/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #undef SECONDS #define SECONDS 3 #define PKEY_SECONDS 10 #define RSA_SECONDS PKEY_SECONDS #define DSA_SECONDS PKEY_SECONDS #define ECDSA_SECONDS PKEY_SECONDS #define ECDH_SECONDS PKEY_SECONDS #define EdDSA_SECONDS PKEY_SECONDS #define SM2_SECONDS PKEY_SECONDS #define FFDH_SECONDS PKEY_SECONDS #define KEM_SECONDS PKEY_SECONDS #define SIG_SECONDS PKEY_SECONDS #define MAX_ALGNAME_SUFFIX 100 /* We need to use some deprecated APIs */ #define OPENSSL_SUPPRESS_DEPRECATED #include #include #include #include #include "apps.h" #include "progs.h" #include "internal/nelem.h" #include "internal/numbers.h" #include #include #include #include #include #include #include #include #if !defined(OPENSSL_SYS_MSDOS) # include #endif #if defined(__TANDEM) # if defined(OPENSSL_TANDEM_FLOSS) # include # endif #endif #if defined(_WIN32) # include /* * While VirtualLock is available under the app partition (e.g. UWP), * the headers do not define the API. Define it ourselves instead. */ WINBASEAPI BOOL WINAPI VirtualLock( _In_ LPVOID lpAddress, _In_ SIZE_T dwSize ); #endif #if defined(OPENSSL_SYS_LINUX) # include #endif #include #include #include "./testrsa.h" #ifndef OPENSSL_NO_DH # include #endif #include #include #include "./testdsa.h" #include #ifndef HAVE_FORK # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS) # define HAVE_FORK 0 # else # define HAVE_FORK 1 # include # endif #endif #if HAVE_FORK # undef NO_FORK #else # define NO_FORK #endif #define MAX_MISALIGNMENT 63 #define MAX_ECDH_SIZE 256 #define MISALIGN 64 #define MAX_FFDH_SIZE 1024 #ifndef RSA_DEFAULT_PRIME_NUM # define RSA_DEFAULT_PRIME_NUM 2 #endif typedef struct openssl_speed_sec_st { int sym; int rsa; int dsa; int ecdsa; int ecdh; int eddsa; int sm2; int ffdh; int kem; int sig; } openssl_speed_sec_t; static volatile int run = 0; static int mr = 0; /* machine-readeable output format to merge fork results */ static int usertime = 1; static double Time_F(int s); static void print_message(const char *s, int length, int tm); static void pkey_print_message(const char *str, const char *str2, unsigned int bits, int sec); static void kskey_print_message(const char *str, const char *str2, int tm); static void print_result(int alg, int run_no, int count, double time_used); #ifndef NO_FORK static int do_multi(int multi, int size_num); #endif static int domlock = 0; static const int lengths_list[] = { 16, 64, 256, 1024, 8 * 1024, 16 * 1024 }; #define SIZE_NUM OSSL_NELEM(lengths_list) static const int *lengths = lengths_list; static const int aead_lengths_list[] = { 2, 31, 136, 1024, 8 * 1024, 16 * 1024 }; #define START 0 #define STOP 1 #ifdef SIGALRM static void alarmed(ossl_unused int sig) { signal(SIGALRM, alarmed); run = 0; } static double Time_F(int s) { double ret = app_tminterval(s, usertime); if (s == STOP) alarm(0); return ret; } #elif defined(_WIN32) # define SIGALRM -1 static unsigned int lapse; static volatile unsigned int schlock; static void alarm_win32(unsigned int secs) { lapse = secs * 1000; } # define alarm alarm_win32 static DWORD WINAPI sleepy(VOID * arg) { schlock = 1; Sleep(lapse); run = 0; return 0; } static double Time_F(int s) { double ret; static HANDLE thr; if (s == START) { schlock = 0; thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); if (thr == NULL) { DWORD err = GetLastError(); BIO_printf(bio_err, "unable to CreateThread (%lu)", err); ExitProcess(err); } while (!schlock) Sleep(0); /* scheduler spinlock */ ret = app_tminterval(s, usertime); } else { ret = app_tminterval(s, usertime); if (run) TerminateThread(thr, 0); CloseHandle(thr); } return ret; } #else # error "SIGALRM not defined and the platform is not Windows" #endif static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, const openssl_speed_sec_t *seconds); static int opt_found(const char *name, unsigned int *result, const OPT_PAIR pairs[], unsigned int nbelem) { unsigned int idx; for (idx = 0; idx < nbelem; ++idx, pairs++) if (strcmp(name, pairs->name) == 0) { *result = pairs->retval; return 1; } return 0; } #define opt_found(value, pairs, result)\ opt_found(value, result, pairs, OSSL_NELEM(pairs)) typedef enum OPTION_choice { OPT_COMMON, OPT_ELAPSED, OPT_EVP, OPT_HMAC, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI, OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, OPT_PROV_ENUM, OPT_CONFIG, OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD, OPT_CMAC, OPT_MLOCK, OPT_KEM, OPT_SIG } OPTION_CHOICE; const OPTIONS speed_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] [algorithm...]\n" "All +int options consider prefix '0' as base-8 input, " "prefix '0x'/'0X' as base-16 input.\n" }, OPT_SECTION("General"), {"help", OPT_HELP, '-', "Display this summary"}, {"mb", OPT_MB, '-', "Enable (tls1>=1) multi-block mode on EVP-named cipher"}, {"mr", OPT_MR, '-', "Produce machine readable output"}, #ifndef NO_FORK {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, #endif #ifndef OPENSSL_NO_ASYNC {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start specified number of jobs"}, #endif #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"}, {"mlock", OPT_MLOCK, '-', "Lock memory for better result determinism"}, OPT_CONFIG_OPTION, OPT_SECTION("Selection"), {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"}, {"hmac", OPT_HMAC, 's', "HMAC using EVP-named digest"}, {"cmac", OPT_CMAC, 's', "CMAC using EVP-named cipher"}, {"decrypt", OPT_DECRYPT, '-', "Time decryption instead of encryption (only EVP)"}, {"aead", OPT_AEAD, '-', "Benchmark EVP-named AEAD cipher in TLS-like sequence"}, {"kem-algorithms", OPT_KEM, '-', "Benchmark KEM algorithms"}, {"signature-algorithms", OPT_SIG, '-', "Benchmark signature algorithms"}, OPT_SECTION("Timing"), {"elapsed", OPT_ELAPSED, '-', "Use wall-clock time instead of CPU user time as divisor"}, {"seconds", OPT_SECONDS, 'p', "Run benchmarks for specified amount of seconds"}, {"bytes", OPT_BYTES, 'p', "Run [non-PKI] benchmarks on custom-sized buffer"}, {"misalign", OPT_MISALIGN, 'p', "Use specified offset to mis-align buffers"}, OPT_R_OPTIONS, OPT_PROV_OPTIONS, OPT_PARAMETERS(), {"algorithm", 0, 0, "Algorithm(s) to test (optional; otherwise tests all)"}, {NULL} }; enum { D_MD2, D_MDC2, D_MD4, D_MD5, D_SHA1, D_RMD160, D_SHA256, D_SHA512, D_WHIRLPOOL, D_HMAC, D_CBC_DES, D_EDE3_DES, D_RC4, D_CBC_IDEA, D_CBC_SEED, D_CBC_RC2, D_CBC_RC5, D_CBC_BF, D_CBC_CAST, D_CBC_128_AES, D_CBC_192_AES, D_CBC_256_AES, D_CBC_128_CML, D_CBC_192_CML, D_CBC_256_CML, D_EVP, D_GHASH, D_RAND, D_EVP_CMAC, D_KMAC128, D_KMAC256, ALGOR_NUM }; /* name of algorithms to test. MUST BE KEEP IN SYNC with above