#!/usr/bin/env perl # ==================================================================== # Written by Andy Polyakov for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # April 2006 # "Teaser" Montgomery multiplication module for PowerPC. It's possible # to gain a bit more by modulo-scheduling outer loop, then dedicated # squaring procedure should give further 20% and code can be adapted # for 32-bit application running on 64-bit CPU. As for the latter. # It won't be able to achieve "native" 64-bit performance, because in # 32-bit application context every addc instruction will have to be # expanded as addc, twice right shift by 32 and finally adde, etc. # So far RSA *sign* performance improvement over pre-bn_mul_mont asm # for 64-bit application running on PPC970/G5 is: # # 512-bit +65% # 1024-bit +35% # 2048-bit +18% # 4096-bit +4% $flavour = shift; if ($flavour =~ /32/) { $BITS= 32; $BNSZ= $BITS/8; $SIZE_T=4; $RZONE= 224; $FRAME= $SIZE_T*16; $LD= "lwz"; # load $LDU= "lwzu"; # load and update $LDX= "lwzx"; # load indexed $ST= "stw"; # store $STU= "stwu"; # store and update $STX= "stwx"; # store indexed $STUX= "stwux"; # store indexed and update $UMULL= "mullw"; # unsigned multiply low $UMULH= "mulhwu"; # unsigned multiply high $UCMP= "cmplw"; # unsigned compare $SHRI= "srwi"; # unsigned shift right by immediate $PUSH= $ST; $POP= $LD; } elsif ($flavour =~ /64/) { $BITS= 64; $BNSZ= $BITS/8; $SIZE_T=8; $RZONE= 288; $FRAME= $SIZE_T*16; # same as above, but 64-bit mnemonics... $LD= "ld"; # load $LDU= "ldu"; # load and update $LDX= "ldx"; # load indexed $ST= "std"; # store $STU= "stdu"; # store and update $STX= "stdx"; # store indexed $STUX= "stdux"; # store indexed and update $UMULL= "mulld"; # unsigned multiply low $UMULH= "mulhdu"; # unsigned multiply high $UCMP= "cmpld"; # unsigned compare $SHRI= "srdi"; # unsigned shift right by immediate $PUSH= $ST; $POP= $LD; } else { die "nonsense $flavour"; } $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; ( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or ( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or die "can't locate ppc-xlate.pl"; open STDOUT,"| $^X $xlate $flavour ".shift || die "can't call $xlate: $!"; $sp="r1"; $toc="r2"; $rp="r3"; $ovf="r3"; $ap="r4"; $bp="r5"; $np="r6"; $n0="r7"; $num="r8"; $rp="r9"; # $rp is reassigned $aj="r10"; $nj="r11"; $tj="r12"; # non-volatile registers $i="r14"; $j="r15"; $tp="r16"; $m0="r17"; $m1="r18"; $lo0="r19"; $hi0="r20"; $lo1="r21"; $hi1="r22"; $alo="r23"; $ahi="r24"; $nlo="r25"; # $nhi="r0"; $code=<<___; .machine "any" .text .globl .bn_mul_mont_int .align 4 .bn_mul_mont_int: cmpwi $num,4 mr $rp,r3 ; $rp is reassigned li r3,0 bltlr ___ $code.=<<___ if ($BNSZ==4); cmpwi $num,32 ; longer key performance is not better bgelr ___ $code.=<<___; slwi $num,$num,`log($BNSZ)/log(2)` li $tj,-4096 addi $ovf,$num,`$FRAME+$RZONE` subf $ovf,$ovf,$sp ; $sp-$ovf and $ovf,$ovf,$tj ; minimize TLB usage subf $ovf,$sp,$ovf ; $ovf-$sp srwi $num,$num,`log($BNSZ)/log(2)` $STUX $sp,$sp,$ovf $PUSH r14,`4*$SIZE_T`($sp) $PUSH r15,`5*$SIZE_T`($sp) $PUSH r16,`6*$SIZE_T`($sp) $PUSH r17,`7*$SIZE_T`($sp) $PUSH r18,`8*$SIZE_T`($sp) $PUSH r19,`9*$SIZE_T`($sp) $PUSH r20,`10*$SIZE_T`($sp) $PUSH r21,`11*$SIZE_T`($sp) $PUSH r22,`12*$SIZE_T`($sp) $PUSH r23,`13*$SIZE_T`($sp) $PUSH r24,`14*$SIZE_T`($sp) $PUSH r25,`15*$SIZE_T`($sp) $LD $n0,0($n0) ; pull n0[0] value addi $num,$num,-2 ; adjust $num for counter register $LD $m0,0($bp) ; m0=bp[0] $LD $aj,0($ap) ; ap[0] addi $tp,$sp,$FRAME $UMULL $lo0,$aj,$m0 ; ap[0]*bp[0] $UMULH $hi0,$aj,$m0 $LD $aj,$BNSZ($ap) ; ap[1] $LD $nj,0($np) ; np[0] $UMULL $m1,$lo0,$n0 ; "tp[0]"*n0 $UMULL $alo,$aj,$m0 ; ap[1]*bp[0] $UMULH $ahi,$aj,$m0 $UMULL $lo1,$nj,$m1 ; np[0]*m1 $UMULH $hi1,$nj,$m1 $LD $nj,$BNSZ($np) ; np[1] addc $lo1,$lo1,$lo0 addze $hi1,$hi1 $UMULL $nlo,$nj,$m1 ; np[1]*m1 $UMULH $nhi,$nj,$m1 mtctr $num li $j,`2*$BNSZ` .align 4 L1st: $LDX $aj,$ap,$j ; ap[j] addc $lo0,$alo,$hi0 $LDX $nj,$np,$j ; np[j] addze $hi0,$ahi $UMULL $alo,$aj,$m0 ; ap[j]*bp[0] addc $lo1,$nlo,$hi1 $UMULH $ahi,$aj,$m0 addze $hi1,$nhi $UMULL $nlo,$nj,$m1 ; np[j]*m1 addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] $UMULH $nhi,$nj,$m1 addze $hi1,$hi1 $ST $lo1,0($tp) ; tp[j-1] addi $j,$j,$BNSZ ; j++ addi $tp,$tp,$BNSZ ; tp++ bdnz- L1st ;L1st addc $lo0,$alo,$hi0 addze $hi0,$ahi addc $lo1,$nlo,$hi1 addze $hi1,$nhi addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[0] addze $hi1,$hi1 $ST $lo1,0($tp) ; tp[j-1] li $ovf,0 addc $hi1,$hi1,$hi0 addze $ovf,$ovf ; upmost overflow bit $ST $hi1,$BNSZ($tp) li $i,$BNSZ .align 4 Louter: $LDX $m0,$bp,$i ; m0=bp[i] $LD $aj,0($ap) ; ap[0] addi $tp,$sp,$FRAME $LD $tj,$FRAME($sp) ; tp[0] $UMULL $lo0,$aj,$m0 ; ap[0]*bp[i] $UMULH $hi0,$aj,$m0 $LD $aj,$BNSZ($ap) ; ap[1] $LD $nj,0($np) ; np[0] addc $lo0,$lo0,$tj ; ap[0]*bp[i]+tp[0] $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] addze $hi0,$hi0 $UMULL $m1,$lo0,$n0 ; tp[0]*n0 $UMULH $ahi,$aj,$m0 $UMULL $lo1,$nj,$m1 ; np[0]*m1 $UMULH $hi1,$nj,$m1 $LD $nj,$BNSZ($np) ; np[1] addc $lo1,$lo1,$lo0 $UMULL $nlo,$nj,$m1 ; np[1]*m1 addze $hi1,$hi1 $UMULH $nhi,$nj,$m1 mtctr $num li $j,`2*$BNSZ` .align 4 Linner: $LDX $aj,$ap,$j ; ap[j] addc $lo0,$alo,$hi0 $LD $tj,$BNSZ($tp) ; tp[j] addze $hi0,$ahi $LDX $nj,$np,$j ; np[j] addc $lo1,$nlo,$hi1 $UMULL $alo,$aj,$m0 ; ap[j]*bp[i] addze $hi1,$nhi $UMULH $ahi,$aj,$m0 addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] $UMULL $nlo,$nj,$m1 ; np[j]*m1 addze $hi0,$hi0 $UMULH $nhi,$nj,$m1 addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] addi $j,$j,$BNSZ ; j++ addze $hi1,$hi1 $ST $lo1,0($tp) ; tp[j-1] addi $tp,$tp,$BNSZ ; tp++ bdnz- Linner ;Linner $LD $tj,$BNSZ($tp) ; tp[j] addc $lo0,$alo,$hi0 addze $hi0,$ahi addc $lo0,$lo0,$tj ; ap[j]*bp[i]+tp[j] addze $hi0,$hi0 addc $lo1,$nlo,$hi1 addze $hi1,$nhi addc $lo1,$lo1,$lo0 ; np[j]*m1+ap[j]*bp[i]+tp[j] addze $hi1,$hi1 $ST $lo1,0($tp) ; tp[j-1] addic $ovf,$ovf,-1 ; move upmost overflow to XER[CA] li $ovf,0 adde $hi1,$hi1,$hi0 addze $ovf,$ovf $ST $hi1,$BNSZ($tp) ; slwi $tj,$num,`log($BNSZ)/log(2)` $UCMP $i,$tj addi $i,$i,$BNSZ ble- Louter addi $num,$num,2 ; restore $num subfc $j,$j,$j ; j=0 and "clear" XER[CA] addi $tp,$sp,$FRAME mtctr $num .align 4 Lsub: $LDX $tj,$tp,$j $LDX $nj,$np,$j subfe $aj,$nj,$tj ; tp[j]-np[j] $STX $aj,$rp,$j addi $j,$j,$BNSZ bdnz- Lsub li $j,0 mtctr $num subfe $ovf,$j,$ovf ; handle upmost overflow bit and $ap,$tp,$ovf andc $np,$rp,$ovf or $ap,$ap,$np ; ap=borrow?tp:rp .align 4 Lcopy: ; copy or in-place refresh $LDX $tj,$ap,$j $STX $tj,$rp,$j $STX $j,$tp,$j ; zap at once addi $j,$j,$BNSZ bdnz- Lcopy $POP r14,`4*$SIZE_T`($sp) $POP r15,`5*$SIZE_T`($sp) $POP r16,`6*$SIZE_T`($sp) $POP r17,`7*$SIZE_T`($sp) $POP r18,`8*$SIZE_T`($sp) $POP r19,`9*$SIZE_T`($sp) $POP r20,`10*$SIZE_T`($sp) $POP r21,`11*$SIZE_T`($sp) $POP r22,`12*$SIZE_T`($sp) $POP r23,`13*$SIZE_T`($sp) $POP r24,`14*$SIZE_T`($sp) $POP r25,`15*$SIZE_T`($sp) $POP $sp,0($sp) li r3,1 blr .long 0 .asciz "Montgomery Multiplication for PPC, CRYPTOGAMS by " ___ $code =~ s/\`([^\`]*)\`/eval $1/gem; print $code; close STDOUT;