/* * Copyright 2005-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include "../ssl_local.h" #include #include #include "record_local.h" #include "internal/packet.h" #include "internal/cryptlib.h" int DTLS_RECORD_LAYER_new(RECORD_LAYER *rl) { DTLS_RECORD_LAYER *d; if ((d = OPENSSL_malloc(sizeof(*d))) == NULL) return 0; rl->d = d; d->buffered_app_data.q = pqueue_new(); if (d->buffered_app_data.q == NULL) { OPENSSL_free(d); rl->d = NULL; return 0; } return 1; } void DTLS_RECORD_LAYER_free(RECORD_LAYER *rl) { if (rl->d == NULL) return; DTLS_RECORD_LAYER_clear(rl); pqueue_free(rl->d->buffered_app_data.q); OPENSSL_free(rl->d); rl->d = NULL; } void DTLS_RECORD_LAYER_clear(RECORD_LAYER *rl) { DTLS_RECORD_LAYER *d; pitem *item = NULL; TLS_RECORD *rec; pqueue *buffered_app_data; d = rl->d; while ((item = pqueue_pop(d->buffered_app_data.q)) != NULL) { rec = (TLS_RECORD *)item->data; if (rl->s->options & SSL_OP_CLEANSE_PLAINTEXT) OPENSSL_cleanse(rec->data, rec->length); OPENSSL_free(rec->data); OPENSSL_free(item->data); pitem_free(item); } buffered_app_data = d->buffered_app_data.q; memset(d, 0, sizeof(*d)); d->buffered_app_data.q = buffered_app_data; } void DTLS_RECORD_LAYER_set_saved_w_epoch(RECORD_LAYER *rl, unsigned short e) { if (e == rl->d->w_epoch - 1) { memcpy(rl->d->curr_write_sequence, rl->write_sequence, sizeof(rl->write_sequence)); memcpy(rl->write_sequence, rl->d->last_write_sequence, sizeof(rl->write_sequence)); } else if (e == rl->d->w_epoch + 1) { memcpy(rl->d->last_write_sequence, rl->write_sequence, sizeof(unsigned char[8])); memcpy(rl->write_sequence, rl->d->curr_write_sequence, sizeof(rl->write_sequence)); } rl->d->w_epoch = e; } void DTLS_RECORD_LAYER_set_write_sequence(RECORD_LAYER *rl, unsigned char *seq) { memcpy(rl->write_sequence, seq, SEQ_NUM_SIZE); } int dtls_buffer_record(SSL_CONNECTION *s, TLS_RECORD *rec) { TLS_RECORD *rdata; pitem *item; record_pqueue *queue = &(s->rlayer.d->buffered_app_data); /* Limit the size of the queue to prevent DOS attacks */ if (pqueue_size(queue->q) >= 100) return 0; /* We don't buffer partially read records */ if (!ossl_assert(rec->off == 0)) return -1; rdata = OPENSSL_malloc(sizeof(*rdata)); item = pitem_new(rec->seq_num, rdata); if (rdata == NULL || item == NULL) { OPENSSL_free(rdata); pitem_free(item); SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } *rdata = *rec; /* * We will release the record from the record layer soon, so we take a copy * now. Copying data isn't good - but this should be infrequent so we * accept it here. */ rdata->data = OPENSSL_memdup(rec->data, rec->length); if (rdata->data == NULL) { OPENSSL_free(rdata); pitem_free(item); SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); return -1; } /* * We use a NULL rechandle to indicate that the data field has been * allocated by us. */ rdata->rechandle = NULL; item->data = rdata; #ifndef OPENSSL_NO_SCTP /* Store bio_dgram_sctp_rcvinfo struct */ if (BIO_dgram_is_sctp(SSL_get_rbio(ssl)) && (SSL_get_state(ssl) == TLS_ST_SR_FINISHED || SSL_get_state(ssl) == TLS_ST_CR_FINISHED)) { BIO_ctrl(SSL_get_rbio(ssl), BIO_CTRL_DGRAM_SCTP_GET_RCVINFO, sizeof(rdata->recordinfo), &rdata->recordinfo); } #endif if (pqueue_insert(queue->q, item) == NULL) { /* Must be a duplicate so ignore it */ OPENSSL_free(rdata->data); OPENSSL_free(rdata); pitem_free(item); } return 1; } /* Unbuffer