/* * Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "quic_local.h" #include "internal/quic_tls.h" #include "internal/quic_rx_depack.h" #include "internal/quic_error.h" #include "internal/quic_engine.h" #include "internal/quic_port.h" #include "internal/time.h" typedef struct qctx_st QCTX; static void aon_write_finish(QUIC_XSO *xso); static int create_channel(QUIC_CONNECTION *qc); static QUIC_XSO *create_xso_from_stream(QUIC_CONNECTION *qc, QUIC_STREAM *qs); static int qc_try_create_default_xso_for_write(QCTX *ctx); static int qc_wait_for_default_xso_for_read(QCTX *ctx); static void quic_lock(QUIC_CONNECTION *qc); static void quic_unlock(QUIC_CONNECTION *qc); static void quic_lock_for_io(QCTX *ctx); static int quic_do_handshake(QCTX *ctx); static void qc_update_reject_policy(QUIC_CONNECTION *qc); static void qc_touch_default_xso(QUIC_CONNECTION *qc); static void qc_set_default_xso(QUIC_CONNECTION *qc, QUIC_XSO *xso, int touch); static void qc_set_default_xso_keep_ref(QUIC_CONNECTION *qc, QUIC_XSO *xso, int touch, QUIC_XSO **old_xso); static SSL *quic_conn_stream_new(QCTX *ctx, uint64_t flags, int need_lock); static int quic_validate_for_write(QUIC_XSO *xso, int *err); static int quic_mutation_allowed(QUIC_CONNECTION *qc, int req_active); static int qc_blocking_mode(const QUIC_CONNECTION *qc); static int xso_blocking_mode(const QUIC_XSO *xso); /* * QUIC Front-End I/O API: Common Utilities * ======================================== */ /* * Block until a predicate is met. * * Precondition: Must have a channel. * Precondition: Must hold channel lock (unchecked). */ QUIC_NEEDS_LOCK static int block_until_pred(QUIC_CONNECTION *qc, int (*pred)(void *arg), void *pred_arg, uint32_t flags) { QUIC_REACTOR *rtor; assert(qc->ch != NULL); /* * Any attempt to block auto-disables tick inhibition as otherwise we will * hang around forever. */ ossl_quic_engine_set_inhibit_tick(qc->engine, 0); rtor = ossl_quic_channel_get_reactor(qc->ch); return ossl_quic_reactor_block_until_pred(rtor, pred, pred_arg, flags, qc->mutex); } static OSSL_TIME get_time(QUIC_CONNECTION *qc) { if (qc->override_now_cb != NULL) return qc->override_now_cb(qc->override_now_cb_arg); else return ossl_time_now(); } static OSSL_TIME get_time_cb(void *arg) { QUIC_CONNECTION *qc = arg; return get_time(qc); } /* * QCTX is a utility structure which provides information we commonly wish to * unwrap upon an API call being dispatched to us, namely: * * - a pointer to the QUIC_CONNECTION (regardless of whether a QCSO or QSSO * was passed); * - a pointer to any applicable QUIC_XSO (e.g. if a QSSO was passed, or if * a QCSO with a default stream was passed); * - whether a QSSO was passed (xso == NULL must not be used to determine this * because it may be non-NULL when a QCSO is passed if that QCSO has a * default stream); * - whether we are in "I/O context", meaning that non-normal errors can * be reported via SSL_get_error() as well as via ERR. Functions such as * SSL_read(), SSL_write() and SSL_do_handshake() are "I/O context" * functions which are allowed to change the value returned by * SSL_get_error. However, other functions (including functions which call * SSL_do_handshake() implicitly) are not allowed to change the return value * of SSL_get_error. */ struct qctx_st { QUIC_CONNECTION *qc; QUIC_XSO *xso; int is_stream, in_io; }; QUIC_NEEDS_LOCK static void quic_set_last_error(QCTX *ctx, int last_error) { if (!ctx->in_io) return; if (ctx->is_stream && ctx->xso != NULL) ctx->xso->last_error = last_error; else if (!ctx->is_stream && ctx->qc != NULL) ctx->qc->last_error = last_error; } /* * Raise a 'normal' error, meaning one that can be reported via SSL_get_error() * rather than via ERR. Note that normal errors must always be raised while * holding a lock. */ QUIC_NEEDS_LOCK static int quic_raise_normal_error(QCTX *ctx, int err) { assert(ctx->in_io); quic_set_last_error(ctx, err); return 0; } /* * Raise a 'non-normal' error, meaning any error that is not reported via * SSL_get_error() and must be reported via ERR. * * qc should be provided if available. In exceptional circumstances when qc is * not known NULL may be passed. This should generally only happen when an * expect_...() function defined below fails, which generally indicates a * dispatch error or caller error. * * ctx should be NULL if the connection lock is not held. */ static int quic_raise_non_normal_error(QCTX *ctx, const char *file, int line, const char *func, int reason, const char *fmt, ...) { va_list args; if (ctx != NULL) { quic_set_last_error(ctx, SSL_ERROR_SSL); if (reason == SSL_R_PROTOCOL_IS_SHUTDOWN && ctx->qc != NULL) ossl_quic_channel_restore_err_state(ctx->qc->ch); } ERR_new(); ERR_set_debug(file, line, func); va_start(args, fmt); ERR_vset_error(ERR_LIB_SSL, reason, fmt, args); va_end(args); return 0; } #define QUIC_RAISE_NORMAL_ERROR(ctx, err) \ quic_raise_normal_error((ctx), (err)) #define QUIC_RAISE_NON_NORMAL_ERROR(ctx, reason, msg) \ quic_raise_non_normal_error((ctx), \ OPENSSL_FILE, OPENSSL_LINE, \ OPENSSL_FUNC, \ (reason), \ (msg)) /* * Given a QCSO or QSSO, initialises a QCTX, determining the contextually * applicable QUIC_CONNECTION pointer and, if applicable, QUIC_XSO pointer. * * After this returns 1, all fields of the passed QCTX are initialised. * Returns 0 on failure. This function is intended to be used to provide API * semantics and as such, it invokes QUIC_RAISE_NON_NORMAL_ERROR() on failure. */ static int expect_quic(const SSL *s, QCTX *ctx) { QUIC_CONNECTION *qc; QUIC_XSO *xso; ctx->qc = NULL; ctx->xso = NULL; ctx->is_stream = 0; if (s == NULL) return QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_PASSED_NULL_PARAMETER, NULL); switch (s->type) { case SSL_TYPE_QUIC_CONNECTION: qc = (QUIC_CONNECTION *)s; ctx->qc = qc; ctx->xso = qc->default_xso; ctx->is_stream = 0; ctx->in_io = 0; return 1; case SSL_TYPE_QUIC_XSO: xso = (QUIC_XSO *)s; ctx->qc = xso->conn; ctx->xso = xso; ctx->is_stream = 1; ctx->in_io = 0; return 1; default: return QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL); } } /* * Like expect_quic(), but requires a QUIC_XSO be contextually available. In * other words, requires that the passed QSO be a QSSO or a QCSO with a default * stream. * * remote_init determines if we expect the default XSO to be remotely created or * not. If it is -1, do not instantiate a default XSO if one does not yet exist. * * Channel mutex is acquired and retained on success. */ QUIC_ACQUIRES_LOCK static int ossl_unused expect_quic_with_stream_lock(const SSL *s, int remote_init, int in_io, QCTX *ctx) { if (!expect_quic(s, ctx)) return 0; if (in_io) quic_lock_for_io(ctx); else quic_lock(ctx->qc); if (ctx->xso == NULL && remote_init >= 0) { if (!quic_mutation_allowed(ctx->qc, /*req_active=*/0)) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); goto err; } /* If we haven't finished the handshake, try to advance it. */ if (quic_do_handshake(ctx) < 1) /* ossl_quic_do_handshake raised error here */ goto err; if (remote_init == 0) { if (!qc_try_create_default_xso_for_write(ctx)) goto err; } else { if (!qc_wait_for_default_xso_for_read(ctx)) goto err; } ctx->xso = ctx->qc->default_xso; } if (ctx->xso == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_NO_STREAM, NULL); goto err; } return 1; /* coverity[missing_unlock]: lock held */ err: quic_unlock(ctx->qc); return 0; } /* * Like expect_quic(), but fails if called on a QUIC_XSO. ctx->xso may still * be non-NULL if the QCSO has a default stream. */ static int ossl_unused expect_quic_conn_only(const SSL *s, QCTX *ctx) { if (!expect_quic(s, ctx)) return 0; if (ctx->is_stream) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_CONN_USE_ONLY, NULL); return 1; } /* * Ensures that the channel mutex is held for a method which touches channel * state. * * Precondition: Channel mutex is not held (unchecked) */ static void quic_lock(QUIC_CONNECTION *qc) { #if defined(OPENSSL_THREADS) ossl_crypto_mutex_lock(qc->mutex); #endif } static void quic_lock_for_io(QCTX *ctx) { quic_lock(ctx->qc); ctx->in_io = 1; /* * We are entering an I/O function so we must update the values returned by * SSL_get_error and SSL_want. Set no error. This will be overridden later * if a call to QUIC_RAISE_NORMAL_ERROR or QUIC_RAISE_NON_NORMAL_ERROR * occurs during the API call. */ quic_set_last_error(ctx, SSL_ERROR_NONE); } /* Precondition: Channel mutex is held (unchecked) */ QUIC_NEEDS_LOCK static void quic_unlock(QUIC_CONNECTION *qc) { #if defined(OPENSSL_THREADS) ossl_crypto_mutex_unlock(qc->mutex); #endif } /* * This predicate is the criterion which should determine API call rejection for * *most* mutating API calls, particularly stream-related operations for send * parts. * * A call is rejected (this function returns 0) if shutdown is in progress * (stream flushing), or we are in a TERMINATING or TERMINATED state. If * req_active=1, the connection must be active (i.e., the IDLE state is also * rejected). */ static int quic_mutation_allowed(QUIC_CONNECTION *qc, int req_active) { if (qc->shutting_down || ossl_quic_channel_is_term_any(qc->ch)) return 0; if (req_active && !ossl_quic_channel_is_active(qc->ch)) return 0; return 1; } /* * QUIC Front-End I/O API: Initialization * ====================================== * * SSL_new => ossl_quic_new * ossl_quic_init * SSL_reset => ossl_quic_reset * SSL_clear => ossl_quic_clear * ossl_quic_deinit * SSL_free => ossl_quic_free * * SSL_set_options => ossl_quic_set_options * SSL_get_options => ossl_quic_get_options * SSL_clear_options => ossl_quic_clear_options * */ /* SSL_new */ SSL *ossl_quic_new(SSL_CTX *ctx) { QUIC_CONNECTION *qc = NULL; SSL *ssl_base = NULL; SSL_CONNECTION *sc = NULL; qc = OPENSSL_zalloc(sizeof(*qc)); if (qc == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_CRYPTO_LIB, NULL); return NULL; } #if defined(OPENSSL_THREADS) if ((qc->mutex = ossl_crypto_mutex_new()) == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_CRYPTO_LIB, NULL); goto err; } #endif /* Initialise the QUIC_CONNECTION's stub header. */ ssl_base = &qc->ssl; if (!ossl_ssl_init(ssl_base, ctx, ctx->method, SSL_TYPE_QUIC_CONNECTION)) { ssl_base = NULL; QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL); goto err; } qc->tls = ossl_ssl_connection_new_int(ctx, TLS_method()); if (qc->tls == NULL || (sc = SSL_CONNECTION_FROM_SSL(qc->tls)) == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL); goto err; } /* override the user_ssl of the inner connection */ sc->s3.flags |= TLS1_FLAGS_QUIC; /* Restrict options derived from the SSL_CTX. */ sc->options &= OSSL_QUIC_PERMITTED_OPTIONS_CONN; sc->pha_enabled = 0; #if !defined(OPENSSL_NO_QUIC_THREAD_ASSIST) qc->is_thread_assisted = (ssl_base->method == OSSL_QUIC_client_thread_method()); #endif qc->as_server = 0; /* TODO(QUIC SERVER): add server support */ qc->as_server_state = qc->as_server; qc->default_stream_mode = SSL_DEFAULT_STREAM_MODE_AUTO_BIDI; qc->default_ssl_mode = qc->ssl.ctx->mode; qc->default_ssl_options = qc->ssl.ctx->options & OSSL_QUIC_PERMITTED_OPTIONS; qc->desires_blocking = 1; qc->blocking = 0; qc->incoming_stream_policy = SSL_INCOMING_STREAM_POLICY_AUTO; qc->last_error = SSL_ERROR_NONE; if (!create_channel(qc)) goto err; ossl_quic_channel_set_msg_callback(qc->ch, ctx->msg_callback, ssl_base); ossl_quic_channel_set_msg_callback_arg(qc->ch, ctx->msg_callback_arg); qc_update_reject_policy(qc); /* * We do not create the default XSO yet. The reason for this is that the * stream ID of the default XSO will depend on whether the stream is client * or server-initiated, which depends on who transmits first. Since we do * not know whether the application will be using a client-transmits-first * or server-transmits-first protocol, we defer default XSO creation until * the client calls SSL_read() or SSL_write(). If it calls SSL_read() first, * we take that as a cue that the client is expecting a server-initiated * stream, and vice versa if SSL_write() is called first. */ return ssl_base; err: if (ssl_base == NULL) { #if defined(OPENSSL_THREADS) ossl_crypto_mutex_free(qc->mutex); #endif OPENSSL_free(qc); } else { SSL_free(ssl_base); } return NULL; } /* SSL_free */ QUIC_TAKES_LOCK void ossl_quic_free(SSL *s) { QCTX ctx; int is_default; /* We should never be called on anything but a QSO. */ if (!expect_quic(s, &ctx)) return; quic_lock(ctx.qc); if (ctx.is_stream) { /* * When a QSSO is freed, the XSO is freed immediately, because the XSO * itself only contains API personality layer data. However the * underlying QUIC_STREAM is not freed immediately but is instead marked * as deleted for later collection. */ assert(ctx.qc->num_xso > 0); --ctx.qc->num_xso; /* If a stream's send part has not been finished, auto-reset it. */ if (( ctx.xso->stream->send_state == QUIC_SSTREAM_STATE_READY || ctx.xso->stream->send_state == QUIC_SSTREAM_STATE_SEND) && !ossl_quic_sstream_get_final_size(ctx.xso->stream->sstream, NULL)) ossl_quic_stream_map_reset_stream_send_part(ossl_quic_channel_get_qsm(ctx.qc->ch), ctx.xso->stream, 0); /* Do STOP_SENDING for the receive part, if applicable. */ if ( ctx.xso->stream->recv_state == QUIC_RSTREAM_STATE_RECV || ctx.xso->stream->recv_state == QUIC_RSTREAM_STATE_SIZE_KNOWN) ossl_quic_stream_map_stop_sending_recv_part(ossl_quic_channel_get_qsm(ctx.qc->ch), ctx.xso->stream, 0); /* Update stream state. */ ctx.xso->stream->deleted = 1; ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(ctx.qc->ch), ctx.xso->stream); is_default = (ctx.xso == ctx.qc->default_xso); quic_unlock(ctx.qc); /* * Unref the connection in most cases; the XSO has a ref to the QC and * not vice versa. But for a default XSO, to avoid circular references, * the QC refs the XSO but the XSO does not ref the QC. If we are the * default XSO, we only get here when the QC is being torn down anyway, * so don't call SSL_free(qc) as we are already in it. */ if (!is_default) SSL_free(&ctx.qc->ssl); /* Note: SSL_free calls OPENSSL_free(xso) for us */ return; } /* * Free the default XSO, if any. The QUIC_STREAM is not deleted at this * stage, but is freed during the channel free when the whole QSM is freed. */ if (ctx.qc->default_xso != NULL) { QUIC_XSO *xso = ctx.qc->default_xso; quic_unlock(ctx.qc); SSL_free(&xso->ssl); quic_lock(ctx.qc); ctx.qc->default_xso = NULL; } /* Ensure we have no remaining XSOs. */ assert(ctx.qc->num_xso == 0); #if !defined(OPENSSL_NO_QUIC_THREAD_ASSIST) if (ctx.qc->is_thread_assisted && ctx.qc->started) { ossl_quic_thread_assist_wait_stopped(&ctx.qc->thread_assist); ossl_quic_thread_assist_cleanup(&ctx.qc->thread_assist); } #endif SSL_free(ctx.qc->tls); ossl_quic_channel_free(ctx.qc->ch); ossl_quic_port_free(ctx.qc->port); ossl_quic_engine_free(ctx.qc->engine); BIO_free_all(ctx.qc->net_rbio); BIO_free_all(ctx.qc->net_wbio); quic_unlock(ctx.qc); /* tsan doesn't like freeing locked mutexes */ #if defined(OPENSSL_THREADS) ossl_crypto_mutex_free(&ctx.qc->mutex); #endif /* * Note: SSL_free (that called this function) calls OPENSSL_free(ctx.qc) for * us */ } /* SSL method init */ int ossl_quic_init(SSL *s) { /* Same op as SSL_clear, forward the call. */ return ossl_quic_clear(s); } /* SSL method deinit */ void ossl_quic_deinit(SSL *s) { /* No-op. */ } /* SSL_clear (ssl_reset method) */ int ossl_quic_reset(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; ERR_raise(ERR_LIB_SSL, ERR_R_UNSUPPORTED); return 0; } /* ssl_clear method (unused) */ int ossl_quic_clear(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; ERR_raise(ERR_LIB_SSL, ERR_R_UNSUPPORTED); return 0; } int ossl_quic_conn_set_override_now_cb(SSL *s, OSSL_TIME (*now_cb)(void *arg), void *now_cb_arg) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); ctx.qc->override_now_cb = now_cb; ctx.qc->override_now_cb_arg = now_cb_arg; quic_unlock(ctx.qc); return 1; } void ossl_quic_conn_force_assist_thread_wake(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return; #if !defined(OPENSSL_NO_QUIC_THREAD_ASSIST) if (ctx.qc->is_thread_assisted && ctx.qc->started) ossl_quic_thread_assist_notify_deadline_changed(&ctx.qc->thread_assist); #endif } QUIC_NEEDS_LOCK static void qc_touch_default_xso(QUIC_CONNECTION *qc) { qc->default_xso_created = 1; qc_update_reject_policy(qc); } /* * Changes default XSO. Allows caller to keep reference to the old default XSO * (if any). Reference to new XSO is transferred from caller. */ QUIC_NEEDS_LOCK static void qc_set_default_xso_keep_ref(QUIC_CONNECTION *qc, QUIC_XSO *xso, int touch, QUIC_XSO **old_xso) { int refs; *old_xso = NULL; if (qc->default_xso != xso) { *old_xso = qc->default_xso; /* transfer old XSO ref to caller */ qc->default_xso = xso; if (xso == NULL) { /* * Changing to not having a default XSO. XSO becomes standalone and * now has a ref to the QC. */ if (!ossl_assert(SSL_up_ref(&qc->ssl))) return; } else { /* * Changing from not having a default XSO to having one. The new XSO * will have had a reference to the QC we need to drop to avoid a * circular reference. * * Currently we never change directly from one default XSO to * another, though this function would also still be correct if this * weren't the case. */ assert(*old_xso == NULL); CRYPTO_DOWN_REF(&qc->ssl.references, &refs); assert(refs > 0); } } if (touch) qc_touch_default_xso(qc); } /* * Changes default XSO, releasing the reference to any previous default XSO. * Reference to new XSO is transferred from caller. */ QUIC_NEEDS_LOCK static void qc_set_default_xso(QUIC_CONNECTION *qc, QUIC_XSO *xso, int touch) { QUIC_XSO *old_xso = NULL; qc_set_default_xso_keep_ref(qc, xso, touch, &old_xso); if (old_xso != NULL) SSL_free(&old_xso->ssl); } QUIC_NEEDS_LOCK static void xso_update_options(QUIC_XSO *xso) { int cleanse = ((xso->ssl_options & SSL_OP_CLEANSE_PLAINTEXT) != 0); if (xso->stream->rstream != NULL) ossl_quic_rstream_set_cleanse(xso->stream->rstream, cleanse); if (xso->stream->sstream != NULL) ossl_quic_sstream_set_cleanse(xso->stream->sstream, cleanse); } /* * SSL_set_options * --------------- * * Setting options on a QCSO * - configures the handshake-layer options; * - configures the default data-plane options for new streams; * - configures the data-plane options on the default XSO, if there is one. * * Setting options on a QSSO * - configures data-plane options for that stream only. */ QUIC_TAKES_LOCK static uint64_t quic_mask_or_options(SSL *ssl, uint64_t mask_value, uint64_t or_value) { QCTX ctx; uint64_t hs_mask_value, hs_or_value, ret; if (!expect_quic(ssl, &ctx)) return 0; quic_lock(ctx.qc); if (!ctx.is_stream) { /* * If we were called on the connection, we apply any handshake option * changes. */ hs_mask_value = (mask_value & OSSL_QUIC_PERMITTED_OPTIONS_CONN); hs_or_value = (or_value & OSSL_QUIC_PERMITTED_OPTIONS_CONN); SSL_clear_options(ctx.qc->tls, hs_mask_value); SSL_set_options(ctx.qc->tls, hs_or_value); /* Update defaults for new streams. */ ctx.qc->default_ssl_options = ((ctx.qc->default_ssl_options & ~mask_value) | or_value) & OSSL_QUIC_PERMITTED_OPTIONS; } if (ctx.xso != NULL) { ctx.xso->ssl_options = ((ctx.xso->ssl_options & ~mask_value) | or_value) & OSSL_QUIC_PERMITTED_OPTIONS_STREAM; xso_update_options(ctx.xso); } ret = ctx.is_stream ? ctx.xso->ssl_options : ctx.qc->default_ssl_options; quic_unlock(ctx.qc); return ret; } uint64_t ossl_quic_set_options(SSL *ssl, uint64_t options) { return quic_mask_or_options(ssl, 0, options); } /* SSL_clear_options */ uint64_t ossl_quic_clear_options(SSL *ssl, uint64_t options) { return quic_mask_or_options(ssl, options, 0); } /* SSL_get_options */ uint64_t ossl_quic_get_options(const SSL *ssl) { return quic_mask_or_options((SSL *)ssl, 0, 0); } /* * QUIC Front-End I/O API: Network BIO Configuration * ================================================= * * Handling the different BIOs is difficult: * * - It is more or less a requirement that we use non-blocking network I/O; * we need to be able to have timeouts on recv() calls, and make best effort * (non blocking) send() and recv() calls. * * The only sensible way to do this is to configure the socket into * non-blocking mode. We could try to do select() before calling send() or * recv() to get a guarantee that the call will not block, but this will * probably run into issues with buggy OSes which generate spurious socket * readiness events. In any case, relying on this to work reliably does not * seem sane. * * Timeouts could be handled via setsockopt() socket timeout options, but * this depends on OS support and adds another syscall to every network I/O * operation. It also has obvious thread safety concerns if we want to move * to concurrent use of a single socket at some later date. * * Some OSes support a MSG_DONTWAIT flag which allows a single I/O option to * be made non-blocking. However some OSes (e.g. Windows) do not support * this, so we cannot rely on this. * * As such, we need to configure any FD in non-blocking mode. This may * confound users who pass a blocking socket to libssl. However, in practice * it would be extremely strange for a user of QUIC to pass an FD to us, * then also try and send receive traffic on the same socket(!). Thus the * impact of this should be limited, and can be documented. * * - We support both blocking and non-blocking operation in terms of the API * presented to the user. One prospect is to set the blocking mode based on * whether the socket passed to us was already in blocking mode. However, * Windows has no API for determining if a socket is in blocking mode (!), * therefore this cannot be done portably. Currently therefore we expose an * explicit API call to set this, and default to blocking mode. * * - We need to determine our initial destination UDP address. The "natural" * way for a user to do this is to set the peer variable on a BIO_dgram. * However, this has problems because BIO_dgram's peer variable is used for * both transmission and reception. This means it can be constantly being * changed to a malicious value (e.g. if some random unrelated entity on the * network starts sending traffic to us) on every read call. This is not a * direct issue because we use the 'stateless' BIO_sendmmsg and BIO_recvmmsg * calls only, which do not use this variable. However, we do need to let * the user specify the peer in a 