/* * Copyright 2019-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include "crypto/cryptlib.h" #ifndef FIPS_MODULE #include "crypto/decoder.h" /* ossl_decoder_store_cache_flush */ #include "crypto/encoder.h" /* ossl_encoder_store_cache_flush */ #include "crypto/store.h" /* ossl_store_loader_store_cache_flush */ #endif #include "crypto/evp.h" /* evp_method_store_cache_flush */ #include "crypto/rand.h" #include "internal/nelem.h" #include "internal/thread_once.h" #include "internal/provider.h" #include "internal/refcount.h" #include "internal/bio.h" #include "internal/core.h" #include "internal/decoder.h" #include "provider_local.h" #include "crypto/context.h" #ifndef FIPS_MODULE # include #endif /* * This file defines and uses a number of different structures: * * OSSL_PROVIDER (provider_st): Used to represent all information related to a * single instance of a provider. * * provider_store_st: Holds information about the collection of providers that * are available within the current library context (OSSL_LIB_CTX). It also * holds configuration information about providers that could be loaded at some * future point. * * OSSL_PROVIDER_CHILD_CB: An instance of this structure holds the callbacks * that have been registered for a child library context and the associated * provider that registered those callbacks. * * Where a child library context exists then it has its own instance of the * provider store. Each provider that exists in the parent provider store, has * an associated child provider in the child library context's provider store. * As providers get activated or deactivated this needs to be mirrored in the * associated child providers. * * LOCKING * ======= * * There are a number of different locks used in this file and it is important * to understand how they should be used in order to avoid deadlocks. * * Fields within a structure can often be "write once" on creation, and then * "read many". Creation of a structure is done by a single thread, and * therefore no lock is required for the "write once/read many" fields. It is * safe for multiple threads to read these fields without a lock, because they * will never be changed. * * However some fields may be changed after a structure has been created and * shared between multiple threads. Where this is the case a lock is required. * * The locks available are: * * The provider flag_lock: Used to control updates to the various provider * "flags" (flag_initialized and flag_activated). * * The provider activatecnt_lock: Used to control updates to the provider * activatecnt value. * * The provider optbits_lock: Used to control access to the provider's * operation_bits and operation_bits_sz fields. * * The store default_path_lock: Used to control access to the provider store's * default search path value (default_path) * * The store lock: Used to control the stack of provider's held within the * provider store, as well as the stack of registered child provider callbacks. * * As a general rule-of-thumb it is best to: * - keep the scope of the code that is protected by a lock to the absolute * minimum possible; * - try to keep the scope of the lock to within a single function (i.e. avoid * making calls to other functions while holding a lock); * - try to only ever hold one lock at a time. * * Unfortunately, it is not always possible to stick to the above guidelines. * Where they are not adhered to there is always a danger of inadvertently * introducing the possibility of deadlock. The following rules MUST be adhered * to in order to avoid that: * - Holding multiple locks at the same time is only allowed for the * provider store lock, the provider activatecnt_lock and the provider flag_lock. * - When holding multiple locks they must be acquired in the following order of * precedence: * 1) provider store lock * 2) provider flag_lock * 3) provider activatecnt_lock * - When releasing locks they must be released in the reverse order to which * they were acquired * - No locks may be held when making an upcall. NOTE: Some common functions * can make upcalls as part of their normal operation. If you need to call * some other function while holding a lock make sure you know whether it * will make any upcalls or not. For example ossl_provider_up_ref() can call * ossl_provider_up_ref_parent() which can call the c_prov_up_ref() upcall. * - It is permissible to hold the store and flag locks when calling child * provider callbacks. No other locks may be held during such callbacks. */ static OSSL_PROVIDER *provider_new(const char *name, OSSL_provider_init_fn *init_function, STACK_OF(INFOPAIR) *parameters); /*- * Provider Object structure * ========================= */ #ifndef FIPS_MODULE typedef struct { OSSL_PROVIDER *prov; int (*create_cb)(const OSSL_CORE_HANDLE *provider, void *cbdata); int (*remove_cb)(const OSSL_CORE_HANDLE *provider, void *cbdata); int (*global_props_cb)(const char *props, void *cbdata); void *cbdata; } OSSL_PROVIDER_CHILD_CB; DEFINE_STACK_OF(OSSL_PROVIDER_CHILD_CB) #endif struct provider_store_st; /* Forward declaration */ struct ossl_provider_st { /* Flag bits */ unsigned int flag_initialized:1; unsigned int flag_activated:1; /* Getting and setting the flags require synchronization */ CRYPTO_RWLOCK *flag_lock; /* OpenSSL library side data */ CRYPTO_REF_COUNT refcnt; CRYPTO_RWLOCK *activatecnt_lock; /* For the activatecnt counter */ int activatecnt; char *name; char *path; DSO *module; OSSL_provider_init_fn *init_function; STACK_OF(INFOPAIR) *parameters; OSSL_LIB_CTX *libctx; /* The library context this instance is in */ struct provider_store_st *store; /* The store this instance belongs to */ #ifndef FIPS_MODULE /* * In the FIPS module inner provider, this isn't needed, since the * error upcalls are always direct calls to the outer provider. */ int error_lib; /* ERR library number, one for each provider */ # ifndef OPENSSL_NO_ERR ERR_STRING_DATA *error_strings; /* Copy of what the provider gives us */ # endif #endif /* Provider side functions */ OSSL_FUNC_provider_teardown_fn *teardown; OSSL_FUNC_provider_gettable_params_fn *gettable_params; OSSL_FUNC_provider_get_params_fn *get_params; OSSL_FUNC_provider_get_capabilities_fn *get_capabilities; OSSL_FUNC_provider_self_test_fn *self_test; OSSL_FUNC_provider_query_operation_fn *query_operation; OSSL_FUNC_provider_unquery_operation_fn *unquery_operation; /* * Cache of bit to indicate of query_operation() has been called on * a specific operation or not. */ unsigned char *operation_bits; size_t operation_bits_sz; CRYPTO_RWLOCK *opbits_lock; #ifndef FIPS_MODULE /* Whether this provider is the child of some other provider */ const OSSL_CORE_HANDLE *handle; unsigned int ischild:1; #endif /* Provider side data */ void *provctx; const OSSL_DISPATCH *dispatch; }; DEFINE_STACK_OF(OSSL_PROVIDER) static int ossl_provider_cmp(const OSSL_PROVIDER * const *a, const OSSL_PROVIDER * const *b) { return strcmp((*a)->name, (*b)->name); } /*- * Provider Object store * ===================== * * The Provider Object store is a library context object, and therefore needs * an index. */ struct provider_store_st { OSSL_LIB_CTX *libctx; STACK_OF(OSSL_PROVIDER) *providers; STACK_OF(OSSL_PROVIDER_CHILD_CB) *child_cbs; CRYPTO_RWLOCK *default_path_lock; CRYPTO_RWLOCK *lock; char *default_path; OSSL_PROVIDER_INFO *provinfo; size_t numprovinfo; size_t provinfosz; unsigned int use_fallbacks:1; unsigned int freeing:1; }; /* * provider_deactivate_free() is a wrapper around ossl_provider_deactivate() * and ossl_provider_free(), called as needed. * Since this is only called when the provider store is being emptied, we * don't need to care about any lock. */ static void provider_deactivate_free(OSSL_PROVIDER *prov) { if (prov->flag_activated) ossl_provider_deactivate(prov, 1); ossl_provider_free(prov); } #ifndef FIPS_MODULE static void ossl_provider_child_cb_free(OSSL_PROVIDER_CHILD_CB *cb) { OPENSSL_free(cb); } #endif static void infopair_free(INFOPAIR *pair) { OPENSSL_free(pair->name); OPENSSL_free(pair->value); OPENSSL_free(pair); } static INFOPAIR *infopair_copy(const INFOPAIR *src) { INFOPAIR *dest = OPENSSL_zalloc(sizeof(*dest)); if (dest == NULL) return NULL; if (src->name != NULL) { dest->name = OPENSSL_strdup(src->name); if (dest->name == NULL) goto err; } if (src->value != NULL) { dest->value = OPENSSL_strdup(src->value); if (dest->value == NULL) goto err; } return dest; err: OPENSSL_free(dest->name); OPENSSL_free(dest); return NULL; } void ossl_provider_info_clear(OSSL_PROVIDER_INFO *info) { OPENSSL_free(info->name); OPENSSL_free(info->path); sk_INFOPAIR_pop_free(info->parameters, infopair_free); } void ossl_provider_store_free(void *vstore) { struct provider_store_st *store = vstore; size_t i; if (store == NULL) return; store->freeing = 1; OPENSSL_free(store->default_path); sk_OSSL_PROVIDER_pop_free(store->providers, provider_deactivate_free); #ifndef FIPS_MODULE sk_OSSL_PROVIDER_CHILD_CB_pop_free(store->child_cbs, ossl_provider_child_cb_free); #endif CRYPTO_THREAD_lock_free(store->default_path_lock); CRYPTO_THREAD_lock_free(store->lock); for (i = 0; i < store->numprovinfo; i++) ossl_provider_info_clear(&store->provinfo[i]); OPENSSL_free(store->provinfo); OPENSSL_free(store); } void *ossl_provider_store_new(OSSL_LIB_CTX *ctx) { struct provider_store_st *store = OPENSSL_zalloc(sizeof(*store)); if (store == NULL || (store->providers = sk_OSSL_PROVIDER_new(ossl_provider_cmp)) == NULL || (store->default_path_lock = CRYPTO_THREAD_lock_new()) == NULL #ifndef FIPS_MODULE || (store->child_cbs = sk_OSSL_PROVIDER_CHILD_CB_new_null()) == NULL #endif || (store->lock = CRYPTO_THREAD_lock_new()) == NULL) { ossl_provider_store_free(store); return NULL; } store->libctx = ctx; store->use_fallbacks = 1; return store; } static struct provider_store_st *get_provider_store(OSSL_LIB_CTX *libctx) { struct provider_store_st *store = NULL; store = ossl_lib_ctx_get_data(libctx, OSSL_LIB_CTX_PROVIDER_STORE_INDEX); if (store == NULL) ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR); return store; } int ossl_provider_disable_fallback_loading(OSSL_LIB_CTX *libctx) { struct provider_store_st *store; if ((store = get_provider_store(libctx)) != NULL) { if (!CRYPTO_THREAD_write_lock(store->lock)) return 0; store->use_fallbacks = 0; CRYPTO_THREAD_unlock(store->lock); return 1; } return 0; } #define BUILTINS_BLOCK_SIZE 10 int ossl_provider_info_add_to_store(OSSL_LIB_CTX *libctx, OSSL_PROVIDER_INFO *entry) { struct provider_store_st *store = get_provider_store(libctx); int ret = 0; if (entry->name == NULL) { ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (store == NULL) { ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR); return 0; } if (!CRYPTO_THREAD_write_lock(store->lock)) return 0; if (store->provinfosz == 0) { store->provinfo = OPENSSL_zalloc(sizeof(*store->provinfo) * BUILTINS_BLOCK_SIZE); if (store->provinfo == NULL) goto err; store->provinfosz = BUILTINS_BLOCK_SIZE; } else if (store->numprovinfo == store->provinfosz) { OSSL_PROVIDER_INFO *tmpbuiltins; size_t newsz = store->provinfosz + BUILTINS_BLOCK_SIZE; tmpbuiltins = OPENSSL_realloc(store->provinfo, sizeof(*store->provinfo) * newsz); if (tmpbuiltins == NULL) goto err; store->provinfo = tmpbuiltins; store->provinfosz = newsz; } store->provinfo[store->numprovinfo] = *entry; store->numprovinfo++; ret = 1; err: CRYPTO_THREAD_unlock(store->lock); return ret; } OSSL_PROVIDER *ossl_provider_find(OSSL_LIB_CTX *libctx, const char *name, ossl_unused int noconfig) { struct provider_store_st *store = NULL; OSSL_PROVIDER *prov = NULL; if ((store = get_provider_store(libctx)) != NULL) { OSSL_PROVIDER tmpl = { 0, }; int i; #if !defined(FIPS_MODULE) && !defined(OPENSSL_NO_AUTOLOAD_CONFIG) /* * Make sure any providers are loaded from config before we try to find * them. */ if (!noconfig) { if (ossl_lib_ctx_is_default(libctx)) OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CONFIG, NULL); } #endif tmpl.name = (char *)name; if (!CRYPTO_THREAD_write_lock(store->lock)) return NULL; sk_OSSL_PROVIDER_sort(store->providers); if ((i = sk_OSSL_PROVIDER_find(store->providers, &tmpl)) != -1) prov = sk_OSSL_PROVIDER_value(store->providers, i); CRYPTO_THREAD_unlock(store->lock); if (prov != NULL && !ossl_provider_up_ref(prov)) prov = NULL; } return prov; } /*- * Provider Object methods * ======================= */ static OSSL_PROVIDER *provider_new(const char *name, OSSL_provider_init_fn *init_function, STACK_OF(INFOPAIR) *parameters) { OSSL_PROVIDER *prov = NULL; if ((prov = OPENSSL_zalloc(sizeof(*prov))) == NULL) return NULL; if (!CRYPTO_NEW_REF(&prov->refcnt, 1)) { OPENSSL_free(prov); return NULL; } #ifndef HAVE_ATOMICS if ((prov->activatecnt_lock = CRYPTO_THREAD_lock_new()) == NULL) { ossl_provider_free(prov); ERR_raise(ERR_LIB_CRYPTO, ERR_R_CRYPTO_LIB); return NULL; } #endif if ((prov->opbits_lock = CRYPTO_THREAD_lock_new()) == NULL || (prov->flag_lock = CRYPTO_THREAD_lock_new()) == NULL || (prov->parameters = sk_INFOPAIR_deep_copy(parameters, infopair_copy, infopair_free)) == NULL) { ossl_provider_free(prov); ERR_raise(ERR_LIB_CRYPTO, ERR_R_CRYPTO_LIB); return NULL; } if ((prov->name = OPENSSL_strdup(name)) == NULL) { ossl_provider_free(prov); return NULL; } prov->init_function = init_function; return prov; } int ossl_provider_up_ref(OSSL_PROVIDER *prov) { int ref = 0; if (CRYPTO_UP_REF(&prov->refcnt, &ref) <= 0) return 0; #ifndef FIPS_MODULE if (prov->ischild) { if (!ossl_provider_up_ref_parent(prov, 0)) { ossl_provider_free(prov); return 0; } } #endif return ref; } #ifndef FIPS_MODULE static int provider_up_ref_intern(OSSL_PROVIDER *prov, int activate) { if (activate) return ossl_provider_activate(prov, 1, 0); return ossl_provider_up_ref(prov); } static int provider_free_intern(OSSL_PROVIDER *prov, int deactivate) { if (deactivate) return ossl_provider_deactivate(prov, 1); ossl_provider_free(prov); return 1; } #endif /* * We assume that the requested provider does not already exist in the store. * The caller should check. If it does exist then adding it to the store later * will fail. */ OSSL_PROVIDER *ossl_provider_new(OSSL_LIB_CTX *libctx, const char *name, OSSL_provider_init_fn *init_function, int noconfig) { struct provider_store_st *store = NULL; OSSL_PROVIDER_INFO template; OSSL_PROVIDER *prov = NULL; if ((store = get_provider_store(libctx)) == NULL) return NULL; memset(&template, 0, sizeof(template)); if (init_function == NULL) { const OSSL_PROVIDER_INFO *p; size_t i; /* Check if this is a predefined builtin provider */ for (p = ossl_predefined_providers; p->name != NULL; p++) { if (strcmp(p->name, name) == 0) { template = *p; break; } } if (p->name == NULL) { /* Check