a previously buffered TLS_RECORD structure if any */ static void dtls_unbuffer_record(SSL_CONNECTION *s) { TLS_RECORD *rdata; pitem *item; /* If we already have records to handle then do nothing */ if (s->rlayer.curr_rec < s->rlayer.num_recs) return; item = pqueue_pop(s->rlayer.d->buffered_app_data.q); if (item != NULL) { rdata = (TLS_RECORD *)item->data; s->rlayer.tlsrecs[0] = *rdata; s->rlayer.num_recs = 1; s->rlayer.curr_rec = 0; #ifndef OPENSSL_NO_SCTP /* Restore bio_dgram_sctp_rcvinfo struct */ if (BIO_dgram_is_sctp(SSL_get_rbio(s))) { BIO_ctrl(SSL_get_rbio(s), BIO_CTRL_DGRAM_SCTP_SET_RCVINFO, sizeof(rdata->recordinfo), &rdata->recordinfo); } #endif OPENSSL_free(item->data); pitem_free(item); } } /*- * Return up to 'len' payload bytes received in 'type' records. * 'type' is one of the following: * * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us) * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us) * - 0 (during a shutdown, no data has to be returned) * * If we don't have stored data to work from, read a SSL/TLS record first * (possibly multiple records if we still don't have anything to return). * * This function must handle any surprises the peer may have for us, such as * Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec * messages are treated as if they were handshake messages *if* the |recd_type| * argument is non NULL. * Also if record payloads contain fragments too small to process, we store * them until there is enough for the respective protocol (the record protocol * may use arbitrary fragmentation and even interleaving): * Change cipher spec protocol * just 1 byte needed, no need for keeping anything stored * Alert protocol * 2 bytes needed (AlertLevel, AlertDescription) * Handshake protocol * 4 bytes needed (HandshakeType, uint24 length) -- we just have * to detect unexpected Client Hello and Hello Request messages * here, anything else is handled by higher layers * Application data protocol * none of our business */ int dtls1_read_bytes(SSL *s, int type, int *recvd_type, unsigned char *buf, size_t len, int peek, size_t *readbytes) { int i, j, ret; size_t n; TLS_RECORD *rr; void (*cb) (const SSL *ssl, int type2, int val) = NULL; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return -1; if ((type && (type != SSL3_RT_APPLICATION_DATA) && (type != SSL3_RT_HANDSHAKE)) || (peek && (type != SSL3_RT_APPLICATION_DATA))) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } if (!ossl_statem_get_in_handshake(sc) && SSL_in_init(s)) { /* type == SSL3_RT_APPLICATION_DATA */ i = sc->handshake_func(s); /* SSLfatal() already called if appropriate */ if (i < 0) return i; if (i == 0) return -1; } start: sc->rwstate = SSL_NOTHING; /* * We are not handshaking and have no data yet, so process data buffered * during the last handshake in advance, if any. */ if (SSL_is_init_finished(s)) dtls_unbuffer_record(sc); /* Check for timeout */ if (dtls1_handle_timeout(sc) > 0) { goto start; } else if (ossl_statem_in_error(sc)) { /* dtls1_handle_timeout() has failed with a fatal error */ return -1; } /* get new packet if necessary */ if (sc->rlayer.curr_rec >= sc->rlayer.num_recs) { sc->rlayer.curr_rec = sc->rlayer.num_recs = 0; do { rr = &sc->rlayer.tlsrecs[sc->rlayer.num_recs]; ret = HANDLE_RLAYER_READ_RETURN(sc, sc->rlayer.rrlmethod->read_record(sc->rlayer.rrl, &rr->rechandle, &rr->version, &rr->type, &rr->data, &rr->length, &rr->epoch, rr->seq_num)); if (ret <= 0) { ret = dtls1_read_failed(sc, ret); /* * Anything other than a timeout is an error. SSLfatal() already * called if appropriate. */ if (ret <= 0) return ret; else goto start; } rr->off = 0; sc->rlayer.num_recs++; } while (sc->rlayer.rrlmethod->processed_read_pending(sc->rlayer.rrl) && sc->rlayer.num_recs < SSL_MAX_PIPELINES); } rr = &sc->rlayer.tlsrecs[sc->rlayer.curr_rec]; /* * Reset the count of consecutive warning alerts if we've got a non-empty * record that isn't an alert. */ if (rr->type != SSL3_RT_ALERT && rr->length != 0) sc->rlayer.alert_count = 0; /* we now have a packet which can be read and processed */ if (sc->s3.change_cipher_spec /* set when we receive ChangeCipherSpec, * reset by ssl3_get_finished */ && (rr->type != SSL3_RT_HANDSHAKE)) { /* * We now have application data between CCS and Finished. Most likely * the packets were reordered on their way, so buffer the application * data for later processing rather than dropping the connection. */ if (dtls_buffer_record(sc, rr) < 0) { /* SSLfatal() already called */ return -1; } ssl_release_record(sc, rr); goto start; } /* * If the other end has shut down, throw anything we read away (even in * 'peek' mode) */ if (sc->shutdown & SSL_RECEIVED_SHUTDOWN) { ssl_release_record(sc, rr); sc->rwstate = SSL_NOTHING; return 0; } if (type == rr->type || (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC && type == SSL3_RT_HANDSHAKE && recvd_type != NULL)) { /* * SSL3_RT_APPLICATION_DATA or * SSL3_RT_HANDSHAKE or * SSL3_RT_CHANGE_CIPHER_SPEC */ /* * make sure that we are not getting application data when we are * doing a handshake for the first time */ if (SSL_in_init(s) && (type == SSL3_RT_APPLICATION_DATA) && (sc->enc_read_ctx == NULL)) { SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_APP_DATA_IN_HANDSHAKE); return -1; } if (recvd_type != NULL) *recvd_type = rr->type; if (len == 0) { /* * Release a zero length record. This ensures multiple calls to * SSL_read() with a zero length buffer will eventually cause * SSL_pending() to report data as being available. */ if (rr->length == 0) ssl_release_record(sc, rr); return 0; } if (len > rr->length) n = rr->length; else n = len; memcpy(buf, &(rr->data[rr->off]), n); if (peek) { if (rr->length == 0) ssl_release_record(sc, rr); } else { if (sc->options & SSL_OP_CLEANSE_PLAINTEXT) OPENSSL_cleanse(&(rr->data[rr->off]), n); rr->length -= n; rr->off += n; if (rr->length == 0) ssl_release_record(sc, rr); } #ifndef OPENSSL_NO_SCTP /* * We might had to delay a close_notify alert because of reordered * app data. If there was an alert and there is no message to read * anymore, finally set shutdown. */ if (BIO_dgram_is_sctp(SSL_get_rbio(s)) && sc->d1->shutdown_received && BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s)) <= 0) { sc->shutdown |= SSL_RECEIVED_SHUTDOWN; return 0; } #endif *readbytes = n; return 1; } /* * If we get here, then type != rr->type; if we have a handshake message, * then it was unexpected (Hello Request or Client Hello). */ if (rr->type == SSL3_RT_ALERT) { unsigned int alert_level, alert_descr; unsigned char *alert_bytes = rr->data + rr->off; PACKET alert; if (!PACKET_buf_init(&alert, alert_bytes, rr->length) || !PACKET_get_1(&alert, &alert_level) || !PACKET_get_1(&alert, &alert_descr) || PACKET_remaining(&alert) != 0) { SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_INVALID_ALERT); return -1; } if (sc->msg_callback) sc->msg_callback(0, sc->version, SSL3_RT_ALERT, alert_bytes, 2, s, sc->msg_callback_arg); if (sc->info_callback != NULL) cb = sc->info_callback; else if (s->ctx->info_callback != NULL) cb = s->ctx->info_callback; if (cb != NULL) { j = (alert_level << 8) | alert_descr; cb(s, SSL_CB_READ_ALERT, j); } if (alert_level == SSL3_AL_WARNING) { sc->s3.warn_alert = alert_descr; ssl_release_record(sc, rr); sc->rlayer.alert_count++; if (sc->rlayer.alert_count == MAX_WARN_ALERT_COUNT) { SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_TOO_MANY_WARN_ALERTS); return -1; } if (alert_descr == SSL_AD_CLOSE_NOTIFY) { #ifndef OPENSSL_NO_SCTP /* * With SCTP and streams the socket may deliver app data * after a close_notify alert. We have to check this first so * that nothing gets discarded. */ if (BIO_dgram_is_sctp(SSL_get_rbio(s)) && BIO_dgram_sctp_msg_waiting(SSL_get_rbio(s)) > 0) { sc->d1->shutdown_received = 1; sc->rwstate = SSL_READING; BIO_clear_retry_flags(SSL_get_rbio(s)); BIO_set_retry_read(SSL_get_rbio(s)); return -1; } #endif sc->shutdown |= SSL_RECEIVED_SHUTDOWN; return 0; } } else if (alert_level == SSL3_AL_FATAL) { sc->rwstate = SSL_NOTHING; sc->s3.fatal_alert = alert_descr; SSLfatal_data(sc, SSL_AD_NO_ALERT, SSL_AD_REASON_OFFSET + alert_descr, "SSL alert number %d", alert_descr); sc->shutdown |= SSL_RECEIVED_SHUTDOWN; ssl_release_record(sc, rr); SSL_CTX_remove_session(sc->session_ctx, sc->session); return 0; } else { SSLfatal(sc, SSL_AD_ILLEGAL_PARAMETER, SSL_R_UNKNOWN_ALERT_TYPE); return -1; } goto start; } if (sc->shutdown & SSL_SENT_SHUTDOWN) { /* but we have not received a * shutdown */ sc->rwstate = SSL_NOTHING; ssl_release_record(sc, rr); return 0; } if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) { /* * We can't process a CCS now, because previous handshake messages * are still missing, so just drop it. */ ssl_release_record(sc, rr); goto start; } /* * Unexpected handshake message (Client Hello, or protocol violation) */ if (rr->type == SSL3_RT_HANDSHAKE && !ossl_statem_get_in_handshake(sc)) { struct hm_header_st msg_hdr; /* * This may just be a stale retransmit. Also sanity check that we have * at least enough record bytes for a message header */ if (rr->epoch != sc->rlayer.d->r_epoch || rr->length < DTLS1_HM_HEADER_LENGTH) { ssl_release_record(sc, rr); goto start; } dtls1_get_message_header(rr->data, &msg_hdr); /* * If we are server, we may have a repeated FINISHED of the client * here, then retransmit our CCS and FINISHED. */ if (msg_hdr.type == SSL3_MT_FINISHED) { if (dtls1_check_timeout_num(sc) < 0) { /* SSLfatal) already called */ return -1; } if (dtls1_retransmit_buffered_messages(sc) <= 0) { /* Fail if we encountered a fatal error */ if (ossl_statem_in_error(sc)) return -1; } ssl_release_record(sc, rr); if (!(sc->mode & SSL_MODE_AUTO_RETRY)) { if (!sc->rlayer.rrlmethod->unprocessed_read_pending(sc->rlayer.rrl)) { /* no read-ahead left? */ BIO *bio; sc->rwstate = SSL_READING; bio = SSL_get_rbio(s); BIO_clear_retry_flags(bio); BIO_set_retry_read(bio); return -1; } } goto start; } /* * To get here we must be trying to read app data but found handshake * data. But if we're trying to read app data, and we're not in init * (which is tested for at the top of this function) then init must be * finished */ if (!ossl_assert(SSL_is_init_finished(s))) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } /* We found handshake data, so we're going back into init */ ossl_statem_set_in_init(sc, 1); i = sc->handshake_func(s); /* SSLfatal() called if appropriate */ if (i < 0) return i; if (i == 0) return -1; if (!