'normal' manner. The compromise here is * that we grab the current peer value set at the time the write BIO is set * and do not read the value again. * * - We also need to support memory BIOs (e.g. BIO_dgram_pair) or custom BIOs. * Currently we do this by only supporting non-blocking mode. * */ /* * Determines what initial destination UDP address we should use, if possible. * If this fails the client must set the destination address manually, or use a * BIO which does not need a destination address. */ static int csm_analyse_init_peer_addr(BIO *net_wbio, BIO_ADDR *peer) { if (BIO_dgram_detect_peer_addr(net_wbio, peer) <= 0) return 0; return 1; } static int qc_can_support_blocking_cached(QUIC_CONNECTION *qc) { QUIC_REACTOR *rtor = ossl_quic_channel_get_reactor(qc->ch); return ossl_quic_reactor_can_poll_r(rtor) && ossl_quic_reactor_can_poll_w(rtor); } static void qc_update_can_support_blocking(QUIC_CONNECTION *qc) { ossl_quic_port_update_poll_descriptors(qc->port); /* best effort */ } static void qc_update_blocking_mode(QUIC_CONNECTION *qc) { qc->blocking = qc->desires_blocking && qc_can_support_blocking_cached(qc); } void ossl_quic_conn_set0_net_rbio(SSL *s, BIO *net_rbio) { QCTX ctx; if (!expect_quic(s, &ctx)) return; if (ctx.qc->net_rbio == net_rbio) return; if (!ossl_quic_port_set_net_rbio(ctx.qc->port, net_rbio)) return; BIO_free_all(ctx.qc->net_rbio); ctx.qc->net_rbio = net_rbio; if (net_rbio != NULL) BIO_set_nbio(net_rbio, 1); /* best effort autoconfig */ /* * Determine if the current pair of read/write BIOs now set allows blocking * mode to be supported. */ qc_update_can_support_blocking(ctx.qc); qc_update_blocking_mode(ctx.qc); } void ossl_quic_conn_set0_net_wbio(SSL *s, BIO *net_wbio) { QCTX ctx; if (!expect_quic(s, &ctx)) return; if (ctx.qc->net_wbio == net_wbio) return; if (!ossl_quic_port_set_net_wbio(ctx.qc->port, net_wbio)) return; BIO_free_all(ctx.qc->net_wbio); ctx.qc->net_wbio = net_wbio; if (net_wbio != NULL) BIO_set_nbio(net_wbio, 1); /* best effort autoconfig */ /* * Determine if the current pair of read/write BIOs now set allows blocking * mode to be supported. */ qc_update_can_support_blocking(ctx.qc); qc_update_blocking_mode(ctx.qc); } BIO *ossl_quic_conn_get_net_rbio(const SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return NULL; return ctx.qc->net_rbio; } BIO *ossl_quic_conn_get_net_wbio(const SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return NULL; return ctx.qc->net_wbio; } int ossl_quic_conn_get_blocking_mode(const SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; if (ctx.is_stream) return xso_blocking_mode(ctx.xso); return qc_blocking_mode(ctx.qc); } QUIC_TAKES_LOCK int ossl_quic_conn_set_blocking_mode(SSL *s, int blocking) { int ret = 0; QCTX ctx; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); /* Sanity check - can we support the request given the current network BIO? */ if (blocking) { /* * If called directly on a QCSO, update our information on network BIO * capabilities. */ if (!ctx.is_stream) qc_update_can_support_blocking(ctx.qc); /* Cannot enable blocking mode if we do not have pollable FDs. */ if (!qc_can_support_blocking_cached(ctx.qc)) { ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_UNSUPPORTED, NULL); goto out; } } if (!ctx.is_stream) /* * If called directly on a QCSO, update default and connection-level * blocking modes. */ ctx.qc->desires_blocking = (blocking != 0); if (ctx.xso != NULL) { /* * If called on a QSSO or a QCSO with a default XSO, update the blocking * mode. */ ctx.xso->desires_blocking = (blocking != 0); ctx.xso->desires_blocking_set = 1; } ret = 1; out: qc_update_blocking_mode(ctx.qc); quic_unlock(ctx.qc); return ret; } int ossl_quic_conn_set_initial_peer_addr(SSL *s, const BIO_ADDR *peer_addr) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; if (ctx.qc->started) return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, NULL); if (peer_addr == NULL) { BIO_ADDR_clear(&ctx.qc->init_peer_addr); return 1; } ctx.qc->init_peer_addr = *peer_addr; return 1; } /* * QUIC Front-End I/O API: Asynchronous I/O Management * =================================================== * * (BIO/)SSL_handle_events => ossl_quic_handle_events * (BIO/)SSL_get_event_timeout => ossl_quic_get_event_timeout * (BIO/)SSL_get_poll_fd => ossl_quic_get_poll_fd * */ /* Returns 1 if the connection is being used in blocking mode. */ static int qc_blocking_mode(const QUIC_CONNECTION *qc) { return qc->blocking; } static int xso_blocking_mode(const QUIC_XSO *xso) { if (xso->desires_blocking_set) return xso->desires_blocking && qc_can_support_blocking_cached(xso->conn); else /* Only ever set if we can support blocking. */ return xso->conn->blocking; } /* SSL_handle_events; performs QUIC I/O and timeout processing. */ QUIC_TAKES_LOCK int ossl_quic_handle_events(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0); quic_unlock(ctx.qc); return 1; } /* * SSL_get_event_timeout. Get the time in milliseconds until the SSL object * should next have events handled by the application by calling * SSL_handle_events(). tv is set to 0 if the object should have events handled * immediately. If no timeout is currently active, *is_infinite is set to 1 and * the value of *tv is undefined. */ QUIC_TAKES_LOCK int ossl_quic_get_event_timeout(SSL *s, struct timeval *tv, int *is_infinite) { QCTX ctx; OSSL_TIME deadline = ossl_time_infinite(); if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); deadline = ossl_quic_reactor_get_tick_deadline(ossl_quic_channel_get_reactor(ctx.qc->ch)); if (ossl_time_is_infinite(deadline)) { *is_infinite = 1; /* * Robustness against faulty applications that don't check *is_infinite; * harmless long timeout. */ tv->tv_sec = 1000000; tv->tv_usec = 0; quic_unlock(ctx.qc); return 1; } *tv = ossl_time_to_timeval(ossl_time_subtract(deadline, get_time(ctx.qc))); *is_infinite = 0; quic_unlock(ctx.qc); return 1; } /* SSL_get_rpoll_descriptor */ int ossl_quic_get_rpoll_descriptor(SSL *s, BIO_POLL_DESCRIPTOR *desc) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; if (desc == NULL || ctx.qc->net_rbio == NULL) return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT, NULL); return BIO_get_rpoll_descriptor(ctx.qc->net_rbio, desc); } /* SSL_get_wpoll_descriptor */ int ossl_quic_get_wpoll_descriptor(SSL *s, BIO_POLL_DESCRIPTOR *desc) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; if (desc == NULL || ctx.qc->net_wbio == NULL) return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT, NULL); return BIO_get_wpoll_descriptor(ctx.qc->net_wbio, desc); } /* SSL_net_read_desired */ QUIC_TAKES_LOCK int ossl_quic_get_net_read_desired(SSL *s) { QCTX ctx; int ret; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); ret = ossl_quic_reactor_net_read_desired(ossl_quic_channel_get_reactor(ctx.qc->ch)); quic_unlock(ctx.qc); return ret; } /* SSL_net_write_desired */ QUIC_TAKES_LOCK int ossl_quic_get_net_write_desired(SSL *s) { int ret; QCTX ctx; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); ret = ossl_quic_reactor_net_write_desired(ossl_quic_channel_get_reactor(ctx.qc->ch)); quic_unlock(ctx.qc); return ret; } /* * QUIC Front-End I/O API: Connection Lifecycle Operations * ======================================================= * * SSL_do_handshake => ossl_quic_do_handshake * SSL_set_connect_state => ossl_quic_set_connect_state * SSL_set_accept_state => ossl_quic_set_accept_state * SSL_shutdown => ossl_quic_shutdown * SSL_ctrl => ossl_quic_ctrl * (BIO/)SSL_connect => ossl_quic_connect * (BIO/)SSL_accept => ossl_quic_accept * */ QUIC_NEEDS_LOCK static void qc_shutdown_flush_init(QUIC_CONNECTION *qc) { QUIC_STREAM_MAP *qsm; if (qc->shutting_down) return; qsm = ossl_quic_channel_get_qsm(qc->ch); ossl_quic_stream_map_begin_shutdown_flush(qsm); qc->shutting_down = 1; } /* Returns 1 if all shutdown-flush streams have been done with. */ QUIC_NEEDS_LOCK static int qc_shutdown_flush_finished(QUIC_CONNECTION *qc) { QUIC_STREAM_MAP *qsm = ossl_quic_channel_get_qsm(qc->ch); return qc->shutting_down && ossl_quic_stream_map_is_shutdown_flush_finished(qsm); } /* SSL_shutdown */ static int quic_shutdown_wait(void *arg) { QUIC_CONNECTION *qc = arg; return ossl_quic_channel_is_terminated(qc->ch); } /* Returns 1 if shutdown flush process has finished or is inapplicable. */ static int quic_shutdown_flush_wait(void *arg) { QUIC_CONNECTION *qc = arg; return ossl_quic_channel_is_term_any(qc->ch) || qc_shutdown_flush_finished(qc); } static int quic_shutdown_peer_wait(void *arg) { QUIC_CONNECTION *qc = arg; return ossl_quic_channel_is_term_any(qc->ch); } QUIC_TAKES_LOCK int ossl_quic_conn_shutdown(SSL *s, uint64_t flags, const SSL_SHUTDOWN_EX_ARGS *args, size_t args_len) { int ret; QCTX ctx; int stream_flush = ((flags & SSL_SHUTDOWN_FLAG_NO_STREAM_FLUSH) == 0); int no_block = ((flags & SSL_SHUTDOWN_FLAG_NO_BLOCK) != 0); int wait_peer = ((flags & SSL_SHUTDOWN_FLAG_WAIT_PEER) != 0); if (!expect_quic(s, &ctx)) return -1; if (ctx.is_stream) { QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_CONN_USE_ONLY, NULL); return -1; } quic_lock(ctx.qc); if (ossl_quic_channel_is_terminated(ctx.qc->ch)) { quic_unlock(ctx.qc); return 1; } /* Phase 1: Stream Flushing */ if (!wait_peer && stream_flush) { qc_shutdown_flush_init(ctx.qc); if (!qc_shutdown_flush_finished(ctx.qc)) { if (!no_block && qc_blocking_mode(ctx.qc)) { ret = block_until_pred(ctx.qc, quic_shutdown_flush_wait, ctx.qc, 0); if (ret < 1) { ret = 0; goto err; } } else { ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0); } } if (!qc_shutdown_flush_finished(ctx.qc)) { quic_unlock(ctx.qc); return 0; /* ongoing */ } } /* Phase 2: Connection Closure */ if (wait_peer && !ossl_quic_channel_is_term_any(ctx.qc->ch)) { if (!no_block && qc_blocking_mode(ctx.qc)) { ret = block_until_pred(ctx.qc, quic_shutdown_peer_wait, ctx.qc, 0); if (ret < 1) { ret = 0; goto err; } } else { ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0); } if (!ossl_quic_channel_is_term_any(ctx.qc->ch)) { ret = 0; /* peer hasn't closed yet - still not done */ goto err; } /* * We are at least terminating - go through the normal process of * waiting until we are in the TERMINATED state. */ } /* Block mutation ops regardless of if we did stream flush. */ ctx.qc->shutting_down = 1; /* * This call is a no-op if we are already terminating, so it doesn't * affect the wait_peer case. */ ossl_quic_channel_local_close(ctx.qc->ch, args != NULL ? args->quic_error_code : 0, args != NULL ? args->quic_reason : NULL); SSL_set_shutdown(ctx.qc->tls, SSL_SENT_SHUTDOWN); if (ossl_quic_channel_is_terminated(ctx.qc->ch)) { quic_unlock(ctx.qc); return 1; } /* Phase 3: Terminating Wait Time */ if (!no_block && qc_blocking_mode(ctx.qc) && (flags & SSL_SHUTDOWN_FLAG_RAPID) == 0) { ret = block_until_pred(ctx.qc, quic_shutdown_wait, ctx.qc, 0); if (ret < 1) { ret = 0; goto err; } } else { ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0); } ret = ossl_quic_channel_is_terminated(ctx.qc->ch); err: quic_unlock(ctx.qc); return ret; } /* SSL_ctrl */ long ossl_quic_ctrl(SSL *s, int cmd, long larg, void *parg) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; switch (cmd) { case SSL_CTRL_MODE: /* If called on a QCSO, update the default mode. */ if (!ctx.is_stream) ctx.qc->default_ssl_mode |= (uint32_t)larg; /* * If we were called on a QSSO or have a default stream, we also update * that. */ if (ctx.xso != NULL) { /* Cannot enable EPW while AON write in progress. */ if (ctx.xso->aon_write_in_progress) larg &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; ctx.xso->ssl_mode |= (uint32_t)larg; return ctx.xso->ssl_mode; } return ctx.qc->default_ssl_mode; case SSL_CTRL_CLEAR_MODE: if (!ctx.is_stream) ctx.qc->default_ssl_mode &= ~(uint32_t)larg; if (ctx.xso != NULL) { ctx.xso->ssl_mode &= ~(uint32_t)larg; return ctx.xso->ssl_mode; } return ctx.qc->default_ssl_mode; case SSL_CTRL_SET_MSG_CALLBACK_ARG: ossl_quic_channel_set_msg_callback_arg(ctx.qc->ch, parg); /* This ctrl also needs to be passed to the internal SSL object */ return SSL_ctrl(ctx.qc->tls, cmd, larg, parg); case DTLS_CTRL_GET_TIMEOUT: /* DTLSv1_get_timeout */ { int is_infinite; if (!ossl_quic_get_event_timeout(s, parg, &is_infinite)) return 0; return !is_infinite; } case DTLS_CTRL_HANDLE_TIMEOUT: /* DTLSv1_handle_timeout */ /* For legacy compatibility with DTLS calls. */ return ossl_quic_handle_events(s) == 1 ? 