/* * Copyright 2020-2021 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2020-2021, Intel Corporation. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html * * * Originally written by Sergey Kirillov and Andrey Matyukov. * Special thanks to Ilya Albrekht for his valuable hints. * Intel Corporation * */ #include #include #include "rsaz_exp.h" #ifndef RSAZ_ENABLED NON_EMPTY_TRANSLATION_UNIT #else # include # include # if defined(__GNUC__) # define ALIGN64 __attribute__((aligned(64))) # elif defined(_MSC_VER) # define ALIGN64 __declspec(align(64)) # else # define ALIGN64 # endif # define ALIGN_OF(ptr, boundary) \ ((unsigned char *)(ptr) + (boundary - (((size_t)(ptr)) & (boundary - 1)))) /* Internal radix */ # define DIGIT_SIZE (52) /* 52-bit mask */ # define DIGIT_MASK ((uint64_t)0xFFFFFFFFFFFFF) # define BITS2WORD8_SIZE(x) (((x) + 7) >> 3) # define BITS2WORD64_SIZE(x) (((x) + 63) >> 6) /* Number of registers required to hold |digits_num| amount of qword digits */ # define NUMBER_OF_REGISTERS(digits_num, register_size) \ (((digits_num) * 64 + (register_size) - 1) / (register_size)) static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len); static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit); static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in, int in_bitsize); static void from_words52(BN_ULONG *bn_out, int out_bitsize, const BN_ULONG *in); static ossl_inline void set_bit(BN_ULONG *a, int idx); /* Number of |digit_size|-bit digits in |bitsize|-bit value */ static ossl_inline int number_of_digits(int bitsize, int digit_size) { return (bitsize + digit_size - 1) / digit_size; } /* * For details of the methods declared below please refer to * crypto/bn/asm/rsaz-avx512.pl * * Naming conventions: * amm = Almost Montgomery Multiplication * ams = Almost Montgomery Squaring * 52xZZ - data represented as array of ZZ digits in 52-bit radix * _x1_/_x2_ - 1 or 2 independent inputs/outputs * _ifma256 - uses 256-bit wide IFMA ISA (AVX512_IFMA256) */ void ossl_rsaz_amm52x20_x1_ifma256(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0); void ossl_rsaz_amm52x20_x2_ifma256(BN_ULONG *out, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, const BN_ULONG k0[2]); void ossl_extract_multiplier_2x20_win5(BN_ULONG *red_Y, const BN_ULONG *red_table, int red_table_idx1, int red_table_idx2); void ossl_rsaz_amm52x30_x1_ifma256(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0); void ossl_rsaz_amm52x30_x2_ifma256(BN_ULONG *out, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, const BN_ULONG k0[2]); void ossl_extract_multiplier_2x30_win5(BN_ULONG *red_Y, const BN_ULONG *red_table, int red_table_idx1, int red_table_idx2); void ossl_rsaz_amm52x40_x1_ifma256(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0); void ossl_rsaz_amm52x40_x2_ifma256(BN_ULONG *out, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, const BN_ULONG k0[2]); void ossl_extract_multiplier_2x40_win5(BN_ULONG *red_Y, const BN_ULONG *red_table, int red_table_idx1, int red_table_idx2); static int RSAZ_mod_exp_x2_ifma256(BN_ULONG *res, const BN_ULONG *base, const BN_ULONG *exp[2], const BN_ULONG *m, const BN_ULONG *rr, const BN_ULONG k0[2], int modulus_bitsize); /* * Dual Montgomery modular exponentiation using prime moduli of the * same bit size, optimized with AVX512 ISA. * * Input and output parameters for each exponentiation are independent and * denoted here by index |i|, i = 1..2. * * Input and output are all in regular 2^64 radix. * * Each moduli shall be |factor_size| bit