(sc->mode & SSL_MODE_AUTO_RETRY)) { if (!sc->rlayer.rrlmethod->unprocessed_read_pending(sc->rlayer.rrl)) { /* no read-ahead left? */ BIO *bio; /* * In the case where we try to read application data, but we * trigger an SSL handshake, we return -1 with the retry * option set. Otherwise renegotiation may cause nasty * problems in the blocking world */ sc->rwstate = SSL_READING; bio = SSL_get_rbio(s); BIO_clear_retry_flags(bio); BIO_set_retry_read(bio); return -1; } } goto start; } switch (rr->type) { default: SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD); return -1; case SSL3_RT_CHANGE_CIPHER_SPEC: case SSL3_RT_ALERT: case SSL3_RT_HANDSHAKE: /* * we already handled all of these, with the possible exception of * SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but * that should not happen when type != rr->type */ SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, ERR_R_INTERNAL_ERROR); return -1; case SSL3_RT_APPLICATION_DATA: /* * At this point, we were expecting handshake data, but have * application data. If the library was running inside ssl3_read() * (i.e. in_read_app_data is set) and it makes sense to read * application data at this point (session renegotiation not yet * started), we will indulge it. */ if (sc->s3.in_read_app_data && (sc->s3.total_renegotiations != 0) && ossl_statem_app_data_allowed(sc)) { sc->s3.in_read_app_data = 2; return -1; } else { SSLfatal(sc, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD); return -1; } } /* not reached */ } /* * Call this to write data in records of type 'type' It will return <= 0 if * not all data has been sent or non-blocking IO. */ int dtls1_write_bytes(SSL_CONNECTION *s, int type, const void *buf, size_t len, size_t *written) { int i; if (!ossl_assert(len <= SSL3_RT_MAX_PLAIN_LENGTH)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } s->rwstate = SSL_NOTHING; i = do_dtls1_write(s, type, buf, len, 0, written); return i; } /* * TODO(RECLAYER): Temporary copy of the old ssl3_write_pending() function now * replaced by tls_retry_write_records(). Needs to be removed when the DTLS code * is converted */ /* if SSL3_BUFFER_get_left() != 0, we need to call this * * Return values are as per SSL_write() */ static int ssl3_write_pending(SSL_CONNECTION *s, int type, const unsigned char *buf, size_t len, size_t *written) { int i; SSL3_BUFFER *wb = s->rlayer.wbuf; size_t currbuf = 0; size_t tmpwrit = 0; if ((s->rlayer.wpend_tot > len) || (!(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER) && (s->rlayer.wpend_buf != buf)) || (s->rlayer.wpend_type != type)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_WRITE_RETRY); return -1; } for (;;) { clear_sys_error(); if (s->wbio != NULL) { s->rwstate = SSL_WRITING; /* * To prevent coalescing of control and data messages, * such as in buffer_write, we flush the BIO */ if (BIO_get_ktls_send(s->wbio) && type != SSL3_RT_APPLICATION_DATA) { i = BIO_flush(s->wbio); if (i <= 0) return i; BIO_set_ktls_ctrl_msg(s->wbio, type); } i = BIO_write(s->wbio, (char *) &(SSL3_BUFFER_get_buf(&wb[currbuf]) [SSL3_BUFFER_get_offset(&wb[currbuf])]), (unsigned int)SSL3_BUFFER_get_left(&wb[currbuf])); if (i >= 0) tmpwrit = i; } else { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BIO_NOT_SET); i = -1; } /* * When an empty fragment is sent on a connection using KTLS, * it is sent as a write of zero bytes. If this zero byte * write succeeds, i will be 0 rather than a non-zero value. * Treat i == 0 as success rather than an error for zero byte * writes to permit this case. */ if (i >= 0 && tmpwrit == SSL3_BUFFER_get_left(&wb[currbuf])) { SSL3_BUFFER_set_left(&wb[currbuf], 0); SSL3_BUFFER_add_offset(&wb[currbuf], tmpwrit); s->rwstate = SSL_NOTHING; *written = s->rlayer.wpend_ret; return 1; } else if (i <= 0) { if (SSL_CONNECTION_IS_DTLS(s)) { /* * For DTLS, just drop it. That's kind of the whole point in * using a datagram service */ SSL3_BUFFER_set_left(&wb[currbuf], 0); } return i; } SSL3_BUFFER_add_offset(&wb[currbuf], tmpwrit); SSL3_BUFFER_sub_left(&wb[currbuf], tmpwrit); } } int do_dtls1_write(SSL_CONNECTION *sc, int type, const unsigned char *buf, size_t len, int create_empty_fragment, size_t *written) { unsigned char *p, *pseq; int i, mac_size, clear = 0; size_t prefix_len = 0; int eivlen; SSL3_RECORD wr; SSL3_BUFFER *wb; SSL_SESSION *sess; SSL *s = SSL_CONNECTION_GET_SSL(sc); wb = &sc->rlayer.wbuf[0]; /* * DTLS writes whole datagrams, so there can't be anything left in * the buffer. */ if (!ossl_assert(SSL3_BUFFER_get_left(wb) == 0)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } /* If we have an alert to send, lets send it */ if (sc->s3.alert_dispatch) { i = s->method->ssl_dispatch_alert(s); if (i <= 0) return i; /* if it went, fall through and send more stuff */ } if (len == 0 && !create_empty_fragment) return 0; if (len > ssl_get_max_send_fragment(sc)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, SSL_R_EXCEEDS_MAX_FRAGMENT_SIZE); return 0; } sess = sc->session; if ((sess == NULL) || (sc->enc_write_ctx == NULL) || (EVP_MD_CTX_get0_md(sc->write_hash) == NULL)) clear = 1; if (clear) mac_size = 0; else { mac_size = EVP_MD_CTX_get_size(sc->write_hash); if (mac_size < 0) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, SSL_R_EXCEEDS_MAX_FRAGMENT_SIZE); return -1; } } p = SSL3_BUFFER_get_buf(wb) + prefix_len; /* write the header */ *(p++) = type & 0xff; SSL3_RECORD_set_type(&wr, type); /* * Special case: for hello verify request, client version 1.0 and we * haven't decided which version to use yet send back using version 1.0 * header: otherwise some clients will ignore it. */ if (s->method->version == DTLS_ANY_VERSION && sc->max_proto_version != DTLS1_BAD_VER) { *(p++) = DTLS1_VERSION >> 8; *(p++) = DTLS1_VERSION & 0xff; } else { *(p++) = sc->version >> 8; *(p++) = sc->version & 0xff; } /* field where we are to write out packet epoch, seq num and len */ pseq = p; p += 10; /* Explicit IV length, block ciphers appropriate version flag */ if (sc->enc_write_ctx) { int mode = EVP_CIPHER_CTX_get_mode(sc->enc_write_ctx); if (mode == EVP_CIPH_CBC_MODE) { eivlen = EVP_CIPHER_CTX_get_iv_length(sc->enc_write_ctx); if (eivlen < 0) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, SSL_R_LIBRARY_BUG); return -1; } if (eivlen <= 1) eivlen = 0; } /* Need explicit part of IV for GCM mode */ else if (mode == EVP_CIPH_GCM_MODE) eivlen = EVP_GCM_TLS_EXPLICIT_IV_LEN; else if (mode == EVP_CIPH_CCM_MODE) eivlen = EVP_CCM_TLS_EXPLICIT_IV_LEN; else eivlen = 0; } else eivlen = 0; /* lets setup the record stuff. */ SSL3_RECORD_set_data(&wr, p + eivlen); /* make room for IV in case of CBC */ SSL3_RECORD_set_length(&wr, len); SSL3_RECORD_set_input(&wr, (unsigned char *)buf); /* * we now 'read' from wr.input, wr.length bytes into wr.data */ /* first we compress */ if (sc->compress != NULL) { if (!ssl3_do_compress(sc, &wr)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, SSL_R_COMPRESSION_FAILURE); return -1; } } else { memcpy(SSL3_RECORD_get_data(&wr), SSL3_RECORD_get_input(&wr), SSL3_RECORD_get_length(&wr)); SSL3_RECORD_reset_input(&wr); } /* * we should still have the output to wr.data and the input from * wr.input. Length should be wr.length. wr.data still points in the * wb->buf */ if (!SSL_WRITE_ETM(sc) && mac_size != 0) { if (!s->method->ssl3_enc->mac(sc, &wr, &(p[SSL3_RECORD_get_length(&wr) + eivlen]), 1)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } SSL3_RECORD_add_length(&wr, mac_size); } /* this is true regardless of mac size */ SSL3_RECORD_set_data(&wr, p); SSL3_RECORD_reset_input(&wr); if (eivlen) SSL3_RECORD_add_length(&wr, eivlen); if (s->method->ssl3_enc->enc(sc, &wr, 1, 1, NULL, mac_size) < 1) { if (!ossl_statem_in_error(sc)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); } return -1; } if (SSL_WRITE_ETM(sc) && mac_size != 0) { if (!s->method->ssl3_enc->mac(sc, &wr, &(p[SSL3_RECORD_get_length(&wr)]), 1)) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } SSL3_RECORD_add_length(&wr, mac_size); } /* record length after mac and block padding */ /* there's only one epoch between handshake and app data */ s2n(sc->rlayer.d->w_epoch, pseq); memcpy(pseq, &(sc->rlayer.write_sequence[2]), 6); pseq += 6; s2n(SSL3_RECORD_get_length(&wr), pseq); if (sc->msg_callback) sc->msg_callback(1, 0, SSL3_RT_HEADER, pseq - DTLS1_RT_HEADER_LENGTH, DTLS1_RT_HEADER_LENGTH, s, sc->msg_callback_arg); /* * we should now have wr.data pointing to the encrypted data, which is * wr->length long */ SSL3_RECORD_set_type(&wr, type); /* not needed but helps for debugging */ SSL3_RECORD_add_length(&wr, DTLS1_RT_HEADER_LENGTH); ssl3_record_sequence_update(&(sc->rlayer.write_sequence[0])); if (create_empty_fragment) { /* * we are in a recursive call; just return the length, don't write * out anything here */ *written = wr.length; return 1; } /* now let's set up wb */ SSL3_BUFFER_set_left(wb, prefix_len + SSL3_RECORD_get_length(&wr)); SSL3_BUFFER_set_offset(wb, 0); /* * memorize arguments so that ssl3_write_pending can detect bad write * retries later */ sc->rlayer.wpend_tot = len; sc->rlayer.wpend_buf = buf; sc->rlayer.wpend_type = type; sc->rlayer.wpend_ret = len; /* we now just need to write the buffer. Calls SSLfatal() as required. */ return ssl3_write_pending(sc, type, buf, len, written); } void dtls1_reset_seq_numbers(SSL_CONNECTION *s, int rw) { unsigned char *seq; if (rw & SSL3_CC_READ) { s->rlayer.d->r_epoch++; /* * We must not use any buffered messages received from the previous * epoch */ dtls1_clear_received_buffer(s); } else { seq = s->rlayer.write_sequence; memcpy(s->rlayer.d->last_write_sequence, seq, sizeof(s->rlayer.write_sequence)); s->rlayer.d->w_epoch++; memset(seq, 0, sizeof(s->rlayer.write_sequence)); } }