1 : -1; /* Mask ctrls we shouldn't support for QUIC. */ case SSL_CTRL_GET_READ_AHEAD: case SSL_CTRL_SET_READ_AHEAD: case SSL_CTRL_SET_MAX_SEND_FRAGMENT: case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: case SSL_CTRL_SET_MAX_PIPELINES: return 0; default: /* * Probably a TLS related ctrl. Send back to the frontend SSL_ctrl * implementation. Either SSL_ctrl will handle it itself by direct * access into handshake layer state, or failing that, it will be passed * to the handshake layer via the SSL_METHOD vtable. If the ctrl is not * supported by anything, the handshake layer's ctrl method will finally * return 0. */ return ossl_ctrl_internal(&ctx.qc->ssl, cmd, larg, parg, /*no_quic=*/1); } } /* SSL_set_connect_state */ void ossl_quic_set_connect_state(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return; /* Cannot be changed after handshake started */ if (ctx.qc->started || ctx.is_stream) return; ctx.qc->as_server_state = 0; } /* SSL_set_accept_state */ void ossl_quic_set_accept_state(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return; /* Cannot be changed after handshake started */ if (ctx.qc->started || ctx.is_stream) return; ctx.qc->as_server_state = 1; } /* SSL_do_handshake */ struct quic_handshake_wait_args { QUIC_CONNECTION *qc; }; static int tls_wants_non_io_retry(QUIC_CONNECTION *qc) { int want = SSL_want(qc->tls); if (want == SSL_X509_LOOKUP || want == SSL_CLIENT_HELLO_CB || want == SSL_RETRY_VERIFY) return 1; return 0; } static int quic_handshake_wait(void *arg) { struct quic_handshake_wait_args *args = arg; if (!quic_mutation_allowed(args->qc, /*req_active=*/1)) return -1; if (ossl_quic_channel_is_handshake_complete(args->qc->ch)) return 1; if (tls_wants_non_io_retry(args->qc)) return 1; return 0; } static int configure_channel(QUIC_CONNECTION *qc) { assert(qc->ch != NULL); if (!ossl_quic_port_set_net_rbio(qc->port, qc->net_rbio) || !ossl_quic_port_set_net_wbio(qc->port, qc->net_wbio) || !ossl_quic_channel_set_peer_addr(qc->ch, &qc->init_peer_addr)) return 0; return 1; } QUIC_NEEDS_LOCK static int create_channel(QUIC_CONNECTION *qc) { QUIC_ENGINE_ARGS engine_args = {0}; QUIC_PORT_ARGS port_args = {0}; engine_args.libctx = qc->ssl.ctx->libctx; engine_args.propq = qc->ssl.ctx->propq; engine_args.mutex = qc->mutex; engine_args.now_cb = get_time_cb; engine_args.now_cb_arg = qc; qc->engine = ossl_quic_engine_new(&engine_args); if (qc->engine == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL); return 0; } port_args.channel_ctx = qc->ssl.ctx; qc->port = ossl_quic_engine_create_port(qc->engine, &port_args); if (qc->port == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL); ossl_quic_engine_free(qc->engine); return 0; } qc->ch = ossl_quic_port_create_outgoing(qc->port, qc->tls); if (qc->ch == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL); ossl_quic_port_free(qc->port); ossl_quic_engine_free(qc->engine); return 0; } return 1; } /* * Configures a channel with the information we have accumulated via calls made * to us from the application prior to starting a handshake attempt. */ QUIC_NEEDS_LOCK static int ensure_channel_started(QCTX *ctx) { QUIC_CONNECTION *qc = ctx->qc; if (!qc->started) { if (!configure_channel(qc)) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, "failed to configure channel"); return 0; } if (!ossl_quic_channel_start(qc->ch)) { ossl_quic_channel_restore_err_state(qc->ch); QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, "failed to start channel"); return 0; } #if !defined(OPENSSL_NO_QUIC_THREAD_ASSIST) if (qc->is_thread_assisted) if (!ossl_quic_thread_assist_init_start(&qc->thread_assist, qc->ch, qc->override_now_cb, qc->override_now_cb_arg)) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, "failed to start assist thread"); return 0; } #endif } qc->started = 1; return 1; } QUIC_NEEDS_LOCK static int quic_do_handshake(QCTX *ctx) { int ret; QUIC_CONNECTION *qc = ctx->qc; if (ossl_quic_channel_is_handshake_complete(qc->ch)) /* Handshake already completed. */ return 1; if (!quic_mutation_allowed(qc, /*req_active=*/0)) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); if (qc->as_server != qc->as_server_state) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_PASSED_INVALID_ARGUMENT, NULL); return -1; /* Non-protocol error */ } if (qc->net_rbio == NULL || qc->net_wbio == NULL) { /* Need read and write BIOs. */ QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_BIO_NOT_SET, NULL); return -1; /* Non-protocol error */ } /* * We need to determine our addressing mode. There are basically two * ways we can use L4 addresses: * * - Addressed mode, in which our BIO_sendmmsg calls have destination * addresses attached to them which we expect the underlying network BIO * to handle; * * - Unaddressed mode, in which the BIO provided to us on the * network side neither provides us with L4 addresses nor is capable of * honouring ones we provide. We don't know where the QUIC traffic we * send ends up exactly and trust the application to know what it is * doing. * * Addressed mode is preferred because it enables support for connection * migration, multipath, etc. in the future. Addressed mode is automatically * enabled if we are using e.g. BIO_s_datagram, with or without * BIO_s_connect. * * If we are passed a BIO_s_dgram_pair (or some custom BIO) we may have to * use unaddressed mode unless that BIO supports capability flags indicating * it can provide and honour L4 addresses. * * Our strategy for determining address mode is simple: we probe the * underlying network BIOs for their capabilities. If the network BIOs * support what we need, we use addressed mode. Otherwise, we use * unaddressed mode. * * If addressed mode is chosen, we require an initial peer address to be * set. If this is not set, we fail. If unaddressed mode is used, we do not * require this, as such an address is superfluous, though it can be set if * desired. */ if (!qc->started && !qc->addressing_probe_done) { long rcaps = BIO_dgram_get_effective_caps(qc->net_rbio); long wcaps = BIO_dgram_get_effective_caps(qc->net_wbio); qc->addressed_mode_r = ((rcaps & BIO_DGRAM_CAP_PROVIDES_SRC_ADDR) != 0); qc->addressed_mode_w = ((wcaps & BIO_DGRAM_CAP_HANDLES_DST_ADDR) != 0); qc->addressing_probe_done = 1; } if (!qc->started && qc->addressed_mode_w && BIO_ADDR_family(&qc->init_peer_addr) == AF_UNSPEC) { /* * We are trying to connect and are using addressed mode, which means we * need an initial peer address; if we do not have a peer address yet, * we should try to autodetect one. * * We do this as late as possible because some BIOs (e.g. BIO_s_connect) * may not be able to provide us with a peer address until they have * finished their own processing. They may not be able to perform this * processing until an application has finished configuring that BIO * (e.g. with setter calls), which might happen after SSL_set_bio is * called. */ if (!csm_analyse_init_peer_addr(qc->net_wbio, &qc->init_peer_addr)) /* best effort */ BIO_ADDR_clear(&qc->init_peer_addr); else ossl_quic_channel_set_peer_addr(qc->ch, &qc->init_peer_addr); } if (!qc->started && qc->addressed_mode_w && BIO_ADDR_family(&qc->init_peer_addr) == AF_UNSPEC) { /* * If we still don't have a peer address in addressed mode, we can't do * anything. */ QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_REMOTE_PEER_ADDRESS_NOT_SET, NULL); return -1; /* Non-protocol error */ } /* * Start connection process. Note we may come here multiple times in * non-blocking mode, which is fine. */ if (!ensure_channel_started(ctx)) /* raises on failure */ return -1; /* Non-protocol error */ if (ossl_quic_channel_is_handshake_complete(qc->ch)) /* The handshake is now done. */ return 1; if (!qc_blocking_mode(qc)) { /* Try to advance the reactor. */ ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch), 0); if (ossl_quic_channel_is_handshake_complete(qc->ch)) /* The handshake is now done. */ return 1; if (ossl_quic_channel_is_term_any(qc->ch)) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); return 0; } else if (qc->desires_blocking) { /* * As a special case when doing a handshake when blocking mode is * desired yet not available, see if the network BIOs have become * poll descriptor-enabled. This supports BIOs such as BIO_s_connect * which do late creation of socket FDs and therefore cannot expose * a poll descriptor until after a network BIO is set on the QCSO. */ assert(!qc->blocking); qc_update_can_support_blocking(qc); qc_update_blocking_mode(qc); } } /* * We are either in blocking mode or just entered it due to the code above. */ if (qc_blocking_mode(qc)) { /* In blocking mode, wait for the handshake to complete. */ struct quic_handshake_wait_args args; args.qc = qc; ret = block_until_pred(qc, quic_handshake_wait, &args, 0); if (!quic_mutation_allowed(qc, /*req_active=*/1)) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); return 0; /* Shutdown before completion */ } else if (ret <= 0) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); return -1; /* Non-protocol error */ } if (tls_wants_non_io_retry(qc)) { QUIC_RAISE_NORMAL_ERROR(ctx, SSL_get_error(qc->tls, 0)); return -1; } assert(ossl_quic_channel_is_handshake_complete(qc->ch)); return 1; } if (tls_wants_non_io_retry(qc)) { QUIC_RAISE_NORMAL_ERROR(ctx, SSL_get_error(qc->tls, 0)); return -1; } /* * Otherwise, indicate that the handshake isn't done yet. * We can only get here in non-blocking mode. */ QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_WANT_READ); return -1; /* Non-protocol error */ } QUIC_TAKES_LOCK int ossl_quic_do_handshake(SSL *s) { int ret; QCTX ctx; if (!expect_quic(s, &ctx)) return 0; quic_lock_for_io(&ctx); ret = quic_do_handshake(&ctx); quic_unlock(ctx.qc); return ret; } /* SSL_connect */ int ossl_quic_connect(SSL *s) { /* Ensure we are in connect state (no-op if non-idle). */ ossl_quic_set_connect_state(s); /* Begin or continue the handshake */ return ossl_quic_do_handshake(s); } /* SSL_accept */ int ossl_quic_accept(SSL *s) { /* Ensure we are in accept state (no-op if non-idle). */ ossl_quic_set_accept_state(s); /* Begin or continue the handshake */ return ossl_quic_do_handshake(s); } /* * QUIC Front-End I/O API: Stream Lifecycle Operations * =================================================== * * SSL_stream_new => ossl_quic_conn_stream_new * */ /* * Try to create the default XSO if it doesn't already exist. Returns 1 if the * default XSO was created. Returns 0 if it was not (e.g. because it already * exists). Note that this is NOT an error condition. */ QUIC_NEEDS_LOCK static int qc_try_create_default_xso_for_write(QCTX *ctx) { uint64_t flags = 0; QUIC_CONNECTION *qc = ctx->qc; if (qc->default_xso_created || qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_NONE) /* * We only do this once. If the user detaches a previously created * default XSO we don't auto-create another one. */ return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_NO_STREAM, NULL); /* Create a locally-initiated stream. */ if (qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_AUTO_UNI) flags |= SSL_STREAM_FLAG_UNI; qc_set_default_xso(qc, (QUIC_XSO *)quic_conn_stream_new(ctx, flags, /*needs_lock=*/0), /*touch=*/0); if (qc->default_xso == NULL) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); qc_touch_default_xso(qc); return 1; } struct quic_wait_for_stream_args { QUIC_CONNECTION *qc; QUIC_STREAM *qs; QCTX *ctx; uint64_t expect_id; }; QUIC_NEEDS_LOCK static int quic_wait_for_stream(void *arg) { struct quic_wait_for_stream_args *args = arg; if (!quic_mutation_allowed(args->qc, /*req_active=*/1)) { /* If connection is torn down due to an error while blocking, stop. */ QUIC_RAISE_NON_NORMAL_ERROR(args->ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); return -1; } args->qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(args->qc->ch), args->expect_id | QUIC_STREAM_DIR_BIDI); if (args->qs == NULL) args->qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(args->qc->ch), args->expect_id | QUIC_STREAM_DIR_UNI); if (args->qs != NULL) return 1; /* stream now exists */ return 0; /* did not get a stream, keep trying */ } QUIC_NEEDS_LOCK static int qc_wait_for_default_xso_for_read(QCTX *ctx) { /* Called on a QCSO and we don't currently have a default stream. */ uint64_t expect_id; QUIC_CONNECTION *qc = ctx->qc; QUIC_STREAM *qs; int res; struct quic_wait_for_stream_args wargs; OSSL_RTT_INFO rtt_info; /* * If default stream functionality is disabled or we already detached * one, don't make another default stream and just fail. */ if (qc->default_xso_created || qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_NONE) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_NO_STREAM, NULL); /* * The peer may have opened a stream since we last ticked. So tick and * see if the stream with ordinal 0 (remote, bidi/uni based on stream * mode) exists yet. QUIC stream IDs must be allocated in order, so the * first stream created by a peer must have an ordinal of 0. */ expect_id = qc->as_server ? QUIC_STREAM_INITIATOR_CLIENT : QUIC_STREAM_INITIATOR_SERVER; qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(qc->ch), expect_id | QUIC_STREAM_DIR_BIDI); if (qs == NULL) qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(qc->ch), expect_id | QUIC_STREAM_DIR_UNI); if (qs == NULL) { ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch), 0); qs = ossl_quic_stream_map_get_by_id(ossl_quic_channel_get_qsm(qc->ch), expect_id); } if (qs == NULL) { if (!qc_blocking_mode(qc)) /* Non-blocking mode, so just bail immediately. */ return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_WANT_READ); /* Block until we have a stream. */ wargs.qc = qc; wargs.qs = NULL; wargs.ctx = ctx; wargs.expect_id = expect_id; res = block_until_pred(qc, quic_wait_for_stream, &wargs, 0); if (res == 0) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); else if (res < 0 || wargs.qs == NULL) /* quic_wait_for_stream raised error here */ return 0; qs = wargs.qs; } /* * We now have qs != NULL. Remove it from the incoming stream queue so that * it isn't also returned by any future SSL_accept_stream calls. */ ossl_statm_get_rtt_info(ossl_quic_channel_get_statm(qc->ch), &rtt_info); ossl_quic_stream_map_remove_from_accept_queue(ossl_quic_channel_get_qsm(qc->ch), qs, rtt_info.smoothed_rtt); /* * Now make qs the default stream, creating the necessary XSO. */ qc_set_default_xso(qc, create_xso_from_stream(qc, qs), /*touch=*/0); if (qc->default_xso == NULL) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); qc_touch_default_xso(qc); /* inhibits default XSO */ return 1; } QUIC_NEEDS_LOCK static QUIC_XSO *create_xso_from_stream(QUIC_CONNECTION *qc, QUIC_STREAM *qs) { QUIC_XSO *xso = NULL; if ((xso = OPENSSL_zalloc(sizeof(*xso))) == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_CRYPTO_LIB, NULL); goto err; } if (!ossl_ssl_init(&xso->ssl, qc->ssl.ctx, qc->ssl.method, SSL_TYPE_QUIC_XSO)) { QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL); goto err; } /* XSO refs QC */ if (!SSL_up_ref(&qc->ssl)) { QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_SSL_LIB, NULL); goto err; } xso->conn = qc; xso->ssl_mode = qc->default_ssl_mode; xso->ssl_options = qc->default_ssl_options & OSSL_QUIC_PERMITTED_OPTIONS_STREAM; xso->last_error = SSL_ERROR_NONE; xso->stream = qs; ++qc->num_xso; xso_update_options(xso); return xso; err: OPENSSL_free(xso); return NULL; } struct quic_new_stream_wait_args { QUIC_CONNECTION *qc; int is_uni; }; static int quic_new_stream_wait(void *arg) { struct quic_new_stream_wait_args *args = arg; QUIC_CONNECTION *qc = args->qc; if (!quic_mutation_allowed(qc, /*req_active=*/1)) return -1; if (ossl_quic_channel_is_new_local_stream_admissible(qc->ch, args->is_uni)) return 1; return 0; } /* locking depends on need_lock */ static SSL *quic_conn_stream_new(QCTX *ctx, uint64_t flags, int need_lock) { int ret; QUIC_CONNECTION *qc = ctx->qc; QUIC_XSO *xso = NULL; QUIC_STREAM *qs = NULL; int is_uni = ((flags & SSL_STREAM_FLAG_UNI) != 0); int no_blocking = ((flags & SSL_STREAM_FLAG_NO_BLOCK) != 0); int advance = ((flags & SSL_STREAM_FLAG_ADVANCE) != 0); if (need_lock) quic_lock(qc); if (!quic_mutation_allowed(qc, /*req_active=*/0)) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); goto err; } if (!advance && !ossl_quic_channel_is_new_local_stream_admissible(qc->ch, is_uni)) { struct quic_new_stream_wait_args args; /* * Stream count flow control currently doesn't permit this stream to be * opened. */ if (no_blocking || !qc_blocking_mode(qc)) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_STREAM_COUNT_LIMITED, NULL); goto err; } args.qc = qc; args.is_uni = is_uni; /* Blocking mode - wait until we can get a stream. */ ret = block_until_pred(ctx->qc, quic_new_stream_wait, &args, 0); if (!quic_mutation_allowed(qc, /*req_active=*/1)) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); goto err; /* Shutdown before completion */ } else if (ret <= 0) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); goto err; /* Non-protocol error */ } } qs = ossl_quic_channel_new_stream_local(qc->ch, is_uni); if (qs == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); goto err; } xso = create_xso_from_stream(qc, qs); if (xso == NULL) goto err; qc_touch_default_xso(qc); /* inhibits default XSO */ if (need_lock) quic_unlock(qc); return &xso->ssl; err: OPENSSL_free(xso); ossl_quic_stream_map_release(ossl_quic_channel_get_qsm(qc->ch), qs); if (need_lock) quic_unlock(qc); return NULL; } QUIC_TAKES_LOCK SSL *ossl_quic_conn_stream_new(SSL *s, uint64_t flags) { QCTX ctx; if (!expect_quic_conn_only(s, &ctx)) return NULL; return quic_conn_stream_new(&ctx, flags, /*need_lock=*/1); } /* * QUIC Front-End I/O API: Steady-State Operations * =============================================== * * Here we dispatch calls to the steady-state front-end I/O API functions; that * is, the functions used during the established phase of a QUIC connection * (e.g. SSL_read, SSL_write). * * Each function must handle both blocking and non-blocking modes. As discussed * above, all QUIC I/O is implemented using non-blocking mode internally. * * SSL_get_error => partially implemented by ossl_quic_get_error * SSL_want => ossl_quic_want * (BIO/)SSL_read => ossl_quic_read * (BIO/)SSL_write => ossl_quic_write * SSL_pending => ossl_quic_pending * SSL_stream_conclude => ossl_quic_conn_stream_conclude * SSL_key_update => ossl_quic_key_update */ /* SSL_get_error */ int ossl_quic_get_error(const SSL *s, int i) { QCTX ctx; int net_error, last_error; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); net_error = ossl_quic_channel_net_error(ctx.qc->ch); last_error = ctx.is_stream ? ctx.xso->last_error : ctx.qc->last_error; quic_unlock(ctx.qc); if (net_error) return SSL_ERROR_SYSCALL; return last_error; } /* Converts a code returned by SSL_get_error to a code returned by SSL_want. */ static int error_to_want(int error) { switch (error) { case SSL_ERROR_WANT_CONNECT: /* never used - UDP is connectionless */ case SSL_ERROR_WANT_ACCEPT: /* never used - UDP is connectionless */ case SSL_ERROR_ZERO_RETURN: default: return SSL_NOTHING; case SSL_ERROR_WANT_READ: return SSL_READING; case SSL_ERROR_WANT_WRITE: return SSL_WRITING; case SSL_ERROR_WANT_RETRY_VERIFY: return SSL_RETRY_VERIFY; case SSL_ERROR_WANT_CLIENT_HELLO_CB: return SSL_CLIENT_HELLO_CB; case SSL_ERROR_WANT_X509_LOOKUP: return SSL_X509_LOOKUP; } } /* SSL_want */ int ossl_quic_want(const SSL *s) { QCTX ctx; int w; if (!expect_quic(s, &ctx)) return SSL_NOTHING; quic_lock(ctx.qc); w = error_to_want(ctx.is_stream ? ctx.xso->last_error : ctx.qc->last_error); quic_unlock(ctx.qc); return w; } /* * SSL_write * --------- * * The set of functions below provide the implementation of the public SSL_write * function. We must handle: * * - both blocking and non-blocking operation at the application level, * depending on how we are configured; * * - SSL_MODE_ENABLE_PARTIAL_WRITE being on or off; * * - SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER. * */ QUIC_NEEDS_LOCK static void quic_post_write(QUIC_XSO *xso, int did_append, int did_append_all, uint64_t flags, int do_tick) { /* * We have appended at least one byte to the stream. * Potentially mark stream as active, depending on FC. */ if (did_append) ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(xso->conn->ch), xso->stream); if (did_append_all && (flags & SSL_WRITE_FLAG_CONCLUDE) != 0) ossl_quic_sstream_fin(xso->stream->sstream); /* * Try and send. * * TODO(QUIC FUTURE): It is probably inefficient to try and do this * immediately, plus we should eventually consider Nagle's algorithm. */ if (do_tick) ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(xso->conn->ch), 0); } struct quic_write_again_args { QUIC_XSO *xso; const unsigned char *buf; size_t len; size_t total_written; int err; uint64_t flags; }; /* * Absolute maximum write buffer size, enforced to prevent a rogue peer from * deliberately inducing DoS. This has been chosen