size. * * Supported cases: * - 2x1024 * - 2x1536 * - 2x2048 * * [out] res|i| - result of modular exponentiation: array of qword values * in regular (2^64) radix. Size of array shall be enough * to hold |factor_size| bits. * [in] base|i| - base * [in] exp|i| - exponent * [in] m|i| - moduli * [in] rr|i| - Montgomery parameter RR = R^2 mod m|i| * [in] k0_|i| - Montgomery parameter k0 = -1/m|i| mod 2^64 * [in] factor_size - moduli bit size * * \return 0 in case of failure, * 1 in case of success. */ int ossl_rsaz_mod_exp_avx512_x2(BN_ULONG *res1, const BN_ULONG *base1, const BN_ULONG *exp1, const BN_ULONG *m1, const BN_ULONG *rr1, BN_ULONG k0_1, BN_ULONG *res2, const BN_ULONG *base2, const BN_ULONG *exp2, const BN_ULONG *m2, const BN_ULONG *rr2, BN_ULONG k0_2, int factor_size) { typedef void (*AMM)(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, BN_ULONG k0); int ret = 0; /* * Number of word-size (BN_ULONG) digits to store exponent in redundant * representation. */ int exp_digits = number_of_digits(factor_size + 2, DIGIT_SIZE); int coeff_pow = 4 * (DIGIT_SIZE * exp_digits - factor_size); /* Number of YMM registers required to store exponent's digits */ int ymm_regs_num = NUMBER_OF_REGISTERS(exp_digits, 256 /* ymm bit size */); /* Capacity of the register set (in qwords) to store exponent */ int regs_capacity = ymm_regs_num * 4; BN_ULONG *base1_red, *m1_red, *rr1_red; BN_ULONG *base2_red, *m2_red, *rr2_red; BN_ULONG *coeff_red; BN_ULONG *storage = NULL; BN_ULONG *storage_aligned = NULL; int storage_len_bytes = 7 * regs_capacity * sizeof(BN_ULONG) + 64 /* alignment */; const BN_ULONG *exp[2] = {0}; BN_ULONG k0[2] = {0}; /* AMM = Almost Montgomery Multiplication */ AMM amm = NULL; switch (factor_size) { case 1024: amm = ossl_rsaz_amm52x20_x1_ifma256; break; case 1536: amm = ossl_rsaz_amm52x30_x1_ifma256; break; case 2048: amm = ossl_rsaz_amm52x40_x1_ifma256; break; default: goto err; } storage = (BN_ULONG *)OPENSSL_malloc(storage_len_bytes); if (storage == NULL) goto err; storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64); /* Memory layout for red(undant) representations */ base1_red = storage_aligned; base2_red = storage_aligned + 1 * regs_capacity; m1_red = storage_aligned + 2 * regs_capacity; m2_red = storage_aligned + 3 * regs_capacity; rr1_red = storage_aligned + 4 * regs_capacity; rr2_red = storage_aligned + 5 * regs_capacity; coeff_red = storage_aligned + 6 * regs_capacity; /* Convert base_i, m_i, rr_i, from regular to 52-bit radix */ to_words52(base1_red, regs_capacity, base1, factor_size); to_words52(base2_red, regs_capacity, base2, factor_size); to_words52(m1_red, regs_capacity, m1, factor_size); to_words52(m2_red, regs_capacity, m2, factor_size); to_words52(rr1_red, regs_capacity, rr1, factor_size); to_words52(rr2_red, regs_capacity, rr2, factor_size); /* * Compute target domain Montgomery converters RR' for each modulus * based on precomputed original domain's RR. * * RR -> RR' transformation steps: * (1) coeff = 2^k * (2) t = AMM(RR,RR) = RR^2 / R' mod m * (3) RR' = AMM(t, coeff) = RR^2 * 2^k / R'^2 mod m * where * k = 4 * (52 * digits52 - modlen) * R = 2^(64 * ceil(modlen/64)) mod m * RR = R^2 mod m * R' = 2^(52 * ceil(modlen/52)) mod m * * EX/ modlen = 1024: k = 64, RR = 2^2048 mod m, RR' = 2^2080 mod m */ memset(coeff_red, 0, exp_digits * sizeof(BN_ULONG)); /* (1) in reduced domain representation */ set_bit(coeff_red, 64 * (int)(coeff_pow / 52) + coeff_pow % 52); amm(rr1_red, rr1_red, rr1_red, m1_red, k0_1); /* (2) for m1 */ amm(rr1_red, rr1_red, coeff_red, m1_red, k0_1); /* (3) for