enum ! */ static const char *names[ALGOR_NUM] = { "md2", "mdc2", "md4", "md5", "sha1", "rmd160", "sha256", "sha512", "whirlpool", "hmac(sha256)", "des-cbc", "des-ede3", "rc4", "idea-cbc", "seed-cbc", "rc2-cbc", "rc5-cbc", "blowfish", "cast-cbc", "aes-128-cbc", "aes-192-cbc", "aes-256-cbc", "camellia-128-cbc", "camellia-192-cbc", "camellia-256-cbc", "evp", "ghash", "rand", "cmac", "kmac128", "kmac256" }; /* list of configured algorithm (remaining), with some few alias */ static const OPT_PAIR doit_choices[] = { {"md2", D_MD2}, {"mdc2", D_MDC2}, {"md4", D_MD4}, {"md5", D_MD5}, {"hmac", D_HMAC}, {"sha1", D_SHA1}, {"sha256", D_SHA256}, {"sha512", D_SHA512}, {"whirlpool", D_WHIRLPOOL}, {"ripemd", D_RMD160}, {"rmd160", D_RMD160}, {"ripemd160", D_RMD160}, {"rc4", D_RC4}, {"des-cbc", D_CBC_DES}, {"des-ede3", D_EDE3_DES}, {"aes-128-cbc", D_CBC_128_AES}, {"aes-192-cbc", D_CBC_192_AES}, {"aes-256-cbc", D_CBC_256_AES}, {"camellia-128-cbc", D_CBC_128_CML}, {"camellia-192-cbc", D_CBC_192_CML}, {"camellia-256-cbc", D_CBC_256_CML}, {"rc2-cbc", D_CBC_RC2}, {"rc2", D_CBC_RC2}, {"rc5-cbc", D_CBC_RC5}, {"rc5", D_CBC_RC5}, {"idea-cbc", D_CBC_IDEA}, {"idea", D_CBC_IDEA}, {"seed-cbc", D_CBC_SEED}, {"seed", D_CBC_SEED}, {"bf-cbc", D_CBC_BF}, {"blowfish", D_CBC_BF}, {"bf", D_CBC_BF}, {"cast-cbc", D_CBC_CAST}, {"cast", D_CBC_CAST}, {"cast5", D_CBC_CAST}, {"ghash", D_GHASH}, {"rand", D_RAND}, {"kmac128", D_KMAC128}, {"kmac256", D_KMAC256}, }; static double results[ALGOR_NUM][SIZE_NUM]; enum { R_DSA_1024, R_DSA_2048, DSA_NUM }; static const OPT_PAIR dsa_choices[DSA_NUM] = { {"dsa1024", R_DSA_1024}, {"dsa2048", R_DSA_2048} }; static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */ enum { R_RSA_512, R_RSA_1024, R_RSA_2048, R_RSA_3072, R_RSA_4096, R_RSA_7680, R_RSA_15360, RSA_NUM }; static const OPT_PAIR rsa_choices[RSA_NUM] = { {"rsa512", R_RSA_512}, {"rsa1024", R_RSA_1024}, {"rsa2048", R_RSA_2048}, {"rsa3072", R_RSA_3072}, {"rsa4096", R_RSA_4096}, {"rsa7680", R_RSA_7680}, {"rsa15360", R_RSA_15360} }; static double rsa_results[RSA_NUM][4]; /* 4 ops: sign, verify, encrypt, decrypt */ #ifndef OPENSSL_NO_DH enum ff_params_t { R_FFDH_2048, R_FFDH_3072, R_FFDH_4096, R_FFDH_6144, R_FFDH_8192, FFDH_NUM }; static const OPT_PAIR ffdh_choices[FFDH_NUM] = { {"ffdh2048", R_FFDH_2048}, {"ffdh3072", R_FFDH_3072}, {"ffdh4096", R_FFDH_4096}, {"ffdh6144", R_FFDH_6144}, {"ffdh8192", R_FFDH_8192}, }; static double ffdh_results[FFDH_NUM][1]; /* 1 op: derivation */ #endif /* OPENSSL_NO_DH */ enum ec_curves_t { R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_P384, R_EC_P521, #ifndef OPENSSL_NO_EC2M R_EC_K163, R_EC_K233, R_EC_K283, R_EC_K409, R_EC_K571, R_EC_B163, R_EC_B233, R_EC_B283, R_EC_B409, R_EC_B571, #endif R_EC_BRP256R1, R_EC_BRP256T1, R_EC_BRP384R1, R_EC_BRP384T1, R_EC_BRP512R1, R_EC_BRP512T1, ECDSA_NUM }; /* list of ecdsa curves */ static const OPT_PAIR ecdsa_choices[ECDSA_NUM] = { {"ecdsap160", R_EC_P160}, {"ecdsap192", R_EC_P192}, {"ecdsap224", R_EC_P224}, {"ecdsap256", R_EC_P256}, {"ecdsap384", R_EC_P384}, {"ecdsap521", R_EC_P521}, #ifndef OPENSSL_NO_EC2M {"ecdsak163", R_EC_K163}, {"ecdsak233", R_EC_K233}, {"ecdsak283", R_EC_K283}, {"ecdsak409", R_EC_K409}, {"ecdsak571", R_EC_K571}, {"ecdsab163", R_EC_B163}, {"ecdsab233", R_EC_B233}, {"ecdsab283", R_EC_B283}, {"ecdsab409", R_EC_B409}, {"ecdsab571", R_EC_B571}, #endif {"ecdsabrp256r1", R_EC_BRP256R1}, {"ecdsabrp256t1", R_EC_BRP256T1}, {"ecdsabrp384r1", R_EC_BRP384R1}, {"ecdsabrp384t1", R_EC_BRP384T1}, {"ecdsabrp512r1", R_EC_BRP512R1}, {"ecdsabrp512t1", R_EC_BRP512T1} }; enum { #ifndef OPENSSL_NO_ECX R_EC_X25519 = ECDSA_NUM, R_EC_X448, EC_NUM #else EC_NUM = ECDSA_NUM #endif }; /* list of ecdh curves, extension of |ecdsa_choices| list above */ static const OPT_PAIR ecdh_choices[EC_NUM] = { {"ecdhp160", R_EC_P160}, {"ecdhp192", R_EC_P192}, {"ecdhp224", R_EC_P224}, {"ecdhp256", R_EC_P256}, {"ecdhp384", R_EC_P384}, {"ecdhp521", R_EC_P521}, #ifndef OPENSSL_NO_EC2M {"ecdhk163", R_EC_K163}, {"ecdhk233", R_EC_K233}, {"ecdhk283", R_EC_K283}, {"ecdhk409", R_EC_K409}, {"ecdhk571", R_EC_K571}, {"ecdhb163", R_EC_B163}, {"ecdhb233", R_EC_B233}, {"ecdhb283", R_EC_B283}, {"ecdhb409", R_EC_B409}, {"ecdhb571", R_EC_B571}, #endif {"ecdhbrp256r1", R_EC_BRP256R1}, {"ecdhbrp256t1", R_EC_BRP256T1}, {"ecdhbrp384r1", R_EC_BRP384R1}, {"ecdhbrp384t1", R_EC_BRP384T1}, {"ecdhbrp512r1", R_EC_BRP512R1}, {"ecdhbrp512t1", R_EC_BRP512T1}, #ifndef OPENSSL_NO_ECX {"ecdhx25519", R_EC_X25519}, {"ecdhx448", R_EC_X448} #endif }; static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */ static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */ #ifndef OPENSSL_NO_ECX enum { R_EC_Ed25519, R_EC_Ed448, EdDSA_NUM }; static const OPT_PAIR eddsa_choices[EdDSA_NUM] = { {"ed25519", R_EC_Ed25519}, {"ed448", R_EC_Ed448} }; static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 enum { R_EC_CURVESM2, SM2_NUM }; static const OPT_PAIR sm2_choices[SM2_NUM] = { {"curveSM2", R_EC_CURVESM2} }; # define SM2_ID "TLSv1.3+GM+Cipher+Suite" # define SM2_ID_LEN sizeof("TLSv1.3+GM+Cipher+Suite") - 1 static double sm2_results[SM2_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_SM2 */ #define MAX_KEM_NUM 111 static size_t kems_algs_len = 0; static char *kems_algname[MAX_KEM_NUM] = { NULL }; static double kems_results[MAX_KEM_NUM][3]; /* keygen, encaps, decaps */ #define MAX_SIG_NUM 111 static size_t sigs_algs_len = 0; static char *sigs_algname[MAX_SIG_NUM] = { NULL }; static double sigs_results[MAX_SIG_NUM][3]; /* keygen, sign, verify */ #define COND(unused_cond) (run && count < INT_MAX) #define COUNT(d) (count) typedef struct loopargs_st { ASYNC_JOB *inprogress_job; ASYNC_WAIT_CTX *wait_ctx; unsigned char *buf; unsigned char *buf2; unsigned char *buf_malloc; unsigned char *buf2_malloc; unsigned char *key; size_t buflen; size_t sigsize; size_t encsize; EVP_PKEY_CTX *rsa_sign_ctx[RSA_NUM]; EVP_PKEY_CTX *rsa_verify_ctx[RSA_NUM]; EVP_PKEY_CTX *rsa_encrypt_ctx[RSA_NUM]; EVP_PKEY_CTX *rsa_decrypt_ctx[RSA_NUM]; EVP_PKEY_CTX *dsa_sign_ctx[DSA_NUM]; EVP_PKEY_CTX *dsa_verify_ctx[DSA_NUM]; EVP_PKEY_CTX *ecdsa_sign_ctx[ECDSA_NUM]; EVP_PKEY_CTX *ecdsa_verify_ctx[ECDSA_NUM]; EVP_PKEY_CTX *ecdh_ctx[EC_NUM]; #ifndef OPENSSL_NO_ECX EVP_MD_CTX *eddsa_ctx[EdDSA_NUM]; EVP_MD_CTX *eddsa_ctx2[EdDSA_NUM]; #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 EVP_MD_CTX *sm2_ctx[SM2_NUM]; EVP_MD_CTX *sm2_vfy_ctx[SM2_NUM]; EVP_PKEY *sm2_pkey[SM2_NUM]; #endif unsigned char *secret_a; unsigned char *secret_b; size_t outlen[EC_NUM]; #ifndef OPENSSL_NO_DH EVP_PKEY_CTX *ffdh_ctx[FFDH_NUM]; unsigned char *secret_ff_a; unsigned char *secret_ff_b; #endif EVP_CIPHER_CTX *ctx; EVP_MAC_CTX *mctx; EVP_PKEY_CTX *kem_gen_ctx[MAX_KEM_NUM]; EVP_PKEY_CTX *kem_encaps_ctx[MAX_KEM_NUM]; EVP_PKEY_CTX *kem_decaps_ctx[MAX_KEM_NUM]; size_t kem_out_len[MAX_KEM_NUM]; size_t kem_secret_len[MAX_KEM_NUM]; unsigned char *kem_out[MAX_KEM_NUM]; unsigned char *kem_send_secret[MAX_KEM_NUM]; unsigned char *kem_rcv_secret[MAX_KEM_NUM]; EVP_PKEY_CTX *sig_gen_ctx[MAX_KEM_NUM]; EVP_PKEY_CTX *sig_sign_ctx[MAX_KEM_NUM]; EVP_PKEY_CTX *sig_verify_ctx[MAX_KEM_NUM]; size_t sig_max_sig_len[MAX_KEM_NUM]; size_t sig_act_sig_len[MAX_KEM_NUM]; unsigned char *sig_sig[MAX_KEM_NUM]; } loopargs_t; static int run_benchmark(int async_jobs, int (*loop_function) (void *), loopargs_t *loopargs); static unsigned int testnum; static char *evp_mac_mdname = "sha256"; static char *evp_hmac_name = NULL; static const char *evp_md_name = NULL; static char *evp_mac_ciphername = "aes-128-cbc"; static char *evp_cmac_name = NULL; static int have_md(const char *name) { int ret = 0; EVP_MD *md = NULL; if (opt_md_silent(name, &md)) { EVP_MD_CTX *ctx = EVP_MD_CTX_new(); if (ctx != NULL && EVP_DigestInit(ctx, md) > 0) ret = 1; EVP_MD_CTX_free(ctx); EVP_MD_free(md); } return ret; } static int have_cipher(const char *name) { int ret = 0; EVP_CIPHER *cipher = NULL; if (opt_cipher_silent(name, &cipher)) { EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new(); if (ctx != NULL && EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1) > 0) ret = 1; EVP_CIPHER_CTX_free(ctx); EVP_CIPHER_free(cipher); } return ret; } static int EVP_Digest_loop(const char *mdname, ossl_unused int algindex, void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char digest[EVP_MAX_MD_SIZE]; int count; EVP_MD *md = NULL; if (!opt_md_silent(mdname, &md)) return -1; for (count = 0; COND(c[algindex][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], digest, NULL, md, NULL)) { count = -1; break; } } EVP_MD_free(md); return count; } static int EVP_Digest_md_loop(void *args) { return EVP_Digest_loop(evp_md_name, D_EVP, args); } static int EVP_Digest_MD2_loop(void *args) { return EVP_Digest_loop("md2", D_MD2, args); } static int EVP_Digest_MDC2_loop(void *args) { return EVP_Digest_loop("mdc2", D_MDC2, args); } static int EVP_Digest_MD4_loop(void *args) { return EVP_Digest_loop("md4", D_MD4, args); } static int MD5_loop(void *args) { return EVP_Digest_loop("md5", D_MD5, args); } static int mac_setup(const char *name, EVP_MAC **mac, OSSL_PARAM params[], loopargs_t *loopargs, unsigned int loopargs_len) { unsigned int i; *mac = EVP_MAC_fetch(app_get0_libctx(), name, app_get0_propq()); if (*mac == NULL) return 0; for (i = 0; i < loopargs_len; i++) { loopargs[i].mctx = EVP_MAC_CTX_new(*mac); if (loopargs[i].mctx == NULL) return 0; if (!EVP_MAC_CTX_set_params(loopargs[i].mctx, params)) return 0; } return 1; } static void mac_teardown(EVP_MAC **mac, loopargs_t *loopargs, unsigned int loopargs_len) { unsigned int i; for (i = 0; i < loopargs_len; i++) EVP_MAC_CTX_free(loopargs[i].mctx); EVP_MAC_free(*mac); *mac = NULL; return; } static int EVP_MAC_loop(ossl_unused int algindex, void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MAC_CTX *mctx = tempargs->mctx; unsigned char mac[EVP_MAX_MD_SIZE]; int count; for (count = 0; COND(c[algindex][testnum]); count++) { size_t outl; if (!EVP_MAC_init(mctx, NULL, 