based on the optimal buffer * size for an RTT of 500ms and a bandwidth of 100 Mb/s. */ #define MAX_WRITE_BUF_SIZE (6 * 1024 * 1024) /* * Ensure spare buffer space available (up until a limit, at least). */ QUIC_NEEDS_LOCK static int sstream_ensure_spare(QUIC_SSTREAM *sstream, uint64_t spare) { size_t cur_sz = ossl_quic_sstream_get_buffer_size(sstream); size_t avail = ossl_quic_sstream_get_buffer_avail(sstream); size_t spare_ = (spare > SIZE_MAX) ? SIZE_MAX : (size_t)spare; size_t new_sz, growth; if (spare_ <= avail || cur_sz == MAX_WRITE_BUF_SIZE) return 1; growth = spare_ - avail; if (cur_sz + growth > MAX_WRITE_BUF_SIZE) new_sz = MAX_WRITE_BUF_SIZE; else new_sz = cur_sz + growth; return ossl_quic_sstream_set_buffer_size(sstream, new_sz); } /* * Append to a QUIC_STREAM's QUIC_SSTREAM, ensuring buffer space is expanded * as needed according to flow control. */ QUIC_NEEDS_LOCK static int xso_sstream_append(QUIC_XSO *xso, const unsigned char *buf, size_t len, size_t *actual_written) { QUIC_SSTREAM *sstream = xso->stream->sstream; uint64_t cur = ossl_quic_sstream_get_cur_size(sstream); uint64_t cwm = ossl_quic_txfc_get_cwm(&xso->stream->txfc); uint64_t permitted = (cwm >= cur ? cwm - cur : 0); if (len > permitted) len = (size_t)permitted; if (!sstream_ensure_spare(sstream, len)) return 0; return ossl_quic_sstream_append(sstream, buf, len, actual_written); } QUIC_NEEDS_LOCK static int quic_write_again(void *arg) { struct quic_write_again_args *args = arg; size_t actual_written = 0; if (!quic_mutation_allowed(args->xso->conn, /*req_active=*/1)) /* If connection is torn down due to an error while blocking, stop. */ return -2; if (!quic_validate_for_write(args->xso, &args->err)) /* * Stream may have become invalid for write due to connection events * while we blocked. */ return -2; args->err = ERR_R_INTERNAL_ERROR; if (!xso_sstream_append(args->xso, args->buf, args->len, &actual_written)) return -2; quic_post_write(args->xso, actual_written > 0, args->len == actual_written, args->flags, 0); args->buf += actual_written; args->len -= actual_written; args->total_written += actual_written; if (args->len == 0) /* Written everything, done. */ return 1; /* Not written everything yet, keep trying. */ return 0; } QUIC_NEEDS_LOCK static int quic_write_blocking(QCTX *ctx, const void *buf, size_t len, uint64_t flags, size_t *written) { int res; QUIC_XSO *xso = ctx->xso; struct quic_write_again_args args; size_t actual_written = 0; /* First make a best effort to append as much of the data as possible. */ if (!xso_sstream_append(xso, buf, len, &actual_written)) { /* Stream already finished or allocation error. */ *written = 0; return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); } quic_post_write(xso, actual_written > 0, actual_written == len, flags, 1); if (actual_written == len) { /* Managed to append everything on the first try. */ *written = actual_written; return 1; } /* * We did not manage to append all of the data immediately, so the stream * buffer has probably filled up. This means we need to block until some of * it is freed up. */ args.xso = xso; args.buf = (const unsigned char *)buf + actual_written; args.len = len - actual_written; args.total_written = 0; args.err = ERR_R_INTERNAL_ERROR; args.flags = flags; res = block_until_pred(xso->conn, quic_write_again, &args, 0); if (res <= 0) { if (!quic_mutation_allowed(xso->conn, /*req_active=*/1)) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); else return QUIC_RAISE_NON_NORMAL_ERROR(ctx, args.err, NULL); } *written = args.total_written; return 1; } /* * Functions to manage All-or-Nothing (AON) (that is, non-ENABLE_PARTIAL_WRITE) * write semantics. */ static void aon_write_begin(QUIC_XSO *xso, const unsigned char *buf, size_t buf_len, size_t already_sent) { assert(!xso->aon_write_in_progress); xso->aon_write_in_progress = 1; xso->aon_buf_base = buf; xso->aon_buf_pos = already_sent; xso->aon_buf_len = buf_len; } static void aon_write_finish(QUIC_XSO *xso) { xso->aon_write_in_progress = 0; xso->aon_buf_base = NULL; xso->aon_buf_pos = 0; xso->aon_buf_len = 0; } QUIC_NEEDS_LOCK static int quic_write_nonblocking_aon(QCTX *ctx, const void *buf, size_t len, uint64_t flags, size_t *written) { QUIC_XSO *xso = ctx->xso; const void *actual_buf; size_t actual_len, actual_written = 0; int accept_moving_buffer = ((xso->ssl_mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER) != 0); if (xso->aon_write_in_progress) { /* * We are in the middle of an AON write (i.e., a previous write did not * manage to append all data to the SSTREAM and we have Enable Partial * Write (EPW) mode disabled.) */ if ((!accept_moving_buffer && xso->aon_buf_base != buf) || len != xso->aon_buf_len) /* * Pointer must not have changed if we are not in accept moving * buffer mode. Length must never change. */ return QUIC_RAISE_NON_NORMAL_ERROR(ctx, SSL_R_BAD_WRITE_RETRY, NULL); actual_buf = (unsigned char *)buf + xso->aon_buf_pos; actual_len = len - xso->aon_buf_pos; assert(actual_len > 0); } else { actual_buf = buf; actual_len = len; } /* First make a best effort to append as much of the data as possible. */ if (!xso_sstream_append(xso, actual_buf, actual_len, &actual_written)) { /* Stream already finished or allocation error. */ *written = 0; return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); } quic_post_write(xso, actual_written > 0, actual_written == actual_len, flags, 1); if (actual_written == actual_len) { /* We have sent everything. */ if (xso->aon_write_in_progress) { /* * We have sent everything, and we were in the middle of an AON * write. The output write length is the total length of the AON * buffer, not however many bytes we managed to write to the stream * in this call. */ *written = xso->aon_buf_len; aon_write_finish(xso); } else { *written = actual_written; } return 1; } if (xso->aon_write_in_progress) { /* * AON write is in progress but we have not written everything yet. We * may have managed to send zero bytes, or some number of bytes less * than the total remaining which need to be appended during this * AON operation. */ xso->aon_buf_pos += actual_written; assert(xso->aon_buf_pos < xso->aon_buf_len); return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_WANT_WRITE); } /* * Not in an existing AON operation but partial write is not enabled, so we * need to begin a new AON operation. However we needn't bother if we didn't * actually append anything. */ if (actual_written > 0) aon_write_begin(xso, buf, len, actual_written); /* * AON - We do not publicly admit to having appended anything until AON * completes. */ *written = 0; return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_WANT_WRITE); } QUIC_NEEDS_LOCK static int quic_write_nonblocking_epw(QCTX *ctx, const void *buf, size_t len, uint64_t flags, size_t *written) { QUIC_XSO *xso = ctx->xso; /* Simple best effort operation. */ if (!xso_sstream_append(xso, buf, len, written)) { /* Stream already finished or allocation error. */ *written = 0; return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); } quic_post_write(xso, *written > 0, *written == len, flags, 1); return 1; } QUIC_NEEDS_LOCK static int quic_validate_for_write(QUIC_XSO *xso, int *err) { QUIC_STREAM_MAP *qsm; if (xso == NULL || xso->stream == NULL) { *err = ERR_R_INTERNAL_ERROR; return 0; } switch (xso->stream->send_state) { default: case QUIC_SSTREAM_STATE_NONE: *err = SSL_R_STREAM_RECV_ONLY; return 0; case QUIC_SSTREAM_STATE_READY: qsm = ossl_quic_channel_get_qsm(xso->conn->ch); if (!ossl_quic_stream_map_ensure_send_part_id(qsm, xso->stream)) { *err = ERR_R_INTERNAL_ERROR; return 0; } /* FALLTHROUGH */ case QUIC_SSTREAM_STATE_SEND: case QUIC_SSTREAM_STATE_DATA_SENT: case QUIC_SSTREAM_STATE_DATA_RECVD: if (ossl_quic_sstream_get_final_size(xso->stream->sstream, NULL)) { *err = SSL_R_STREAM_FINISHED; return 0; } return 1; case QUIC_SSTREAM_STATE_RESET_SENT: case QUIC_SSTREAM_STATE_RESET_RECVD: *err = SSL_R_STREAM_RESET; return 0; } } QUIC_TAKES_LOCK int ossl_quic_write_flags(SSL *s, const void *buf, size_t len, uint64_t flags, size_t *written) { int ret; QCTX ctx; int partial_write, err; *written = 0; if (!expect_quic_with_stream_lock(s, /*remote_init=*/0, /*io=*/1, &ctx)) return 0; partial_write = ((ctx.xso->ssl_mode & SSL_MODE_ENABLE_PARTIAL_WRITE) != 0); if ((flags & ~SSL_WRITE_FLAG_CONCLUDE) != 0) { ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_UNSUPPORTED_WRITE_FLAG, NULL); goto out; } if (!quic_mutation_allowed(ctx.qc, /*req_active=*/0)) { ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); goto out; } /* * If we haven't finished the handshake, try to advance it. * We don't accept writes until the handshake is completed. */ if (quic_do_handshake(&ctx) < 1) { ret = 0; goto out; } /* Ensure correct stream state, stream send part not concluded, etc. */ if (!quic_validate_for_write(ctx.xso, &err)) { ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, err, NULL); goto out; } if (len == 0) { if ((flags & SSL_WRITE_FLAG_CONCLUDE) != 0) quic_post_write(ctx.xso, 0, 1, flags, 1); ret = 1; goto out; } if (xso_blocking_mode(ctx.xso)) ret = quic_write_blocking(&ctx, buf, len, flags, written); else if (partial_write) ret = quic_write_nonblocking_epw(&ctx, buf, len, flags, written); else ret = quic_write_nonblocking_aon(&ctx, buf, len, flags, written); out: quic_unlock(ctx.qc); return ret; } QUIC_TAKES_LOCK int ossl_quic_write(SSL *s, const void *buf, size_t len, size_t *written) { return ossl_quic_write_flags(s, buf, len, 0, written); } /* * SSL_read * -------- */ struct quic_read_again_args { QCTX *ctx; QUIC_STREAM *stream; void *buf; size_t len; size_t *bytes_read; int peek; }; QUIC_NEEDS_LOCK static int quic_validate_for_read(QUIC_XSO *xso, int *err, int *eos) { QUIC_STREAM_MAP *qsm; *eos = 0; if (xso == NULL || xso->stream == NULL) { *err = ERR_R_INTERNAL_ERROR; return 0; } switch (xso->stream->recv_state) { default: case QUIC_RSTREAM_STATE_NONE: *err = SSL_R_STREAM_SEND_ONLY; return 0; case QUIC_RSTREAM_STATE_RECV: case QUIC_RSTREAM_STATE_SIZE_KNOWN: case QUIC_RSTREAM_STATE_DATA_RECVD: return 1; case QUIC_RSTREAM_STATE_DATA_READ: *eos = 1; return 0; case QUIC_RSTREAM_STATE_RESET_RECVD: qsm = ossl_quic_channel_get_qsm(xso->conn->ch); ossl_quic_stream_map_notify_app_read_reset_recv_part(qsm, xso->stream); /* FALLTHROUGH */ case QUIC_RSTREAM_STATE_RESET_READ: *err = SSL_R_STREAM_RESET; return 0; } } QUIC_NEEDS_LOCK static int quic_read_actual(QCTX *ctx, QUIC_STREAM *stream, void *buf, size_t buf_len, size_t *bytes_read, int peek) { int is_fin = 0, err, eos; QUIC_CONNECTION *qc = ctx->qc; if (!quic_validate_for_read(ctx->xso, &err, &eos)) { if (eos) return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_ZERO_RETURN); else return QUIC_RAISE_NON_NORMAL_ERROR(ctx, err, NULL); } if (peek) { if (!ossl_quic_rstream_peek(stream->rstream, buf, buf_len, bytes_read, &is_fin)) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); } else { if (!ossl_quic_rstream_read(stream->rstream, buf, buf_len, bytes_read, &is_fin)) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); } if (!peek) { if (*bytes_read > 