m1 */ amm(rr2_red, rr2_red, rr2_red, m2_red, k0_2); /* (2) for m2 */ amm(rr2_red, rr2_red, coeff_red, m2_red, k0_2); /* (3) for m2 */ exp[0] = exp1; exp[1] = exp2; k0[0] = k0_1; k0[1] = k0_2; /* Dual (2-exps in parallel) exponentiation */ ret = RSAZ_mod_exp_x2_ifma256(rr1_red, base1_red, exp, m1_red, rr1_red, k0, factor_size); if (!ret) goto err; /* Convert rr_i back to regular radix */ from_words52(res1, factor_size, rr1_red); from_words52(res2, factor_size, rr2_red); /* bn_reduce_once_in_place expects number of BN_ULONG, not bit size */ factor_size /= sizeof(BN_ULONG) * 8; bn_reduce_once_in_place(res1, /*carry=*/0, m1, storage, factor_size); bn_reduce_once_in_place(res2, /*carry=*/0, m2, storage, factor_size); err: if (storage != NULL) { OPENSSL_cleanse(storage, storage_len_bytes); OPENSSL_free(storage); } return ret; } /* * Dual {1024,1536,2048}-bit w-ary modular exponentiation using prime moduli of * the same bit size using Almost Montgomery Multiplication, optimized with * AVX512_IFMA256 ISA. * * The parameter w (window size) = 5. * * [out] res - result of modular exponentiation: 2x{20,30,40} qword * values in 2^52 radix. * [in] base - base (2x{20,30,40} qword values in 2^52 radix) * [in] exp - array of 2 pointers to {16,24,32} qword values in 2^64 radix. * Exponent is not converted to redundant representation. * [in] m - moduli (2x{20,30,40} qword values in 2^52 radix) * [in] rr - Montgomery parameter for 2 moduli: * RR(1024) = 2^2080 mod m. * RR(1536) = 2^3120 mod m. * RR(2048) = 2^4160 mod m. * (2x{20,30,40} qword values in 2^52 radix) * [in] k0 - Montgomery parameter for 2 moduli: k0 = -1/m mod 2^64 * * \return (void). */ int RSAZ_mod_exp_x2_ifma256(BN_ULONG *out, const BN_ULONG *base, const BN_ULONG *exp[2], const BN_ULONG *m, const BN_ULONG *rr, const BN_ULONG k0[2], int modulus_bitsize) { typedef void (*DAMM)(BN_ULONG *res, const BN_ULONG *a, const BN_ULONG *b, const BN_ULONG *m, const BN_ULONG k0[2]); typedef void (*DEXTRACT)(BN_ULONG *res, const BN_ULONG *red_table, int red_table_idx, int tbl_idx); int ret = 0; int idx; /* Exponent window size */ int exp_win_size = 5; int exp_win_mask = (1U << exp_win_size) - 1; /* * Number of digits (64-bit words) in redundant representation to handle * modulus bits */ int red_digits = 0; int exp_digits = 0; BN_ULONG *storage = NULL; BN_ULONG *storage_aligned = NULL; int storage_len_bytes = 0; /* Red(undant) result Y and multiplier X */ BN_ULONG *red_Y = NULL; /* [2][red_digits] */ BN_ULONG *red_X = NULL; /* [2][red_digits] */ /* Pre-computed table of base powers */ BN_ULONG *red_table = NULL; /* [1U << exp_win_size][2][red_digits] */ /* Expanded exponent */ BN_ULONG *expz = NULL; /* [2][exp_digits + 1] */ /* Dual AMM */ DAMM damm = NULL; /* Extractor from red_table */ DEXTRACT extract = NULL; /* * Squaring is done using multiplication now. That can be a subject of * optimization in future. */ # define DAMS(r,a,m,k0) damm((r),(a),(a),(m),(k0)) switch (modulus_bitsize) { case 1024: red_digits = 20; exp_digits = 16; damm = ossl_rsaz_amm52x20_x2_ifma256; extract = ossl_extract_multiplier_2x20_win5; break; case 1536: /* Extended with 2 digits padding to avoid mask ops in high YMM register */ red_digits = 30 + 2; exp_digits = 24; damm = ossl_rsaz_amm52x30_x2_ifma256; extract = ossl_extract_multiplier_2x30_win5; break; case 2048: red_digits = 40; exp_digits = 32; damm = ossl_rsaz_amm52x40_x2_ifma256; extract = ossl_extract_multiplier_2x40_win5; break; default: goto err; } storage_len_bytes = (2 * red_digits /* red_Y */ + 2 * red_digits /* red_X */ + 2 * red_digits * (1U << exp_win_size) /* red_table */ + 2 * (exp_digits + 1)) /* expz */ * sizeof(BN_ULONG) + 64; /* alignment */ storage = (BN_ULONG *)OPENSSL_zalloc(storage_len_bytes); if (storage == NULL) goto err; storage_aligned = (BN_ULONG *)ALIGN_OF(storage, 64); red_Y = storage_aligned; red_X = red_Y + 2 * red_digits; red_table = red_X + 2 * red_digits; expz = red_table + 2 * red_digits * (1U << exp_win_size); /* * Compute table of powers base^i, i = 0, ..., (2^EXP_WIN_SIZE) - 1 * table[0] = mont(x^0) = mont(1) * table[1] = mont(x^1) = mont(x) */ red_X[0 * red_digits] = 1; red_X[1 * red_digits] = 1; damm(&red_table[0 * 2 * red_digits], (const BN_ULONG*)red_X, rr, m, k0); damm(&red_table[1 * 2 * red_digits], base, rr, m, k0); for (idx = 1; idx < (int)((1U << exp_win_size) / 2); idx++) { DAMS(&red_table[(2 * idx + 0) * 2 * red_digits], &red_table[(1 * idx) * 2 * red_digits], m, k0); damm(&red_table[(2 * idx + 1) * 2 * red_digits], &red_table[(2 * idx) * 2 * red_digits], &red_table[1 * 2 * red_digits], m, k0); } /* Copy and expand exponents */ memcpy(&expz[0 * (exp_digits + 1)], exp[0], exp_digits * sizeof(BN_ULONG)); expz[1 * (exp_digits + 1) - 1] = 0; memcpy(&expz[1 * (exp_digits + 1)], exp[1], exp_digits * sizeof(BN_ULONG)); expz[2 * (exp_digits + 1) - 1] = 0; /* Exponentiation */ { const int rem = modulus_bitsize % exp_win_size; const BN_ULONG table_idx_mask = exp_win_mask; int exp_bit_no = modulus_bitsize - rem; int exp_chunk_no = exp_bit_no / 64; int exp_chunk_shift = exp_bit_no % 64; BN_ULONG red_table_idx_0, red_table_idx_1; /* * If rem == 0, then * exp_bit_no = modulus_bitsize - exp_win_size * However, this isn't possible because rem is { 1024, 1536, 2048 } % 5 * which is { 4, 1, 3 } respectively. * * If this assertion ever fails the fix above is easy. */ OPENSSL_assert(rem != 0); /* Process 1-st exp window - just init result */ red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)]; red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)]; /* * The function operates with fixed moduli sizes divisible by 64, * thus table index here is always in supported range [0, EXP_WIN_SIZE). */ red_table_idx_0 >>= exp_chunk_shift; red_table_idx_1 >>= exp_chunk_shift; extract(&red_Y[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1); /* Process other exp windows */ for (exp_bit_no -= exp_win_size; exp_bit_no >= 0; exp_bit_no -= exp_win_size) { /* Extract pre-computed multiplier from the table */ { BN_ULONG T; exp_chunk_no = exp_bit_no / 64; exp_chunk_shift = exp_bit_no % 64; { red_table_idx_0 = expz[exp_chunk_no + 0 * (exp_digits + 1)]; T = expz[exp_chunk_no + 1 + 0 * (exp_digits + 1)]; red_table_idx_0 >>= exp_chunk_shift; /* * Get additional bits from then next quadword * when 64-bit boundaries are crossed. */ if (exp_chunk_shift > 64 - exp_win_size) { T <<= (64 - exp_chunk_shift); red_table_idx_0 ^= T; } red_table_idx_0 &= table_idx_mask; } { red_table_idx_1 = expz[exp_chunk_no + 1 * (exp_digits + 1)]; T = expz[exp_chunk_no + 1 + 1 * (exp_digits + 1)]; red_table_idx_1 >>= exp_chunk_shift; /* * Get additional bits from then next quadword * when 64-bit boundaries are crossed. */ if (exp_chunk_shift > 64 - exp_win_size) { T <<= (64 - exp_chunk_shift); red_table_idx_1 ^= T; } red_table_idx_1 &= table_idx_mask; } extract(&red_X[0 * red_digits], (const BN_ULONG*)red_table, (int)red_table_idx_0, (int)red_table_idx_1); } /* Series of squaring */ DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); DAMS((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, m, k0); damm((BN_ULONG*)red_Y, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0); } } /* * * NB: After the last AMM of exponentiation in Montgomery domain, the result * may be (modulus_bitsize + 1), but the conversion out of Montgomery domain * performs an AMM(x,1) which guarantees that the final result is less than * |m|, so no conditional subtraction is needed here. See [1] for details. * * [1] Gueron, S. Efficient software implementations of modular exponentiation. * DOI: 10.1007/s13389-012-0031-5 */ /* Convert result back in regular 2^52 domain */ memset(red_X, 0, 2 * red_digits * sizeof(BN_ULONG)); red_X[0 * red_digits] = 1; red_X[1 * red_digits] = 1; damm(out, (const BN_ULONG*)red_Y, (const BN_ULONG*)red_X, m, k0); ret = 1; err: if (storage != NULL) { /* Clear whole storage */ OPENSSL_cleanse(storage, storage_len_bytes); OPENSSL_free(storage); } #undef DAMS return ret; } static ossl_inline uint64_t get_digit(const uint8_t *in, int in_len) { uint64_t digit = 0; assert(in != NULL); assert(in_len <= 8); for (; in_len > 0; in_len--) { digit <<= 8; digit += (uint64_t)(in[in_len - 1]); } return digit; } /* * Convert array of words in regular (base=2^64) representation to array of * words in redundant (base=2^52) one. */ static void to_words52(BN_ULONG *out, int out_len, const BN_ULONG *in, int in_bitsize) { uint8_t *in_str = NULL; assert(out != NULL); assert(in != NULL); /* Check destination buffer capacity */ assert(out_len >= number_of_digits(in_bitsize, DIGIT_SIZE)); in_str = (uint8_t *)in; for (; in_bitsize >= (2 * DIGIT_SIZE); in_bitsize -= (2 * DIGIT_SIZE), out += 2) { out[0] = (*(uint64_t *)in_str) & DIGIT_MASK; in_str += 6; out[1] = ((*(uint64_t *)in_str) >> 4) & DIGIT_MASK; in_str += 7; out_len -= 2; } if (in_bitsize > DIGIT_SIZE) { uint64_t digit = get_digit(in_str, 7); out[0] = digit & DIGIT_MASK; in_str += 6; in_bitsize -= DIGIT_SIZE; digit = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize)); out[1] = digit >> 4; out += 2; out_len -= 2; } else if (in_bitsize > 0) { out[0] = get_digit(in_str, BITS2WORD8_SIZE(in_bitsize)); out++; out_len--; } while (out_len > 0) { *out = 0; out_len--; out++; } } static ossl_inline void put_digit(uint8_t *out, int out_len, uint64_t digit) { assert(out != NULL); assert(out_len <= 8); for (; out_len > 0; out_len--) { *out++ = (uint8_t)(digit & 0xFF); digit >>= 8; } } /* * Convert array of words in redundant (base=2^52) representation to array of * words in regular (base=2^64) one. */ static void from_words52(BN_ULONG *out, int out_bitsize, const BN_ULONG *in) { int i; int out_len = BITS2WORD64_SIZE(out_bitsize); assert(out != NULL); assert(in != NULL); for (i = 0; i < out_len; i++) out[i] = 0; { uint8_t *out_str = (uint8_t *)out; for (; out_bitsize >= (2 * DIGIT_SIZE); out_bitsize -= (2 * DIGIT_SIZE), in += 2) { (*(uint64_t *)out_str) = in[0]; out_str += 6; (*(uint64_t *)out_str) ^= in[1] << 4; out_str += 7; } if (out_bitsize > DIGIT_SIZE) { put_digit(out_str, 7, in[0]); out_str += 6; out_bitsize -= DIGIT_SIZE; put_digit(out_str, BITS2WORD8_SIZE(out_bitsize), (in[1] << 4 | in[0] >> 48)); } else if (out_bitsize) { put_digit(out_str, BITS2WORD8_SIZE(out_bitsize), in[0]); } } } /* * Set bit at index |idx| in the words array |a|. * It does not do any boundaries checks, make sure the index is valid before * calling the function. */ static ossl_inline void set_bit(BN_ULONG *a, int idx) { assert(a != NULL); { int i, j; i = idx / BN_BITS2; j = idx % BN_BITS2; a[i] |= (((BN_ULONG)1) << j); } } #endif