0, NULL) || !EVP_MAC_update(mctx, buf, lengths[testnum]) || !EVP_MAC_final(mctx, mac, &outl, sizeof(mac))) return -1; } return count; } static int HMAC_loop(void *args) { return EVP_MAC_loop(D_HMAC, args); } static int CMAC_loop(void *args) { return EVP_MAC_loop(D_EVP_CMAC, args); } static int KMAC128_loop(void *args) { return EVP_MAC_loop(D_KMAC128, args); } static int KMAC256_loop(void *args) { return EVP_MAC_loop(D_KMAC256, args); } static int SHA1_loop(void *args) { return EVP_Digest_loop("sha1", D_SHA1, args); } static int SHA256_loop(void *args) { return EVP_Digest_loop("sha256", D_SHA256, args); } static int SHA512_loop(void *args) { return EVP_Digest_loop("sha512", D_SHA512, args); } static int WHIRLPOOL_loop(void *args) { return EVP_Digest_loop("whirlpool", D_WHIRLPOOL, args); } static int EVP_Digest_RMD160_loop(void *args) { return EVP_Digest_loop("ripemd160", D_RMD160, args); } static int algindex; static int EVP_Cipher_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; if (tempargs->ctx == NULL) return -1; for (count = 0; COND(c[algindex][testnum]); count++) if (EVP_Cipher(tempargs->ctx, buf, buf, (size_t)lengths[testnum]) <= 0) return -1; return count; } static int GHASH_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MAC_CTX *mctx = tempargs->mctx; int count; /* just do the update in the loop to be comparable with 1.1.1 */ for (count = 0; COND(c[D_GHASH][testnum]); count++) { if (!EVP_MAC_update(mctx, buf, lengths[testnum])) return -1; } return count; } #define MAX_BLOCK_SIZE 128 static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; static EVP_CIPHER_CTX *init_evp_cipher_ctx(const char *ciphername, const unsigned char *key, int keylen) { EVP_CIPHER_CTX *ctx = NULL; EVP_CIPHER *cipher = NULL; if (!opt_cipher_silent(ciphername, &cipher)) return NULL; if ((ctx = EVP_CIPHER_CTX_new()) == NULL) goto end; if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, 1)) { EVP_CIPHER_CTX_free(ctx); ctx = NULL; goto end; } if (EVP_CIPHER_CTX_set_key_length(ctx, keylen) <= 0) { EVP_CIPHER_CTX_free(ctx); ctx = NULL; goto end; } if (!EVP_CipherInit_ex(ctx, NULL, NULL, key, iv, 1)) { EVP_CIPHER_CTX_free(ctx); ctx = NULL; goto end; } end: EVP_CIPHER_free(cipher); return ctx; } static int RAND_bytes_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_RAND][testnum]); count++) RAND_bytes(buf, lengths[testnum]); return count; } static int decrypt = 0; static int EVP_Update_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count, rc; if (decrypt) { for (count = 0; COND(c[D_EVP][testnum]); count++) { rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); if (rc != 1) { /* reset iv in case of counter overflow */ rc = EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); } } } else { for (count = 0; COND(c[D_EVP][testnum]); count++) { rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); if (rc != 1) { /* reset iv in case of counter overflow */ rc = EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); } } } if (decrypt) rc = EVP_DecryptFinal_ex(ctx, buf, &outl); else rc = EVP_EncryptFinal_ex(ctx, buf, &outl); if (rc == 0) BIO_printf(bio_err, "Error finalizing cipher loop\n"); return count; } /* * CCM does not support streaming. For the purpose of performance measurement, * each message is encrypted using the same (key,iv)-pair. Do not use this * code in your application. */ static int EVP_Update_loop_ccm(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count, realcount = 0, final; unsigned char tag[12]; if (decrypt) { for (count = 0; COND(c[D_EVP][testnum]); count++) { if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag) > 0 /* reset iv */ && EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) > 0 /* counter is reset on every update */ && EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]) > 0) realcount++; } } else { for (count = 0; COND(c[D_EVP][testnum]); count++) { /* restore iv length field */ if (EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]) > 0 /* counter is reset on every update */ && EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]) > 0) realcount++; } } if (decrypt) final = EVP_DecryptFinal_ex(ctx, buf, &outl); else final = EVP_EncryptFinal_ex(ctx, buf, &outl); if (final == 0) BIO_printf(bio_err, "Error finalizing ccm loop\n"); return realcount; } /* * To make AEAD benchmarking more relevant perform TLS-like operations, * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as * payload length is not actually limited by 16KB... */ static int EVP_Update_loop_aead(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count, realcount = 0; unsigned char aad[13] = { 0xcc }; unsigned char faketag[16] = { 0xcc }; if (decrypt) { for (count = 0; COND(c[D_EVP][testnum]); count++) { if (EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv) > 0 && EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(faketag), faketag) > 0 && EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)) > 0 && EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]) > 0 && EVP_DecryptFinal_ex(ctx, buf + outl, &outl) >0) realcount++; } } else { for (count = 0; COND(c[D_EVP][testnum]); count++) { if (EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv) > 0 && EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)) > 0 && EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]) > 0 && EVP_EncryptFinal_ex(ctx, buf + outl, &outl) > 0) realcount++; } } return realcount; } static int RSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; size_t *rsa_num = &tempargs->sigsize; EVP_PKEY_CTX **rsa_sign_ctx = tempargs->rsa_sign_ctx; int ret, count; for (count = 0; COND(rsa_c[testnum][0]); count++) { *rsa_num = tempargs->buflen; ret = EVP_PKEY_sign(rsa_sign_ctx[testnum], buf2, rsa_num, buf, 36); if (ret <= 0) { BIO_printf(bio_err, "RSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int RSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; size_t rsa_num = tempargs->sigsize; EVP_PKEY_CTX **rsa_verify_ctx = tempargs->rsa_verify_ctx; int ret, count; for (count = 0; COND(rsa_c[testnum][1]); count++) { ret = EVP_PKEY_verify(rsa_verify_ctx[testnum], buf2, rsa_num, buf, 36); if (ret <= 0) { BIO_printf(bio_err, "RSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int RSA_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; size_t *rsa_num = &tempargs->encsize; EVP_PKEY_CTX **rsa_encrypt_ctx = tempargs->rsa_encrypt_ctx; int ret, count; for (count = 0; COND(rsa_c[testnum][2]); count++) { *rsa_num = tempargs->buflen; ret = EVP_PKEY_encrypt(rsa_encrypt_ctx[testnum], buf2, rsa_num, buf, 36); if (ret <= 0) { BIO_printf(bio_err, "RSA encrypt failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int