if this is a user added builtin provider */ if (!CRYPTO_THREAD_read_lock(store->lock)) return NULL; for (i = 0, p = store->provinfo; i < store->numprovinfo; p++, i++) { if (strcmp(p->name, name) == 0) { template = *p; break; } } CRYPTO_THREAD_unlock(store->lock); } } else { template.init = init_function; } /* provider_new() generates an error, so no need here */ if ((prov = provider_new(name, template.init, template.parameters)) == NULL) return NULL; prov->libctx = libctx; #ifndef FIPS_MODULE prov->error_lib = ERR_get_next_error_library(); #endif /* * At this point, the provider is only partially "loaded". To be * fully "loaded", ossl_provider_activate() must also be called and it must * then be added to the provider store. */ return prov; } /* Assumes that the store lock is held */ static int create_provider_children(OSSL_PROVIDER *prov) { int ret = 1; #ifndef FIPS_MODULE struct provider_store_st *store = prov->store; OSSL_PROVIDER_CHILD_CB *child_cb; int i, max; max = sk_OSSL_PROVIDER_CHILD_CB_num(store->child_cbs); for (i = 0; i < max; i++) { /* * This is newly activated (activatecnt == 1), so we need to * create child providers as necessary. */ child_cb = sk_OSSL_PROVIDER_CHILD_CB_value(store->child_cbs, i); ret &= child_cb->create_cb((OSSL_CORE_HANDLE *)prov, child_cb->cbdata); } #endif return ret; } int ossl_provider_add_to_store(OSSL_PROVIDER *prov, OSSL_PROVIDER **actualprov, int retain_fallbacks) { struct provider_store_st *store; int idx; OSSL_PROVIDER tmpl = { 0, }; OSSL_PROVIDER *actualtmp = NULL; if (actualprov != NULL) *actualprov = NULL; if ((store = get_provider_store(prov->libctx)) == NULL) return 0; if (!CRYPTO_THREAD_write_lock(store->lock)) return 0; tmpl.name = (char *)prov->name; idx = sk_OSSL_PROVIDER_find(store->providers, &tmpl); if (idx == -1) actualtmp = prov; else actualtmp = sk_OSSL_PROVIDER_value(store->providers, idx); if (idx == -1) { if (sk_OSSL_PROVIDER_push(store->providers, prov) == 0) goto err; prov->store = store; if (!create_provider_children(prov)) { sk_OSSL_PROVIDER_delete_ptr(store->providers, prov); goto err; } if (!retain_fallbacks) store->use_fallbacks = 0; } CRYPTO_THREAD_unlock(store->lock); if (actualprov != NULL) { if (!ossl_provider_up_ref(actualtmp)) { ERR_raise(ERR_LIB_CRYPTO, ERR_R_CRYPTO_LIB); actualtmp = NULL; return 0; } *actualprov = actualtmp; } if (idx >= 0) { /* * The provider is already in the store. Probably two threads * independently initialised their own provider objects with the same * name and raced to put them in the store. This thread lost. We * deactivate the one we just created and use the one that already * exists instead. * If we get here then we know we did not create provider children * above, so we inform ossl_provider_deactivate not to attempt to remove * any. */ ossl_provider_deactivate(prov, 0); ossl_provider_free(prov); } #ifndef FIPS_MODULE else { /* * This can be done outside the lock. We tolerate other threads getting * the wrong result briefly when creating OSSL_DECODER_CTXs. */ ossl_decoder_cache_flush(prov->libctx); } #endif return 1; err: CRYPTO_THREAD_unlock(store->lock); return 0; } void ossl_provider_free(OSSL_PROVIDER *prov) { if (prov != NULL) { int ref = 0; CRYPTO_DOWN_REF(&prov->refcnt, &ref); /* * When the refcount drops to zero, we clean up the provider. * Note that this also does teardown, which may seem late, * considering that init happens on first activation. However, * there may be other structures hanging on to the provider after * the last deactivation and may therefore need full access to the * provider's services. Therefore, we deinit late. */ if (ref == 0) { if (prov->flag_initialized) { ossl_provider_teardown(prov); #ifndef OPENSSL_NO_ERR # ifndef FIPS_MODULE if (prov->error_strings != NULL) { ERR_unload_strings(prov->error_lib, prov->error_strings); OPENSSL_free(prov->error_strings); prov->error_strings = NULL; } # endif #endif OPENSSL_free(prov->operation_bits); prov->operation_bits = NULL; prov->operation_bits_sz = 0; prov->flag_initialized = 0; } #ifndef FIPS_MODULE /* * We deregister thread handling whether or not the provider was * initialized. If init was attempted but was not successful then * the provider may still have registered a thread handler. */ ossl_init_thread_deregister(prov); DSO_free(prov->module); #endif OPENSSL_free(prov->name); OPENSSL_free(prov->path); sk_INFOPAIR_pop_free(prov->parameters, infopair_free); CRYPTO_THREAD_lock_free(prov->opbits_lock); CRYPTO_THREAD_lock_free(prov->flag_lock); #ifndef HAVE_ATOMICS CRYPTO_THREAD_lock_free(prov->activatecnt_lock); #endif CRYPTO_FREE_REF(&prov->refcnt); OPENSSL_free(prov); } #ifndef FIPS_MODULE else if (prov->ischild) { ossl_provider_free_parent(prov, 0); } #endif } } /* Setters */ int ossl_provider_set_module_path(OSSL_PROVIDER *prov, const char *module_path) { OPENSSL_free(prov->path); prov->path = NULL; if (module_path == NULL) return 1; if ((prov->path = OPENSSL_strdup(module_path)) != NULL) return 1; return 0; } static int infopair_add(STACK_OF(INFOPAIR) **infopairsk, const char *name, const char *value) { INFOPAIR *pair = NULL; if ((pair = OPENSSL_zalloc(sizeof(*pair))) == NULL || (pair->name = OPENSSL_strdup(name)) == NULL || (pair->value = OPENSSL_strdup(value)) == NULL) goto err; if ((*infopairsk == NULL && (*infopairsk = sk_INFOPAIR_new_null()) == NULL) || sk_INFOPAIR_push(*infopairsk, pair) <= 0) { ERR_raise(ERR_LIB_CRYPTO, ERR_R_CRYPTO_LIB); goto err; } return 1; err: if (pair != NULL) { OPENSSL_free(pair->name); OPENSSL_free(pair->value); OPENSSL_free(pair); } return 0; } int ossl_provider_add_parameter(OSSL_PROVIDER *prov, const char *name, const char *value) { return infopair_add(&prov->parameters, name, value); } int ossl_provider_info_add_parameter(OSSL_PROVIDER_INFO *provinfo, const char *name, const char *value) { return infopair_add(&provinfo->parameters, name, value); } /* * Provider activation. * * What "activation" means depends on the provider form; for built in * providers (in the library or the application alike), the provider * can already be considered to be loaded, all that's needed is to * initialize it. However, for dynamically loadable provider modules, * we must first load that module. * * Built in modules are distinguished from dynamically loaded modules * with an already assigned init function. */ static const OSSL_DISPATCH *core_dispatch; /* Define further down */ int OSSL_PROVIDER_set_default_search_path(OSSL_LIB_CTX *libctx, const char *path) { struct provider_store_st *store; char *p = NULL; if (path != NULL) { p = OPENSSL_strdup(path); if (p == NULL) return 0; } if ((store = get_provider_store(libctx)) != NULL && CRYPTO_THREAD_write_lock(store->default_path_lock)) { OPENSSL_free(store->default_path); store->default_path = p; CRYPTO_THREAD_unlock(store->default_path_lock); return 1; } OPENSSL_free(p); return 0; } const char *OSSL_PROVIDER_get0_default_search_path(OSSL_LIB_CTX *libctx) { struct provider_store_st *store; char *path = NULL; if ((store = get_provider_store(libctx)) != NULL && CRYPTO_THREAD_read_lock(store->default_path_lock)) { path = store->default_path; CRYPTO_THREAD_unlock(store->default_path_lock); } return path; } /* * Internal version that doesn't affect the store flags, and thereby avoid * locking. Direct callers must remember to set the store flags when * appropriate. */ static int provider_init(OSSL_PROVIDER *prov) { const OSSL_DISPATCH *provider_dispatch = NULL; void *tmp_provctx = NULL; /* safety measure */ #ifndef OPENSSL_NO_ERR # ifndef FIPS_MODULE OSSL_FUNC_provider_get_reason_strings_fn *p_get_reason_strings = NULL; # endif #endif int ok = 0; if (!ossl_assert(!prov->flag_initialized)) { ERR_raise(ERR_LIB_CRYPTO, ERR_R_INTERNAL_ERROR); goto end; } /* * If the init function isn't set, it indicates that this provider is * a loadable module. */ if (prov->init_function == NULL) { #ifdef FIPS_MODULE goto end; #else if (prov->module == NULL) { char *allocated_path = NULL; const char *module_path = NULL; char *merged_path = NULL; const char *load_dir = NULL; char *allocated_load_dir = NULL; struct provider_store_st *store; if ((prov->module = DSO_new()) == NULL) { /* DSO_new() generates an error already */ goto end; } if ((store = get_provider_store(prov->libctx)) == NULL || !CRYPTO_THREAD_read_lock(store->default_path_lock)) goto end; if (store->default_path != NULL) { allocated_load_dir = OPENSSL_strdup(store->default_path); CRYPTO_THREAD_unlock(store->default_path_lock); if (allocated_load_dir == NULL) goto end; load_dir = allocated_load_dir; } else { CRYPTO_THREAD_unlock(store->default_path_lock); } if (load_dir == NULL) { load_dir = ossl_safe_getenv("OPENSSL_MODULES"); if (load_dir == NULL) load_dir = MODULESDIR; } DSO_ctrl(prov->module, DSO_CTRL_SET_FLAGS, DSO_FLAG_NAME_TRANSLATION_EXT_ONLY, NULL); module_path = prov->path; if (module_path == NULL) module_path = allocated_path = DSO_convert_filename(prov->module, prov->name); if (module_path != NULL) merged_path = DSO_merge(prov->module, module_path, load_dir); if (merged_path == NULL || (DSO_load(prov->module, merged_path, NULL, 0)) == NULL) { DSO_free(prov->module); prov->module = NULL; } OPENSSL_free(merged_path); OPENSSL_free(allocated_path); OPENSSL_free(allocated_load_dir); } if (prov->module == NULL) { /* DSO has already recorded errors, this is just a tracepoint */ ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_DSO_LIB, "name=%s", prov->name); goto end; } prov->init_function = (OSSL_provider_init_fn *) DSO_bind_func(prov->module, "OSSL_provider_init"); #endif } /* Check for and call the initialise function for the provider. */ if (prov->init_function == NULL) { ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_UNSUPPORTED, "name=%s, provider has no provider init function", prov->name); goto end; } if (!prov->init_function((OSSL_CORE_HANDLE *)prov, core_dispatch, &provider_dispatch, &tmp_provctx)) { ERR_raise_data(ERR_LIB_CRYPTO, ERR_R_INIT_FAIL, "name=%s", prov->name); goto end; } prov->provctx = tmp_provctx; prov->dispatch = provider_dispatch; for (; provider_dispatch->function_id != 0; provider_dispatch++) { switch (provider_dispatch->function_id) { case OSSL_FUNC_PROVIDER_TEARDOWN: prov->teardown = OSSL_FUNC_provider_teardown(provider_dispatch); break; case OSSL_FUNC_PROVIDER_GETTABLE_PARAMS: prov->gettable_params = OSSL_FUNC_provider_gettable_params(provider_dispatch); break; case OSSL_FUNC_PROVIDER_GET_PARAMS: prov->get_params = OSSL_FUNC_provider_get_params(provider_dispatch); break; case OSSL_FUNC_PROVIDER_SELF_TEST: prov->self_test = OSSL_FUNC_provider_self_test(provider_dispatch); break; case OSSL_FUNC_PROVIDER_GET_CAPABILITIES: prov->get_capabilities = OSSL_FUNC_provider_get_capabilities(provider_dispatch); break; case OSSL_FUNC_PROVIDER_QUERY_OPERATION: prov->query_operation = OSSL_FUNC_provider_query_operation(provider_dispatch); break; case OSSL_FUNC_PROVIDER_UNQUERY_OPERATION: prov->unquery_operation = OSSL_FUNC_provider_unquery_operation(provider_dispatch); break; #ifndef OPENSSL_NO_ERR # ifndef FIPS_MODULE case OSSL_FUNC_PROVIDER_GET_REASON_STRINGS: p_get_reason_strings = OSSL_FUNC_provider_get_reason_strings(provider_dispatch); break; # endif #endif } } #ifndef OPENSSL_NO_ERR # ifndef FIPS_MODULE if (p_get_reason_strings != NULL) { const OSSL_ITEM *reasonstrings = p_get_reason_strings(prov->provctx); size_t cnt, cnt2; /* * ERR_load_strings() handles ERR_STRING_DATA rather than OSSL_ITEM, * although they are essentially the same type. * Furthermore, ERR_load_strings() patches the array's error number * with the error library number, so we need to make a copy of that * array either way. */ cnt = 0; while (reasonstrings[cnt].id != 0) { if (ERR_GET_LIB(reasonstrings[cnt].id) != 0) goto end; cnt++; } cnt++; /* One for the terminating item */ /* Allocate one extra item for the "library" name */ prov->error_strings = OPENSSL_zalloc(sizeof(ERR_STRING_DATA) * (cnt + 1)); if (prov->error_strings == NULL) goto end; /* * Set the "library" name. */ prov->error_strings[0].error = ERR_PACK(prov->error_lib, 0, 0); prov->error_strings[0].string = prov->name; /* * Copy reasonstrings item 0..cnt-1 to prov->error_trings positions * 1..cnt. */ for (cnt2 = 1; cnt2 <= cnt; cnt2++) { prov->error_strings[cnt2].error = (int)reasonstrings[cnt2-1].id; prov->error_strings[cnt2].string = reasonstrings[cnt2-1].ptr; } ERR_load_strings(prov->error_lib, prov->error_strings); } # endif #endif /* With this flag set, this provider has become fully "loaded". */ prov->flag_initialized = 1; ok = 1; end: return ok; } /* * Deactivate a provider. If upcalls is 0 then we suppress any upcalls to a * parent provider. If removechildren is 0 then we suppress any calls to remove * child providers. * Return -1 on failure and the activation count on success */ static int provider_deactivate(OSSL_PROVIDER *prov, int upcalls, int removechildren) { int count; struct provider_store_st *store; #ifndef FIPS_MODULE int freeparent = 0; #endif int lock = 1; if (!ossl_assert(prov != NULL)) return -1; /* * No need to lock if we've got no store because we've not been shared with * other threads. */ store = get_provider_store(prov->libctx); if (store == NULL) lock = 0; if (lock && !CRYPTO_THREAD_read_lock(store->lock)) return -1; if (lock && !CRYPTO_THREAD_write_lock(prov->flag_lock)) { CRYPTO_THREAD_unlock(store->lock); return -1; } CRYPTO_atomic_add(&prov->activatecnt, -1, &count, prov->activatecnt_lock); #ifndef FIPS_MODULE if (count >= 1 && prov->ischild && upcalls) { /* * We have had a direct activation in this child libctx so we need to * now down the ref count in the parent provider. We do the actual down * ref outside of the flag_lock, since it could involve getting other * locks. */ freeparent = 1; } #endif if (count < 1) prov->flag_activated = 0; #ifndef FIPS_MODULE else removechildren = 0; #endif #ifndef FIPS_MODULE if (removechildren && store != NULL) { int i, max = sk_OSSL_PROVIDER_CHILD_CB_num(store->child_cbs); OSSL_PROVIDER_CHILD_CB *child_cb; for (i = 0; i < max; i++) { child_cb = sk_OSSL_PROVIDER_CHILD_CB_value(store->child_cbs, i); child_cb->remove_cb((OSSL_CORE_HANDLE *)prov, child_cb->cbdata); } } #endif if (lock) { CRYPTO_THREAD_unlock(prov->flag_lock); CRYPTO_THREAD_unlock(store->lock); /* * This can be done outside the lock. We tolerate other threads getting * the wrong result briefly when creating OSSL_DECODER_CTXs. */ #ifndef FIPS_MODULE if (count < 1) ossl_decoder_cache_flush(prov->libctx); #endif } #ifndef FIPS_MODULE if (freeparent) ossl_provider_free_parent(prov, 1); #endif /* We don't deinit here, that's done in ossl_provider_free() */ return count; } /* * Activate a provider. * Return -1 on failure and the activation count on success */ static int provider_activate(OSSL_PROVIDER *prov, int lock, int upcalls) { int count = -1; struct provider_store_st *store; int ret = 1; store = prov->store; /* * If the provider hasn't been added to the store, then we don't need * any locks because we've not shared it with other threads. */ if (store == NULL) { lock = 0; if (!provider_init(prov)) return -1; } #ifndef FIPS_MODULE if (prov->ischild && upcalls && !ossl_provider_up_ref_parent(prov, 1)) return -1; #endif if (lock && !CRYPTO_THREAD_read_lock(store->lock)) { #ifndef FIPS_MODULE if (prov->ischild && upcalls) ossl_provider_free_parent(prov, 1); #endif return -1; } if (lock && !CRYPTO_THREAD_write_lock(prov->flag_lock)) { CRYPTO_THREAD_unlock(store->lock); #ifndef FIPS_MODULE if (prov->ischild && upcalls) ossl_provider_free_parent(prov, 1); #endif return -1; } if (CRYPTO_atomic_add(&prov->activatecnt, 1, &count, prov->activatecnt_lock)) { prov->flag_activated = 1; if (count == 1 && store != NULL) { ret = create_provider_children(prov); } } if (lock) { CRYPTO_THREAD_unlock(prov->flag_lock); CRYPTO_THREAD_unlock(store->lock); /* * This can be done outside the lock. We tolerate other threads getting * the wrong result briefly when creating OSSL_DECODER_CTXs. */ #ifndef FIPS_MODULE if (count == 1) ossl_decoder_cache_flush(prov->libctx); #endif } if (!ret) return -1; return count; } static int provider_flush_store_cache(const OSSL_PROVIDER *prov) { struct provider_store_st *store; int freeing; if ((store = get_provider_store(prov->libctx)) == NULL) return 0; if (!CRYPTO_THREAD_read_lock(store->lock)) return 0; freeing = store->freeing; CRYPTO_THREAD_unlock(store->lock); if (!freeing) { int acc = evp_method_store_cache_flush(prov->libctx) #ifndef FIPS_MODULE + ossl_encoder_store_cache_flush(prov->libctx) + ossl_decoder_store_cache_flush(prov->libctx) + ossl_store_loader_store_cache_flush(prov->libctx) #endif ; #ifndef FIPS_MODULE return acc == 4; #else return acc == 1; #endif } return 1; } static int provider_remove_store_methods(OSSL_PROVIDER *prov) { struct provider_store_st *store; int freeing; if ((store = get_provider_store(prov->libctx)) == NULL) return 0; if (!CRYPTO_THREAD_read_lock(store->lock)) return 0; freeing = store->freeing; CRYPTO_THREAD_unlock(store->lock); if (!freeing) { int acc; if (!CRYPTO_THREAD_write_lock(prov->opbits_lock)) return 0; OPENSSL_free(prov->operation_bits); prov->operation_bits = NULL; prov->operation_bits_sz = 0; CRYPTO_THREAD_unlock(prov->opbits_lock); acc = evp_method_store_remove_all_provided(prov) #ifndef FIPS_MODULE + ossl_encoder_store_remove_all_provided(prov) + ossl_decoder_store_remove_all_provided(prov) + ossl_store_loader_store_remove_all_provided(prov) #endif ; #ifndef FIPS_MODULE return acc == 4; #else return acc == 1; #endif } return 1; } int ossl_provider_activate(OSSL_PROVIDER *prov, int upcalls, int aschild) { int count; if (prov == NULL) return 0; #ifndef FIPS_MODULE /* * If aschild is true, then we only actually do the activation if the * provider is a child. If its not, this is still success. */ if (aschild && !prov->ischild) return 1; #endif if ((count = provider_activate(prov, 1, upcalls)) > 0) return count == 1 ? provider_flush_store_cache(prov) : 1; return 0; } int ossl_provider_deactivate(OSSL_PROVIDER *prov, int removechildren) { int count; if (prov == NULL || (count = provider_deactivate(prov, 1, removechildren)) < 0) return 0; return count == 0 ? provider_remove_store_methods(prov) : 1; } void *ossl_provider_ctx(const OSSL_PROVIDER *prov) { return prov != NULL ? prov->provctx : NULL; } /* * This function only does something once when store->use_fallbacks == 1, * and then sets store->use_fallbacks = 0, so the second call and so on is * effectively a no-op. */ static int provider_activate_fallbacks(struct provider_store_st *store) { int use_fallbacks; int activated_fallback_count = 0; int ret = 0; const OSSL_PROVIDER_INFO *p; if (!CRYPTO_THREAD_read_lock(store->lock)) return 0; use_fallbacks = store->use_fallbacks; CRYPTO_THREAD_unlock(store->lock); if (!use_fallbacks) return 1; if (!CRYPTO_THREAD_write_lock(store->lock)) return 0; /* Check again, just in case another thread changed it */ use_fallbacks = store->use_fallbacks; if (!use_fallbacks) { CRYPTO_THREAD_unlock(store->lock); return 1; } for (p = ossl_predefined_providers; p->name != NULL; p++) { OSSL_PROVIDER *prov = NULL; if (!p->is_fallback) continue; /* * We use the internal constructor directly here, * otherwise we get a call loop */ prov = provider_new(p->name, p->init, NULL); if (prov == NULL) goto err; prov->libctx = store->libctx; #ifndef FIPS_MODULE prov->error_lib = ERR_get_next_error_library(); #endif /* * We are calling provider_activate while holding the store lock. This * means the init function will be called while holding a lock. Normally * we try to avoid calling a user callback while holding a lock. * However, fallbacks are never third party providers so we accept this. */ if (provider_activate(prov, 0, 0) < 0) { ossl_provider_free(prov); goto err; } prov->store = store; if (sk_OSSL_PROVIDER_push(store->providers, prov) == 0) { ossl_provider_free(prov); goto err; } activated_fallback_count++; } if (activated_fallback_count > 0) { store->use_fallbacks = 0; ret = 1; } err: CRYPTO_THREAD_unlock(store->lock); return ret; } int ossl_provider_doall_activated(OSSL_LIB_CTX *ctx, int (*cb)(OSSL_PROVIDER *provider, void *cbdata), void *cbdata) { int ret = 0, curr, max, ref = 0; struct provider_store_st *store = get_provider_store(ctx); STACK_OF(OSSL_PROVIDER) *provs = NULL; #if !defined(FIPS_MODULE) && !defined(OPENSSL_NO_AUTOLOAD_CONFIG) /* * Make sure any providers are loaded from config before we try to use * them. */ if (ossl_lib_ctx_is_default(ctx)) OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CONFIG, NULL); #endif if (store == NULL) return 1; if (!provider_activate_fallbacks(store)) return 0; /* * Under lock, grab a copy of the provider list and up_ref each * provider so that they don't disappear underneath us. */ if (!CRYPTO_THREAD_read_lock(store->lock)) return 0; provs = sk_OSSL_PROVIDER_dup(store->providers); if (provs == NULL) { CRYPTO_THREAD_unlock(store->lock); return 0; } max = sk_OSSL_PROVIDER_num(provs); /* * We work backwards through the stack so that we can safely delete items * as we go. */ for (curr = max - 1; curr >= 0; curr--) { OSSL_PROVIDER *prov = sk_OSSL_PROVIDER_value(provs, curr); if (!CRYPTO_THREAD_read_lock(prov->flag_lock)) goto err_unlock; if (prov->flag_activated) { /* * We call CRYPTO_UP_REF directly rather than ossl_provider_up_ref * to avoid upping the ref count on the parent provider, which we * must not do while holding locks. */ if (CRYPTO_UP_REF(&prov->refcnt, &ref) <= 0) { CRYPTO_THREAD_unlock(prov->flag_lock); goto err_unlock; } /* * It's already activated, but we up the activated count to ensure * it remains activated until after we've called the user callback. * In theory this could mean the parent provider goes inactive, * whilst still activated in the child for a short period. That's ok. */ if (!CRYPTO_atomic_add(&prov->activatecnt, 1, &ref, prov->activatecnt_lock)) { CRYPTO_DOWN_REF(&prov->refcnt, &ref); CRYPTO_THREAD_unlock(prov->flag_lock); goto err_unlock; } } else { sk_OSSL_PROVIDER_delete(provs, curr); max--; } CRYPTO_THREAD_unlock(prov->flag_lock); } CRYPTO_THREAD_unlock(store->lock); /* * Now, we sweep through all providers not under lock */ for (curr = 0; curr < max; curr++) { OSSL_PROVIDER *prov = sk_OSSL_PROVIDER_value(provs, curr); if (!cb(prov, cbdata)) { curr = -1; goto finish; } } curr = -1; ret = 1; goto finish; err_unlock: CRYPTO_THREAD_unlock(store->lock); finish: /* * The pop_free call doesn't do what we want on an error condition. We * either start from the first item in the stack, or part way through if * we only processed some of the items. */ for (curr++; curr < max; curr++) { OSSL_PROVIDER *prov = sk_OSSL_PROVIDER_value(provs, curr); if (!CRYPTO_atomic_add(&prov->activatecnt, -1, &ref, prov->activatecnt_lock)) { ret = 0; continue; } if (ref < 1) { /* * Looks like we need to deactivate properly. We could just have * done this originally, but it involves taking a write lock so * we avoid it. We up the count again and do a full deactivation */ if (CRYPTO_atomic_add(&prov->activatecnt, 1, &ref, prov->activatecnt_lock)) provider_deactivate(prov, 0, 1); else ret = 0; } /* * As above where we did the up-ref, we don't call ossl_provider_free * to avoid making upcalls. There should always be at least one ref * to the provider in the store, so this should never drop to 0. */ if (!CRYPTO_DOWN_REF(&prov->refcnt, &ref)) { ret = 0; continue; } /* * Not much we can do if this assert ever fails. So we don't use * ossl_assert here. */ assert(ref > 0); } sk_OSSL_PROVIDER_free(provs); return ret; } int OSSL_PROVIDER_available(OSSL_LIB_CTX *libctx, const char *name) { OSSL_PROVIDER *prov = NULL; int available = 0; struct provider_store_st *store = get_provider_store(libctx); if (store == NULL || !provider_activate_fallbacks(store)) return 0; prov = ossl_provider_find(libctx, name, 0); if (prov != NULL) { if (!CRYPTO_THREAD_read_lock(prov->flag_lock)) return 0; available = prov->flag_activated; CRYPTO_THREAD_unlock(prov->flag_lock); ossl_provider_free(prov); } return available; } /* Getters of Provider Object data */ const char *ossl_provider_name(const OSSL_PROVIDER *prov) { return prov->name; } const DSO *ossl_provider_dso(const OSSL_PROVIDER *prov) { return prov->module; } const char *ossl_provider_module_name(const OSSL_PROVIDER *prov) { #ifdef FIPS_MODULE return NULL; #else return DSO_get_filename(prov->module); #endif } const char *ossl_provider_module_path(const OSSL_PROVIDER *prov) { #ifdef FIPS_MODULE return NULL; #else /* FIXME: Ensure it's a full path */ return DSO_get_filename(prov->module); #endif } void *ossl_provider_prov_ctx(const OSSL_PROVIDER *prov) { if (prov != NULL) return prov->provctx; return NULL; } const OSSL_DISPATCH *ossl_provider_get0_dispatch(const OSSL_PROVIDER *prov) { if (prov != NULL) return prov->dispatch; return NULL; } OSSL_LIB_CTX *ossl_provider_libctx(const OSSL_PROVIDER *prov) { return prov != NULL ? prov->libctx : NULL; } /* Wrappers around calls to the provider */ void ossl_provider_teardown(const OSSL_PROVIDER *prov) { if (prov->teardown != NULL #ifndef FIPS_MODULE && !prov->ischild #endif ) prov->teardown(prov->provctx); } const OSSL_PARAM *ossl_provider_gettable_params(const OSSL_PROVIDER *prov) { return prov->gettable_params == NULL ? NULL : prov->gettable_params(prov->provctx); } int ossl_provider_get_params(const OSSL_PROVIDER *prov, OSSL_PARAM params[]) { return prov->get_params == NULL ? 0 : prov->get_params(prov->provctx, params); } int ossl_provider_self_test(const OSSL_PROVIDER *prov) { int ret; if (prov->self_test == NULL) return 1; ret = prov->self_test(prov->provctx); if (ret == 0) (void)provider_remove_store_methods((OSSL_PROVIDER *)prov); return ret; } int ossl_provider_get_capabilities(const OSSL_PROVIDER *prov, const char *capability, OSSL_CALLBACK *cb, void *arg) { return prov->get_capabilities == NULL ? 1 : prov->get_capabilities(prov->provctx, capability, cb, arg); } const OSSL_ALGORITHM *ossl_provider_query_operation(const OSSL_PROVIDER *prov, int operation_id, int *no_cache) { const OSSL_ALGORITHM *res; if (prov->query_operation == NULL) return NULL; res = prov->query_operation(prov->provctx, operation_id, no_cache); #if defined(OPENSSL_NO_CACHED_FETCH) /* Forcing the non-caching of queries */ if (no_cache != NULL) *no_cache = 1; #endif return res; } void ossl_provider_unquery_operation(const OSSL_PROVIDER *prov, int operation_id, const OSSL_ALGORITHM *algs) { if (prov->unquery_operation != NULL) prov->unquery_operation(prov->provctx, operation_id, algs); } int ossl_provider_set_operation_bit(OSSL_PROVIDER *provider, size_t bitnum) { size_t byte = bitnum / 8; unsigned char bit = (1 << (bitnum % 8)) & 0xFF; if (!CRYPTO_THREAD_write_lock(provider->opbits_lock)) return 0; if (provider->operation_bits_sz <= byte) { unsigned char *tmp = OPENSSL_realloc(provider->operation_bits, byte + 1); if (tmp == NULL) { CRYPTO_THREAD_unlock(provider->opbits_lock); return 0; } provider->operation_bits = tmp; memset(provider->operation_bits + provider->operation_bits_sz, '\0', byte + 1 - provider->operation_bits_sz); provider->operation_bits_sz = byte + 1; } provider->operation_bits[byte] |= bit; CRYPTO_THREAD_unlock(provider->opbits_lock); return 1; } int ossl_provider_test_operation_bit(OSSL_PROVIDER *provider, size_t bitnum, int *result) { size_t byte = bitnum / 8; unsigned char bit = (1 << (bitnum % 8)) & 0xFF; if (!ossl_assert(result != NULL)) { ERR_raise(ERR_LIB_CRYPTO, ERR_R_PASSED_NULL_PARAMETER); return 0; } *result = 0; if (!CRYPTO_THREAD_read_lock(provider->opbits_lock)) return 0; if (provider->operation_bits_sz > byte) *result = ((provider->operation_bits[byte] & bit) != 0); CRYPTO_THREAD_unlock(provider->opbits_lock); return 1; } #ifndef FIPS_MODULE const OSSL_CORE_HANDLE *ossl_provider_get_parent(OSSL_PROVIDER *prov) { return prov->handle; } int ossl_provider_is_child(const OSSL_PROVIDER *prov) { return prov->ischild; } int ossl_provider_set_child(OSSL_PROVIDER *prov, const OSSL_CORE_HANDLE *handle) { prov->handle = handle; prov->ischild = 1; return 1; } int ossl_provider_default_props_update(OSSL_LIB_CTX *libctx, const char *props) { #ifndef FIPS_MODULE struct provider_store_st *store = NULL; int i, max; OSSL_PROVIDER_CHILD_CB *child_cb; if ((store = get_provider_store(libctx)) == NULL) return 0; if (!CRYPTO_THREAD_read_lock(store->lock)) return 0; max = sk_OSSL_PROVIDER_CHILD_CB_num(store->child_cbs); for (i = 0; i < max; i++) { child_cb = sk_OSSL_PROVIDER_CHILD_CB_value(store->child_cbs, i); child_cb->global_props_cb(props, child_cb->cbdata); } CRYPTO_THREAD_unlock(store->lock); #endif return 1; } static int ossl_provider_register_child_cb(const OSSL_CORE_HANDLE *handle, int (*create_cb)( const OSSL_CORE_HANDLE *provider, void *cbdata), int (*remove_cb)( const OSSL_CORE_HANDLE *provider, void *cbdata), int (*global_props_cb)( const char *props, void *cbdata), void *cbdata) { /* * This is really an OSSL_PROVIDER that we created and cast to * OSSL_CORE_HANDLE originally. Therefore it is safe to cast it back. */ OSSL_PROVIDER *thisprov = (OSSL_PROVIDER *)handle; OSSL_PROVIDER *prov; OSSL_LIB_CTX *libctx = thisprov->libctx; struct provider_store_st *store = NULL; int ret = 0, i, max; OSSL_PROVIDER_CHILD_CB *child_cb; char *propsstr = NULL; if ((store = get_provider_store(libctx)) == NULL) return 0; child_cb = OPENSSL_malloc(sizeof(*child_cb)); if (child_cb == NULL) return 0; child_cb->prov = thisprov; child_cb->create_cb = create_cb; child_cb->remove_cb = remove_cb; child_cb->global_props_cb = global_props_cb; child_cb->cbdata = cbdata; if (!CRYPTO_THREAD_write_lock(store->lock)) { OPENSSL_free(child_cb); return 0; } propsstr = evp_get_global_properties_str(libctx, 0); if (propsstr != NULL) { global_props_cb(propsstr, cbdata); OPENSSL_free(propsstr); } max = sk_OSSL_PROVIDER_num(store->providers); for (i = 0; i < max; i++) { int activated; prov = sk_OSSL_PROVIDER_value(store->providers, i); if (!CRYPTO_THREAD_read_lock(prov->flag_lock)) break; activated = prov->flag_activated; CRYPTO_THREAD_unlock(prov->flag_lock); /* * We hold the store lock while calling the user callback. This means * that the user callback must be short and simple and not do anything * likely to cause a deadlock. We don't hold the flag_lock during this * call. In theory this means that another thread could deactivate it * while we are calling create. This is ok because the other thread * will also call remove_cb, but won't be able to do so until we release * the store lock. */ if (activated && !create_cb((OSSL_CORE_HANDLE *)prov, cbdata)) break; } if (i == max) { /* Success */ ret = sk_OSSL_PROVIDER_CHILD_CB_push(store->child_cbs, child_cb); } if (i != max || ret <= 0) { /* Failed during creation. Remove everything we just added */ for (; i >= 0; i--) { prov = sk_OSSL_PROVIDER_value(store->providers, i); remove_cb((OSSL_CORE_HANDLE *)prov, cbdata); } OPENSSL_free(child_cb); ret = 0; } CRYPTO_THREAD_unlock(store->lock); return ret; } static void ossl_provider_deregister_child_cb(const OSSL_CORE_HANDLE *handle) { /* * This is really an OSSL_PROVIDER that we created and cast to * OSSL_CORE_HANDLE originally. Therefore it is safe to cast it back. */ OSSL_PROVIDER *thisprov = (OSSL_PROVIDER *)handle; OSSL_LIB_CTX *libctx = thisprov->libctx; struct provider_store_st *store = NULL; int i, max; OSSL_PROVIDER_CHILD_CB *child_cb; if ((store = get_provider_store(libctx)) == NULL) return; if (!CRYPTO_THREAD_write_lock(store->lock)) return; max = sk_OSSL_PROVIDER_CHILD_CB_num(store->child_cbs); for (i = 0; i < max; i++) { child_cb = sk_OSSL_PROVIDER_CHILD_CB_value(store->child_cbs, i); if (child_cb->prov == thisprov) { /* Found an entry */ sk_OSSL_PROVIDER_CHILD_CB_delete(store->child_cbs, i); OPENSSL_free(child_cb); break; } } CRYPTO_THREAD_unlock(store->lock); } #endif /*- * Core functions for the provider * =============================== * * This is the set of functions that the core makes available to the provider */ /* * This returns a list of Provider Object parameters with their types, for * discovery. We do not expect that many providers will use this, but one * never knows. */ static const OSSL_PARAM param_types[] = { OSSL_PARAM_DEFN(OSSL_PROV_PARAM_CORE_VERSION, OSSL_PARAM_UTF8_PTR, NULL, 0), OSSL_PARAM_DEFN(OSSL_PROV_PARAM_CORE_PROV_NAME, OSSL_PARAM_UTF8_PTR, NULL, 0), #ifndef FIPS_MODULE OSSL_PARAM_DEFN(OSSL_PROV_PARAM_CORE_MODULE_FILENAME, OSSL_PARAM_UTF8_PTR, NULL, 0), #endif OSSL_PARAM_END }; /* * Forward declare all the functions that are provided aa dispatch. * This ensures that the compiler will complain if they aren't defined * with the correct signature. */ static OSSL_FUNC_core_gettable_params_fn core_gettable_params; static OSSL_FUNC_core_get_params_fn core_get_params; static OSSL_FUNC_core_get_libctx_fn core_get_libctx; static OSSL_FUNC_core_thread_start_fn core_thread_start; #ifndef FIPS_MODULE static OSSL_FUNC_core_new_error_fn core_new_error; static OSSL_FUNC_core_set_error_debug_fn core_set_error_debug; static OSSL_FUNC_core_vset_error_fn core_vset_error; static OSSL_FUNC_core_set_error_mark_fn core_set_error_mark; static OSSL_FUNC_core_clear_last_error_mark_fn core_clear_last_error_mark; static OSSL_FUNC_core_pop_error_to_mark_fn core_pop_error_to_mark; OSSL_FUNC_BIO_new_file_fn ossl_core_bio_new_file; OSSL_FUNC_BIO_new_membuf_fn ossl_core_bio_new_mem_buf; OSSL_FUNC_BIO_read_ex_fn ossl_core_bio_read_ex; OSSL_FUNC_BIO_write_ex_fn ossl_core_bio_write_ex; OSSL_FUNC_BIO_gets_fn ossl_core_bio_gets; OSSL_FUNC_BIO_puts_fn ossl_core_bio_puts; OSSL_FUNC_BIO_up_ref_fn ossl_core_bio_up_ref; OSSL_FUNC_BIO_free_fn ossl_core_bio_free; OSSL_FUNC_BIO_vprintf_fn ossl_core_bio_vprintf; OSSL_FUNC_BIO_vsnprintf_fn BIO_vsnprintf; static OSSL_FUNC_self_test_cb_fn core_self_test_get_callback; OSSL_FUNC_get_entropy_fn ossl_rand_get_entropy; OSSL_FUNC_cleanup_entropy_fn ossl_rand_cleanup_entropy; OSSL_FUNC_get_nonce_fn ossl_rand_get_nonce; OSSL_FUNC_cleanup_nonce_fn ossl_rand_cleanup_nonce; #endif OSSL_FUNC_CRYPTO_malloc_fn CRYPTO_malloc; OSSL_FUNC_CRYPTO_zalloc_fn CRYPTO_zalloc; OSSL_FUNC_CRYPTO_free_fn CRYPTO_free; OSSL_FUNC_CRYPTO_clear_free_fn CRYPTO_clear_free; OSSL_FUNC_CRYPTO_realloc_fn CRYPTO_realloc; OSSL_FUNC_CRYPTO_clear_realloc_fn CRYPTO_clear_realloc; OSSL_FUNC_CRYPTO_secure_malloc_fn CRYPTO_secure_malloc; OSSL_FUNC_CRYPTO_secure_zalloc_fn CRYPTO_secure_zalloc; OSSL_FUNC_CRYPTO_secure_free_fn CRYPTO_secure_free; OSSL_FUNC_CRYPTO_secure_clear_free_fn CRYPTO_secure_clear_free; OSSL_FUNC_CRYPTO_secure_allocated_fn CRYPTO_secure_allocated; OSSL_FUNC_OPENSSL_cleanse_fn OPENSSL_cleanse; #ifndef FIPS_MODULE OSSL_FUNC_provider_register_child_cb_fn ossl_provider_register_child_cb; OSSL_FUNC_provider_deregister_child_cb_fn ossl_provider_deregister_child_cb; static OSSL_FUNC_provider_name_fn core_provider_get0_name; static OSSL_FUNC_provider_get0_provider_ctx_fn core_provider_get0_provider_ctx; static OSSL_FUNC_provider_get0_dispatch_fn core_provider_get0_dispatch; static OSSL_FUNC_provider_up_ref_fn core_provider_up_ref_intern; static OSSL_FUNC_provider_free_fn core_provider_free_intern; static OSSL_FUNC_core_obj_add_sigid_fn core_obj_add_sigid; static OSSL_FUNC_core_obj_create_fn core_obj_create; #endif static const OSSL_PARAM *core_gettable_params(const OSSL_CORE_HANDLE *handle) { return param_types; } static int core_get_params(const OSSL_CORE_HANDLE *handle, OSSL_PARAM params[]) { int i; OSSL_PARAM *p; /* * We created this object originally and we know it is actually an * OSSL_PROVIDER *, so the cast is safe */ OSSL_PROVIDER *prov = (OSSL_PROVIDER *)handle; if ((p = OSSL_PARAM_locate(params, OSSL_PROV_PARAM_CORE_VERSION)) != NULL) OSSL_PARAM_set_utf8_ptr(p, OPENSSL_VERSION_STR); if ((p = OSSL_PARAM_locate(params, OSSL_PROV_PARAM_CORE_PROV_NAME)) != NULL) OSSL_PARAM_set_utf8_ptr(p, prov->name); #ifndef FIPS_MODULE if ((p = OSSL_PARAM_locate(params, OSSL_PROV_PARAM_CORE_MODULE_FILENAME)) != NULL) OSSL_PARAM_set_utf8_ptr(p, ossl_provider_module_path(prov)); #endif if (prov->parameters == NULL) return 1; for (i = 0; i < sk_INFOPAIR_num(prov->parameters); i++) { INFOPAIR *pair = sk_INFOPAIR_value(prov->parameters, i); if ((p = OSSL_PARAM_locate(params, pair->name)) != NULL) OSSL_PARAM_set_utf8_ptr(p, pair->value); } return 1; } static OPENSSL_CORE_CTX *core_get_libctx(const OSSL_CORE_HANDLE *handle) { /* * We created this object originally and we know it is actually an * OSSL_PROVIDER *, so the cast is safe */ OSSL_PROVIDER *prov = (OSSL_PROVIDER *)handle; /* * Using ossl_provider_libctx would be wrong as that returns * NULL for |prov| == NULL and NULL libctx has a special meaning * that does not apply here. Here |prov| == NULL can happen only in * case of