MALLOC_FAILURE); goto err; } len = RSA_public_decrypt((int)siglen, sigbuf, decrypt_buf, rsa, RSA_PKCS1_PADDING); if (len <= 0) goto err; decrypt_len = len; #ifndef FIPS_MODULE if (type == NID_md5_sha1) { /* * NID_md5_sha1 corresponds to the MD5/SHA1 combination in TLS 1.1 and * earlier. It has no DigestInfo wrapper but otherwise is * RSASSA-PKCS1-v1_5. */ if (decrypt_len != SSL_SIG_LENGTH) { ERR_raise(ERR_LIB_RSA, RSA_R_BAD_SIGNATURE); goto err; } if (rm != NULL) { memcpy(rm, decrypt_buf, SSL_SIG_LENGTH); *prm_len = SSL_SIG_LENGTH; } else { if (m_len != SSL_SIG_LENGTH) { ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MESSAGE_LENGTH); goto err; } if (memcmp(decrypt_buf, m, SSL_SIG_LENGTH) != 0) { ERR_raise(ERR_LIB_RSA, RSA_R_BAD_SIGNATURE); goto err; } } } else if (type == NID_mdc2 && decrypt_len == 2 + 16 && decrypt_buf[0] == 0x04 && decrypt_buf[1] == 0x10) { /* * Oddball MDC2 case: signature can be OCTET STRING. check for correct * tag and length octets. */ if (rm != NULL) { memcpy(rm, decrypt_buf + 2, 16); *prm_len = 16; } else { if (m_len != 16) { ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_MESSAGE_LENGTH); goto err; } if (memcmp(m, decrypt_buf + 2, 16) != 0) { ERR_raise(ERR_LIB_RSA, RSA_R_BAD_SIGNATURE); goto err; } } } else #endif /* FIPS_MODULE */ { /* * If recovering the digest, extract a digest-sized output from the end * of |decrypt_buf| for |encode_pkcs1|, then compare the decryption * output as in a standard verification. */ if (rm != NULL) { len = digest_sz_from_nid(type); if (len <= 0) goto err; m_len = (unsigned int)len; if (m_len > decrypt_len) { ERR_raise(ERR_LIB_RSA, RSA_R_INVALID_DIGEST_LENGTH); goto err; } m = decrypt_buf + decrypt_len - m_len; } /* Construct the encoded digest and ensure it matches. */ if (!encode_pkcs1(&encoded, &encoded_len, type, m, m_len)) goto err; if (encoded_len != decrypt_len || memcmp(encoded, decrypt_buf, encoded_len) != 0) { ERR_raise(ERR_LIB_RSA, RSA_R_BAD_SIGNATURE); goto err; } /* Output the recovered digest. */ if (rm != NULL) { memcpy(rm, m, m_len); *prm_len = m_len; } } ret = 1; err: OPENSSL_clear_free(encoded, encoded_len); OPENSSL_clear_free(decrypt_buf, siglen); return ret; } int RSA_verify(int type, const unsigned char *m, unsigned int m_len, const unsigned char *sigbuf, unsigned int siglen, RSA *rsa) { if (rsa->meth->rsa_verify != NULL) return rsa->meth->rsa_verify(type, m, m_len, sigbuf, siglen, rsa); return ossl_rsa_verify(type, m, m_len, NULL, NULL, sigbuf, siglen, rsa); }