0) { /* * We have read at least one byte from the stream. Inform stream-level * RXFC of the retirement of controlled bytes. Update the active stream * status (the RXFC may now want to emit a frame granting more credit to * the peer). */ OSSL_RTT_INFO rtt_info; ossl_statm_get_rtt_info(ossl_quic_channel_get_statm(qc->ch), &rtt_info); if (!ossl_quic_rxfc_on_retire(&stream->rxfc, *bytes_read, rtt_info.smoothed_rtt)) return QUIC_RAISE_NON_NORMAL_ERROR(ctx, ERR_R_INTERNAL_ERROR, NULL); } if (is_fin && !peek) { QUIC_STREAM_MAP *qsm = ossl_quic_channel_get_qsm(ctx->qc->ch); ossl_quic_stream_map_notify_totally_read(qsm, ctx->xso->stream); } if (*bytes_read > 0) ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(qc->ch), stream); } if (*bytes_read == 0 && is_fin) return QUIC_RAISE_NORMAL_ERROR(ctx, SSL_ERROR_ZERO_RETURN); return 1; } QUIC_NEEDS_LOCK static int quic_read_again(void *arg) { struct quic_read_again_args *args = arg; if (!quic_mutation_allowed(args->ctx->qc, /*req_active=*/1)) { /* If connection is torn down due to an error while blocking, stop. */ QUIC_RAISE_NON_NORMAL_ERROR(args->ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); return -1; } if (!quic_read_actual(args->ctx, args->stream, args->buf, args->len, args->bytes_read, args->peek)) return -1; if (*args->bytes_read > 0) /* got at least one byte, the SSL_read op can finish now */ return 1; return 0; /* did not read anything, keep trying */ } QUIC_TAKES_LOCK static int quic_read(SSL *s, void *buf, size_t len, size_t *bytes_read, int peek) { int ret, res; QCTX ctx; struct quic_read_again_args args; *bytes_read = 0; if (!expect_quic(s, &ctx)) return 0; quic_lock_for_io(&ctx); if (!quic_mutation_allowed(ctx.qc, /*req_active=*/0)) { ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); goto out; } /* If we haven't finished the handshake, try to advance it. */ if (quic_do_handshake(&ctx) < 1) { ret = 0; /* ossl_quic_do_handshake raised error here */ goto out; } if (ctx.xso == NULL) { /* * Called on a QCSO and we don't currently have a default stream. * * Wait until we get a stream initiated by the peer (blocking mode) or * fail if we don't have one yet (non-blocking mode). */ if (!qc_wait_for_default_xso_for_read(&ctx)) { ret = 0; /* error already raised here */ goto out; } ctx.xso = ctx.qc->default_xso; } if (!quic_read_actual(&ctx, ctx.xso->stream, buf, len, bytes_read, peek)) { ret = 0; /* quic_read_actual raised error here */ goto out; } if (*bytes_read > 0) { /* * Even though we succeeded, tick the reactor here to ensure we are * handling other aspects of the QUIC connection. */ ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0); ret = 1; } else if (xso_blocking_mode(ctx.xso)) { /* * We were not able to read anything immediately, so our stream * buffer is empty. This means we need to block until we get * at least one byte. */ args.ctx = &ctx; args.stream = ctx.xso->stream; args.buf = buf; args.len = len; args.bytes_read = bytes_read; args.peek = peek; res = block_until_pred(ctx.qc, quic_read_again, &args, 0); if (res == 0) { ret = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR, NULL); goto out; } else if (res < 0) { ret = 0; /* quic_read_again raised error here */ goto out; } ret = 1; } else { /* * We did not get any bytes and are not in blocking mode. * Tick to see if this delivers any more. */ ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0); /* Try the read again. */ if (!quic_read_actual(&ctx, ctx.xso->stream, buf, len, bytes_read, peek)) { ret = 0; /* quic_read_actual raised error here */ goto out; } if (*bytes_read > 0) ret = 1; /* Succeeded this time. */ else ret = QUIC_RAISE_NORMAL_ERROR(&ctx, SSL_ERROR_WANT_READ); } out: quic_unlock(ctx.qc); return ret; } int ossl_quic_read(SSL *s, void *buf, size_t len, size_t *bytes_read) { return quic_read(s, buf, len, bytes_read, 0); } int ossl_quic_peek(SSL *s, void *buf, size_t len, size_t *bytes_read) { return quic_read(s, buf, len, bytes_read, 1); } /* * SSL_pending * ----------- */ QUIC_TAKES_LOCK static size_t ossl_quic_pending_int(const SSL *s, int check_channel) { QCTX ctx; size_t avail = 0; int fin = 0; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); if (ctx.xso == NULL) { QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_NO_STREAM, NULL); goto out; } if (ctx.xso->stream == NULL || !ossl_quic_stream_has_recv_buffer(ctx.xso->stream)) { QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR, NULL); goto out; } if (!ossl_quic_rstream_available(ctx.xso->stream->rstream, &avail, &fin)) avail = 0; if (avail == 0 && check_channel && ossl_quic_channel_has_pending(ctx.qc->ch)) avail = 1; out: quic_unlock(ctx.qc); return avail; } size_t ossl_quic_pending(const SSL *s) { return ossl_quic_pending_int(s, /*check_channel=*/0); } int ossl_quic_has_pending(const SSL *s) { /* Do we have app-side pending data or pending URXEs or RXEs? */ return ossl_quic_pending_int(s, /*check_channel=*/1) > 0; } /* * SSL_stream_conclude * ------------------- */ QUIC_TAKES_LOCK int ossl_quic_conn_stream_conclude(SSL *s) { QCTX ctx; QUIC_STREAM *qs; int err; if (!expect_quic_with_stream_lock(s, /*remote_init=*/0, /*io=*/0, &ctx)) return 0; qs = ctx.xso->stream; if (!quic_mutation_allowed(ctx.qc, /*req_active=*/1)) { quic_unlock(ctx.qc); return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); } if (!quic_validate_for_write(ctx.xso, &err)) { quic_unlock(ctx.qc); return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, err, NULL); } if (ossl_quic_sstream_get_final_size(qs->sstream, NULL)) { quic_unlock(ctx.qc); return 1; } ossl_quic_sstream_fin(qs->sstream); quic_post_write(ctx.xso, 1, 0, 0, 1); quic_unlock(ctx.qc); return 1; } /* * SSL_inject_net_dgram * -------------------- */ QUIC_TAKES_LOCK int SSL_inject_net_dgram(SSL *s, const unsigned char *buf, size_t buf_len, const BIO_ADDR *peer, const BIO_ADDR *local) { int ret; QCTX ctx; QUIC_DEMUX *demux; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); demux = ossl_quic_channel_get0_demux(ctx.qc->ch); ret = ossl_quic_demux_inject(demux, buf, buf_len, peer, local); quic_unlock(ctx.qc); return ret; } /* * SSL_get0_connection * ------------------- */ SSL *ossl_quic_get0_connection(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return NULL; return &ctx.qc->ssl; } /* * SSL_get_stream_type * ------------------- */ int ossl_quic_get_stream_type(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return SSL_STREAM_TYPE_BIDI; if (ctx.xso == NULL) { /* * If deferred XSO creation has yet to occur, proceed according to the * default stream mode. If AUTO_BIDI or AUTO_UNI is set, we cannot know * what kind of stream will be created yet, so return BIDI on the basis * that at this time, the client still has the option of calling * SSL_read() or SSL_write() first. */ if (ctx.qc->default_xso_created || ctx.qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_NONE) return SSL_STREAM_TYPE_NONE; else return SSL_STREAM_TYPE_BIDI; } if (ossl_quic_stream_is_bidi(ctx.xso->stream)) return SSL_STREAM_TYPE_BIDI; if (ossl_quic_stream_is_server_init(ctx.xso->stream) != ctx.qc->as_server) return SSL_STREAM_TYPE_READ; else return SSL_STREAM_TYPE_WRITE; } /* * SSL_get_stream_id * ----------------- */ QUIC_TAKES_LOCK uint64_t ossl_quic_get_stream_id(SSL *s) { QCTX ctx; uint64_t id; if (!expect_quic_with_stream_lock(s, /*remote_init=*/-1, /*io=*/0, &ctx)) return UINT64_MAX; id = ctx.xso->stream->id; quic_unlock(ctx.qc); return id; } /* * SSL_is_stream_local * ------------------- */ QUIC_TAKES_LOCK int ossl_quic_is_stream_local(SSL *s) { QCTX ctx; int is_local; if (!expect_quic_with_stream_lock(s, /*remote_init=*/-1, /*io=*/0, &ctx)) return -1; is_local = ossl_quic_stream_is_local_init(ctx.xso->stream); quic_unlock(ctx.qc); return is_local; } /* * SSL_set_default_stream_mode * --------------------------- */ QUIC_TAKES_LOCK int ossl_quic_set_default_stream_mode(SSL *s, uint32_t mode) { QCTX ctx; if (!expect_quic_conn_only(s, &ctx)) return 0; quic_lock(ctx.qc); if (ctx.qc->default_xso_created) { quic_unlock(ctx.qc); return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, "too late to change default stream mode"); } switch (mode) { case SSL_DEFAULT_STREAM_MODE_NONE: case SSL_DEFAULT_STREAM_MODE_AUTO_BIDI: case SSL_DEFAULT_STREAM_MODE_AUTO_UNI: ctx.qc->default_stream_mode = mode; break; default: quic_unlock(ctx.qc); return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT, "bad default stream type"); } quic_unlock(ctx.qc); return 1; } /* * SSL_detach_stream * ----------------- */ QUIC_TAKES_LOCK SSL *ossl_quic_detach_stream(SSL *s) { QCTX ctx; QUIC_XSO *xso = NULL; if (!expect_quic_conn_only(s, &ctx)) return NULL; quic_lock(ctx.qc); /* Calling this function inhibits default XSO autocreation. */ /* QC ref to any default XSO is transferred to us and to caller. */ qc_set_default_xso_keep_ref(ctx.qc, NULL, /*touch=*/1, &xso); quic_unlock(ctx.qc); return xso != NULL ? &xso->ssl : NULL; } /* * SSL_attach_stream * ----------------- */ QUIC_TAKES_LOCK int ossl_quic_attach_stream(SSL *conn, SSL *stream) { QCTX ctx; QUIC_XSO *xso; int nref; if (!expect_quic_conn_only(conn, &ctx)) return 0; if (stream == NULL || stream->type != SSL_TYPE_QUIC_XSO) return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_NULL_PARAMETER, "stream to attach must be a valid QUIC stream"); xso = (QUIC_XSO *)stream; quic_lock(ctx.qc); if (ctx.qc->default_xso != NULL) { quic_unlock(ctx.qc); return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, "connection already has a default stream"); } /* * It is a caller error for the XSO being attached as a default XSO to have * more than one ref. */ if (!CRYPTO_GET_REF(&xso->ssl.references, &nref)) { quic_unlock(ctx.qc); return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR, "ref"); } if (nref != 1) { quic_unlock(ctx.qc); return QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT, "stream being attached must have " "only 1 reference"); } /* Caller's reference to the XSO is transferred to us. */ /* Calling this function inhibits default XSO autocreation. */ qc_set_default_xso(ctx.qc, xso, /*touch=*/1); quic_unlock(ctx.qc); return 1; } /* * SSL_set_incoming_stream_policy * ------------------------------ */ QUIC_NEEDS_LOCK static int qc_get_effective_incoming_stream_policy(QUIC_CONNECTION *qc) { switch (qc->incoming_stream_policy) { case SSL_INCOMING_STREAM_POLICY_AUTO: if ((qc->default_xso == NULL && !qc->default_xso_created) || qc->default_stream_mode == SSL_DEFAULT_STREAM_MODE_NONE) return SSL_INCOMING_STREAM_POLICY_ACCEPT; else return SSL_INCOMING_STREAM_POLICY_REJECT; default: return qc->incoming_stream_policy; } } QUIC_NEEDS_LOCK static void qc_update_reject_policy(QUIC_CONNECTION *qc) { int policy = qc_get_effective_incoming_stream_policy(qc); int enable_reject = (policy == SSL_INCOMING_STREAM_POLICY_REJECT); ossl_quic_channel_set_incoming_stream_auto_reject(qc->ch, enable_reject, qc->incoming_stream_aec); } QUIC_TAKES_LOCK int ossl_quic_set_incoming_stream_policy(SSL *s, int policy, uint64_t aec) { int ret = 1; QCTX ctx; if (!expect_quic_conn_only(s, &ctx)) return 0; quic_lock(ctx.qc); switch (policy) { case SSL_INCOMING_STREAM_POLICY_AUTO: case SSL_INCOMING_STREAM_POLICY_ACCEPT: case SSL_INCOMING_STREAM_POLICY_REJECT: ctx.qc->incoming_stream_policy = policy; ctx.qc->incoming_stream_aec = aec; break; default: QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT, NULL); ret = 0; break; } qc_update_reject_policy(ctx.qc); quic_unlock(ctx.qc); return ret; } /* * SSL_accept_stream * ----------------- */ struct wait_for_incoming_stream_args { QCTX *ctx; QUIC_STREAM *qs; }; QUIC_NEEDS_LOCK static int wait_for_incoming_stream(void *arg) { struct wait_for_incoming_stream_args *args = arg; QUIC_CONNECTION *qc = args->ctx->qc; QUIC_STREAM_MAP *qsm = ossl_quic_channel_get_qsm(qc->ch); if (!quic_mutation_allowed(qc, /*req_active=*/1)) { /* If connection is torn down due to an error while blocking, stop. */ QUIC_RAISE_NON_NORMAL_ERROR(args->ctx, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); return -1; } args->qs = ossl_quic_stream_map_peek_accept_queue(qsm); if (args->qs != NULL) return 1; /* got a stream */ return 0; /* did not get a stream, keep trying */ } QUIC_TAKES_LOCK SSL *ossl_quic_accept_stream(SSL *s, uint64_t flags) { QCTX ctx; int ret; SSL *new_s = NULL; QUIC_STREAM_MAP *qsm; QUIC_STREAM *qs; QUIC_XSO *xso; OSSL_RTT_INFO rtt_info; if (!expect_quic_conn_only(s, &ctx)) return NULL; quic_lock(ctx.qc); if (qc_get_effective_incoming_stream_policy(ctx.qc) == SSL_INCOMING_STREAM_POLICY_REJECT) { QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, NULL); goto out; } qsm = ossl_quic_channel_get_qsm(ctx.qc->ch); qs = ossl_quic_stream_map_peek_accept_queue(qsm); if (qs == NULL) { if (qc_blocking_mode(ctx.qc) && (flags & SSL_ACCEPT_STREAM_NO_BLOCK) == 0) { struct wait_for_incoming_stream_args args; args.ctx = &ctx; args.qs = NULL; ret = block_until_pred(ctx.qc, wait_for_incoming_stream, &args, 0); if (ret == 0) { QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR, NULL); goto out; } else if (ret < 0 || args.qs == NULL) { goto out; } qs = args.qs; } else { goto out; } } xso = create_xso_from_stream(ctx.qc, qs); if (xso == NULL) goto out; ossl_statm_get_rtt_info(ossl_quic_channel_get_statm(ctx.qc->ch), &rtt_info); ossl_quic_stream_map_remove_from_accept_queue(qsm, qs, rtt_info.smoothed_rtt); new_s = &xso->ssl; /* Calling this function inhibits default XSO autocreation. */ qc_touch_default_xso(ctx.qc); /* inhibits default XSO */ out: quic_unlock(ctx.qc); return new_s; } /* * SSL_get_accept_stream_queue_len * ------------------------------- */ QUIC_TAKES_LOCK size_t ossl_quic_get_accept_stream_queue_len(SSL *s) { QCTX ctx; size_t v; if (!expect_quic_conn_only(s, &ctx)) return 0; quic_lock(ctx.qc); v = ossl_quic_stream_map_get_accept_queue_len(ossl_quic_channel_get_qsm(ctx.qc->ch)); quic_unlock(ctx.qc); return v; } /* * SSL_stream_reset * ---------------- */ int ossl_quic_stream_reset(SSL *ssl, const SSL_STREAM_RESET_ARGS *args, size_t args_len) { QCTX ctx; QUIC_STREAM_MAP *qsm; QUIC_STREAM *qs; uint64_t error_code; int ok, err; if (!expect_quic_with_stream_lock(ssl, /*remote_init=*/0, /*io=*/0, &ctx)) return 0; qsm = ossl_quic_channel_get_qsm(ctx.qc->ch); qs = ctx.xso->stream; error_code = (args != NULL ? args->quic_error_code : 0); if (!quic_validate_for_write(ctx.xso, &err)) { ok = QUIC_RAISE_NON_NORMAL_ERROR(&ctx, err, NULL); goto err; } ok = ossl_quic_stream_map_reset_stream_send_part(qsm, qs, error_code); err: quic_unlock(ctx.qc); return ok; } /* * SSL_get_stream_read_state * ------------------------- */ static void quic_classify_stream(QUIC_CONNECTION *qc, QUIC_STREAM *qs, int is_write, int *state, uint64_t *app_error_code) { int local_init; uint64_t final_size; local_init = (ossl_quic_stream_is_server_init(qs) == qc->as_server); if (app_error_code != NULL) *app_error_code = UINT64_MAX; else app_error_code = &final_size; /* throw away value */ if (!ossl_quic_stream_is_bidi(qs) && local_init != is_write) { /* * Unidirectional stream and this direction of transmission doesn't * exist. */ *state = SSL_STREAM_STATE_WRONG_DIR; } else if (ossl_quic_channel_is_term_any(qc->ch)) { /* Connection already closed. */ *state = SSL_STREAM_STATE_CONN_CLOSED; } else if (!is_write && qs->recv_state == QUIC_RSTREAM_STATE_DATA_READ) { /* Application has read a FIN. */ *state = SSL_STREAM_STATE_FINISHED; } else if ((!is_write && qs->stop_sending) || (is_write && ossl_quic_stream_send_is_reset(qs))) { /* * Stream has been reset locally. FIN takes precedence over this for the * read case as the application need not care if the stream is reset * after a FIN has been successfully processed. */ *state = SSL_STREAM_STATE_RESET_LOCAL; *app_error_code = !is_write ? qs->stop_sending_aec : qs->reset_stream_aec; } else if ((!is_write && ossl_quic_stream_recv_is_reset(qs)) || (is_write && qs->peer_stop_sending)) { /* * Stream has been reset remotely. */ *state = SSL_STREAM_STATE_RESET_REMOTE; *app_error_code = !is_write ? qs->peer_reset_stream_aec : qs->peer_stop_sending_aec; } else if (is_write && ossl_quic_sstream_get_final_size(qs->sstream, &final_size)) { /* * Stream has been finished. Stream reset takes precedence over this for * the write case as peer may not have received all data. */ *state = SSL_STREAM_STATE_FINISHED; } else { /* Stream still healthy. */ *state = SSL_STREAM_STATE_OK; } } static int quic_get_stream_state(SSL *ssl, int is_write) { QCTX ctx; int state; if (!expect_quic_with_stream_lock(ssl, /*remote_init=*/-1, /*io=*/0, &ctx)) return SSL_STREAM_STATE_NONE; quic_classify_stream(ctx.qc, ctx.xso->stream, is_write, &state, NULL); quic_unlock(ctx.qc); return state; } int ossl_quic_get_stream_read_state(SSL *ssl) { return quic_get_stream_state(ssl, /*is_write=*/0); } /* * SSL_get_stream_write_state * -------------------------- */ int ossl_quic_get_stream_write_state(SSL *ssl) { return quic_get_stream_state(ssl, /*is_write=*/1); } /* * SSL_get_stream_read_error_code * ------------------------------ */ static int quic_get_stream_error_code(SSL *ssl, int is_write, uint64_t *app_error_code) { QCTX ctx; int state; if (!expect_quic_with_stream_lock(ssl, /*remote_init=*/-1, /*io=*/0, &ctx)) return -1; quic_classify_stream(ctx.qc, ctx.xso->stream, /*is_write=*/0, &state, app_error_code); quic_unlock(ctx.qc); switch (state) { case SSL_STREAM_STATE_FINISHED: return 0; case SSL_STREAM_STATE_RESET_LOCAL: case SSL_STREAM_STATE_RESET_REMOTE: return 1; default: return -1; } } int ossl_quic_get_stream_read_error_code(SSL *ssl, uint64_t *app_error_code) { return quic_get_stream_error_code(ssl, /*is_write=*/0, app_error_code); } /* * SSL_get_stream_write_error_code * ------------------------------- */ int ossl_quic_get_stream_write_error_code(SSL *ssl, uint64_t *app_error_code) { return quic_get_stream_error_code(ssl, /*is_write=*/1, app_error_code); } /* * Write buffer size mutation * -------------------------- */ int ossl_quic_set_write_buffer_size(SSL *ssl, size_t size) { int ret = 0; QCTX ctx; if (!expect_quic_with_stream_lock(ssl, /*remote_init=*/-1, /*io=*/0, &ctx)) return 0; if (!ossl_quic_stream_has_send(ctx.xso->stream)) { /* Called on a unidirectional receive-only stream - error. */ QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, NULL); goto out; } if (!ossl_quic_stream_has_send_buffer(ctx.xso->stream)) { /* * If the stream has a send part but we have disposed of it because we * no longer need it, this is a no-op. */ ret = 1; goto out; } if (!ossl_quic_sstream_set_buffer_size(ctx.xso->stream->sstream, size)) { QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_INTERNAL_ERROR, NULL); goto out; } ret = 1; out: quic_unlock(ctx.qc); return ret; } /* * SSL_get_conn_close_info * ----------------------- */ int ossl_quic_get_conn_close_info(SSL *ssl, SSL_CONN_CLOSE_INFO *info, size_t info_len) { QCTX ctx; const QUIC_TERMINATE_CAUSE *tc; if (!expect_quic_conn_only(ssl, &ctx)) return -1; tc = ossl_quic_channel_get_terminate_cause(ctx.qc->ch); if (tc == NULL) return 0; info->error_code = tc->error_code; info->frame_type = tc->frame_type; info->reason = tc->reason; info->reason_len = tc->reason_len; info->flags = 0; if (!tc->remote) info->flags |= SSL_CONN_CLOSE_FLAG_LOCAL; if (!tc->app) info->flags |= SSL_CONN_CLOSE_FLAG_TRANSPORT; return 1; } /* * SSL_key_update * -------------- */ int ossl_quic_key_update(SSL *ssl, int update_type) { QCTX ctx; if (!expect_quic_conn_only(ssl, &ctx)) return 0; switch (update_type) { case SSL_KEY_UPDATE_NOT_REQUESTED: /* * QUIC signals peer key update implicily by triggering a local * spontaneous TXKU. Silently upgrade this to SSL_KEY_UPDATE_REQUESTED. */ case SSL_KEY_UPDATE_REQUESTED: break; default: QUIC_RAISE_NON_NORMAL_ERROR(&ctx, ERR_R_PASSED_INVALID_ARGUMENT, NULL); return 0; } quic_lock(ctx.qc); /* Attempt to perform a TXKU. */ if (!ossl_quic_channel_trigger_txku(ctx.qc->ch)) { QUIC_RAISE_NON_NORMAL_ERROR(&ctx, SSL_R_TOO_MANY_KEY_UPDATES, NULL); quic_unlock(ctx.qc); return 0; } quic_unlock(ctx.qc); return 1; } /* * SSL_get_key_update_type * ----------------------- */ int ossl_quic_get_key_update_type(const SSL *s) { /* * We always handle key updates immediately so a key update is never * pending. */ return SSL_KEY_UPDATE_NONE; } /* * QUIC Front-End I/O API: SSL_CTX Management * ========================================== */ long ossl_quic_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) { switch (cmd) { default: return ssl3_ctx_ctrl(ctx, cmd, larg, parg); } } long ossl_quic_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) { QCTX ctx; if (!expect_quic_conn_only(s, &ctx)) return 0; switch (cmd) { case SSL_CTRL_SET_MSG_CALLBACK: ossl_quic_channel_set_msg_callback(ctx.qc->ch, (ossl_msg_cb)fp, &ctx.qc->ssl); /* This callback also needs to be set on the internal SSL object */ return ssl3_callback_ctrl(ctx.qc->tls, cmd, fp);; default: /* Probably a TLS related ctrl. Defer to our internal SSL object */ return ssl3_callback_ctrl(ctx.qc->tls, cmd, fp); } } long ossl_quic_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) { return ssl3_ctx_callback_ctrl(ctx, cmd, fp); } int ossl_quic_renegotiate_check(SSL *ssl, int initok) { /* We never do renegotiation. */ return 0; } const SSL_CIPHER *ossl_quic_get_cipher_by_char(const unsigned char *p) { const SSL_CIPHER *ciph = ssl3_get_cipher_by_char(p); if ((ciph->algorithm2 & SSL_QUIC) == 0) return NULL; return ciph; } /* * These functions define the TLSv1.2 (and below) ciphers that are supported by * the SSL_METHOD. Since QUIC only supports TLSv1.3 we don't support any. */ int ossl_quic_num_ciphers(void) { return 0; } const SSL_CIPHER *ossl_quic_get_cipher(unsigned int u) { return NULL; } /* * SSL_get_shutdown() * ------------------ */ int ossl_quic_get_shutdown(const SSL *s) { QCTX ctx; int shut = 0; if (!expect_quic_conn_only(s, &ctx)) return 0; if (ossl_quic_channel_is_term_any(ctx.qc->ch)) { shut |= SSL_SENT_SHUTDOWN; if (!ossl_quic_channel_is_closing(ctx.qc->ch)) shut |= SSL_RECEIVED_SHUTDOWN; } return shut; } /* * Internal Testing APIs * ===================== */ QUIC_CHANNEL *ossl_quic_conn_get_channel(SSL *s) { QCTX ctx; if (!expect_quic_conn_only(s, &ctx)) return NULL; return ctx.qc->ch; }