a coding error. */ assert(prov != NULL); return (OPENSSL_CORE_CTX *)prov->libctx; } static int core_thread_start(const OSSL_CORE_HANDLE *handle, OSSL_thread_stop_handler_fn handfn, void *arg) { /* * We created this object originally and we know it is actually an * OSSL_PROVIDER *, so the cast is safe */ OSSL_PROVIDER *prov = (OSSL_PROVIDER *)handle; return ossl_init_thread_start(prov, arg, handfn); } /* * The FIPS module inner provider doesn't implement these. They aren't * needed there, since the FIPS module upcalls are always the outer provider * ones. */ #ifndef FIPS_MODULE /* * These error functions should use |handle| to select the proper * library context to report in the correct error stack if error * stacks become tied to the library context. * We cannot currently do that since there's no support for it in the * ERR subsystem. */ static void core_new_error(const OSSL_CORE_HANDLE *handle) { ERR_new(); } static void core_set_error_debug(const OSSL_CORE_HANDLE *handle, const char *file, int line, const char *func) { ERR_set_debug(file, line, func); } static void core_vset_error(const OSSL_CORE_HANDLE *handle, uint32_t reason, const char *fmt, va_list args) { /* * We created this object originally and we know it is actually an * OSSL_PROVIDER *, so the cast is safe */ OSSL_PROVIDER *prov = (OSSL_PROVIDER *)handle; /* * If the uppermost 8 bits are non-zero, it's an OpenSSL library * error and will be treated as such. Otherwise, it's a new style * provider error and will be treated as such. */ if (ERR_GET_LIB(reason) != 0) { ERR_vset_error(ERR_GET_LIB(reason), ERR_GET_REASON(reason), fmt, args); } else { ERR_vset_error(prov->error_lib, (int)reason, fmt, args); } } static int core_set_error_mark(const OSSL_CORE_HANDLE *handle) { return ERR_set_mark(); } static int core_clear_last_error_mark(const OSSL_CORE_HANDLE *handle) { return ERR_clear_last_mark(); } static int core_pop_error_to_mark(const OSSL_CORE_HANDLE *handle) { return ERR_pop_to_mark(); } static void core_self_test_get_callback(OPENSSL_CORE_CTX *libctx, OSSL_CALLBACK **cb, void **cbarg) { OSSL_SELF_TEST_get_callback((OSSL_LIB_CTX *)libctx, cb, cbarg); } static const char *core_provider_get0_name(const OSSL_CORE_HANDLE *prov) { return OSSL_PROVIDER_get0_name((const OSSL_PROVIDER *)prov); } static void *core_provider_get0_provider_ctx(const OSSL_CORE_HANDLE *prov) { return OSSL_PROVIDER_get0_provider_ctx((const OSSL_PROVIDER *)prov); } static const OSSL_DISPATCH * core_provider_get0_dispatch(const OSSL_CORE_HANDLE *prov) { return OSSL_PROVIDER_get0_dispatch((const OSSL_PROVIDER *)prov); } static int core_provider_up_ref_intern(const OSSL_CORE_HANDLE *prov, int activate) { return provider_up_ref_intern((OSSL_PROVIDER *)prov, activate); } static int core_provider_free_intern(const OSSL_CORE_HANDLE *prov, int deactivate) { return provider_free_intern((OSSL_PROVIDER *)prov, deactivate); } static int core_obj_add_sigid(const OSSL_CORE_HANDLE *prov, const char *sign_name, const char *digest_name, const char *pkey_name) { int sign_nid = OBJ_txt2nid(sign_name); int digest_nid = NID_undef; int pkey_nid = OBJ_txt2nid(pkey_name); if (digest_name != NULL && digest_name[0] != '\0' && (digest_nid = OBJ_txt2nid(digest_name)) == NID_undef) return 0; if (sign_nid == NID_undef) return 0; /* * Check if it already exists. This is a success if so (even if we don't * have nids for the digest/pkey) */ if (OBJ_find_sigid_algs(sign_nid, NULL, NULL)) return 1; if (pkey_nid == NID_undef) return 0; return OBJ_add_sigid(sign_nid, digest_nid, pkey_nid); } static int core_obj_create(const OSSL_CORE_HANDLE *prov, const char *oid, const char *sn, const char *ln) { /* Check if it already exists and create it if not */ return OBJ_txt2nid(oid) != NID_undef || OBJ_create(oid, sn, ln) != NID_undef; } #endif /* FIPS_MODULE */ /* * Functions provided by the core. */ static const OSSL_DISPATCH core_dispatch_[] = { { OSSL_FUNC_CORE_GETTABLE_PARAMS, (void (*)(void))core_gettable_params }, { OSSL_FUNC_CORE_GET_PARAMS, (void (*)(void))core_get_params }, { OSSL_FUNC_CORE_GET_LIBCTX, (void (*)(void))core_get_libctx }, { OSSL_FUNC_CORE_THREAD_START, (void (*)(void))core_thread_start }, #ifndef FIPS_MODULE { OSSL_FUNC_CORE_NEW_ERROR, (void (*)(void))core_new_error }, { OSSL_FUNC_CORE_SET_ERROR_DEBUG, (void (*)(void))core_set_error_debug }, { OSSL_FUNC_CORE_VSET_ERROR, (void (*)(void))core_vset_error }, { OSSL_FUNC_CORE_SET_ERROR_MARK, (void (*)(void))core_set_error_mark }, { OSSL_FUNC_CORE_CLEAR_LAST_ERROR_MARK, (void (*)(void))core_clear_last_error_mark }, { OSSL_FUNC_CORE_POP_ERROR_TO_MARK, (void (*)(void))core_pop_error_to_mark }, { OSSL_FUNC_BIO_NEW_FILE, (void (*)(void))ossl_core_bio_new_file }, { OSSL_FUNC_BIO_NEW_MEMBUF, (void (*)(void))ossl_core_bio_new_mem_buf }, { OSSL_FUNC_BIO_READ_EX, (void (*)(void))ossl_core_bio_read_ex }, { OSSL_FUNC_BIO_WRITE_EX, (void (*)(void))ossl_core_bio_write_ex }, { OSSL_FUNC_BIO_GETS, (void (*)(void))ossl_core_bio_gets }, { OSSL_FUNC_BIO_PUTS, (void (*)(void))ossl_core_bio_puts }, { OSSL_FUNC_BIO_CTRL, (void (*)(void))ossl_core_bio_ctrl }, { OSSL_FUNC_BIO_UP_REF, (void (*)(void))ossl_core_bio_up_ref }, { OSSL_FUNC_BIO_FREE, (void (*)(void))ossl_core_bio_free }, { OSSL_FUNC_BIO_VPRINTF, (void (*)(void))ossl_core_bio_vprintf }, { OSSL_FUNC_BIO_VSNPRINTF, (void (*)(void))BIO_vsnprintf }, { OSSL_FUNC_SELF_TEST_CB, (void (*)(void))core_self_test_get_callback }, { OSSL_FUNC_GET_ENTROPY, (void (*)(void))ossl_rand_get_entropy }, { OSSL_FUNC_CLEANUP_ENTROPY, (void (*)(void))ossl_rand_cleanup_entropy }, { OSSL_FUNC_GET_NONCE, (void (*)(void))ossl_rand_get_nonce }, { OSSL_FUNC_CLEANUP_NONCE, (void (*)(void))ossl_rand_cleanup_nonce }, #endif { OSSL_FUNC_CRYPTO_MALLOC, (void (*)(void))CRYPTO_malloc }, { OSSL_FUNC_CRYPTO_ZALLOC, (void (*)(void))CRYPTO_zalloc }, { OSSL_FUNC_CRYPTO_FREE, (void (*)(void))CRYPTO_free }, { OSSL_FUNC_CRYPTO_CLEAR_FREE, (void (*)(void))CRYPTO_clear_free }, { OSSL_FUNC_CRYPTO_REALLOC, (void (*)(void))CRYPTO_realloc }, { OSSL_FUNC_CRYPTO_CLEAR_REALLOC, (void (*)(void))CRYPTO_clear_realloc }, { OSSL_FUNC_CRYPTO_SECURE_MALLOC, (void (*)(void))CRYPTO_secure_malloc }, { OSSL_FUNC_CRYPTO_SECURE_ZALLOC, (void (*)(void))CRYPTO_secure_zalloc }, { OSSL_FUNC_CRYPTO_SECURE_FREE, (void (*)(void))CRYPTO_secure_free }, { OSSL_FUNC_CRYPTO_SECURE_CLEAR_FREE, (void (*)(void))CRYPTO_secure_clear_free }, { OSSL_FUNC_CRYPTO_SECURE_ALLOCATED, (void (*)(void))CRYPTO_secure_allocated }, { OSSL_FUNC_OPENSSL_CLEANSE, (void (*)(void))OPENSSL_cleanse }, #ifndef FIPS_MODULE { OSSL_FUNC_PROVIDER_REGISTER_CHILD_CB, (void (*)(void))ossl_provider_register_child_cb }, { OSSL_FUNC_PROVIDER_DEREGISTER_CHILD_CB, (void (*)(void))ossl_provider_deregister_child_cb }, { OSSL_FUNC_PROVIDER_NAME, (void (*)(void))core_provider_get0_name }, { OSSL_FUNC_PROVIDER_GET0_PROVIDER_CTX, (void (*)(void))core_provider_get0_provider_ctx }, { OSSL_FUNC_PROVIDER_GET0_DISPATCH, (void (*)(void))core_provider_get0_dispatch }, { OSSL_FUNC_PROVIDER_UP_REF, (void (*)(void))core_provider_up_ref_intern }, { OSSL_FUNC_PROVIDER_FREE, (void (*)(void))core_provider_free_intern }, { OSSL_FUNC_CORE_OBJ_ADD_SIGID, (void (*)(void))core_obj_add_sigid }, { OSSL_FUNC_CORE_OBJ_CREATE, (void (*)(void))core_obj_create }, #endif OSSL_DISPATCH_END }; static const OSSL_DISPATCH *core_dispatch = core_dispatch_;