RSA_decrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; size_t rsa_num; EVP_PKEY_CTX **rsa_decrypt_ctx = tempargs->rsa_decrypt_ctx; int ret, count; for (count = 0; COND(rsa_c[testnum][3]); count++) { rsa_num = tempargs->buflen; ret = EVP_PKEY_decrypt(rsa_decrypt_ctx[testnum], buf, &rsa_num, buf2, tempargs->encsize); if (ret <= 0) { BIO_printf(bio_err, "RSA decrypt failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #ifndef OPENSSL_NO_DH static int FFDH_derive_key_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ffdh_ctx = tempargs->ffdh_ctx[testnum]; unsigned char *derived_secret = tempargs->secret_ff_a; int count; for (count = 0; COND(ffdh_c[testnum][0]); count++) { /* outlen can be overwritten with a too small value (no padding used) */ size_t outlen = MAX_FFDH_SIZE; EVP_PKEY_derive(ffdh_ctx, derived_secret, &outlen); } return count; } #endif /* OPENSSL_NO_DH */ static int DSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; size_t *dsa_num = &tempargs->sigsize; EVP_PKEY_CTX **dsa_sign_ctx = tempargs->dsa_sign_ctx; int ret, count; for (count = 0; COND(dsa_c[testnum][0]); count++) { *dsa_num = tempargs->buflen; ret = EVP_PKEY_sign(dsa_sign_ctx[testnum], buf2, dsa_num, buf, 20); if (ret <= 0) { BIO_printf(bio_err, "DSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int DSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; size_t dsa_num = tempargs->sigsize; EVP_PKEY_CTX **dsa_verify_ctx = tempargs->dsa_verify_ctx; int ret, count; for (count = 0; COND(dsa_c[testnum][1]); count++) { ret = EVP_PKEY_verify(dsa_verify_ctx[testnum], buf2, dsa_num, buf, 20); if (ret <= 0) { BIO_printf(bio_err, "DSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int ECDSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; size_t *ecdsa_num = &tempargs->sigsize; EVP_PKEY_CTX **ecdsa_sign_ctx = tempargs->ecdsa_sign_ctx; int ret, count; for (count = 0; COND(ecdsa_c[testnum][0]); count++) { *ecdsa_num = tempargs->buflen; ret = EVP_PKEY_sign(ecdsa_sign_ctx[testnum], buf2, ecdsa_num, buf, 20); if (ret <= 0) { BIO_printf(bio_err, "ECDSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int ECDSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; size_t ecdsa_num = tempargs->sigsize; EVP_PKEY_CTX **ecdsa_verify_ctx = tempargs->ecdsa_verify_ctx; int ret, count; for (count = 0; COND(ecdsa_c[testnum][1]); count++) { ret = EVP_PKEY_verify(ecdsa_verify_ctx[testnum], buf2, ecdsa_num, buf, 20); if (ret <= 0) { BIO_printf(bio_err, "ECDSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } /* ******************************************************************** */ static int ECDH_EVP_derive_key_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum]; unsigned char *derived_secret = tempargs->secret_a; int count; size_t *outlen = &(tempargs->outlen[testnum]); for (count = 0; COND(ecdh_c[testnum][0]); count++) EVP_PKEY_derive(ctx, derived_secret, outlen); return count; } #ifndef OPENSSL_NO_ECX static int EdDSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **edctx = tempargs->eddsa_ctx; unsigned char *eddsasig = tempargs->buf2; size_t *eddsasigsize = &tempargs->sigsize; int ret, count; for (count = 0; COND(eddsa_c[testnum][0]); count++) { ret = EVP_DigestSignInit(edctx[testnum], NULL, NULL, NULL, NULL); if (ret == 0) { BIO_printf(bio_err, "EdDSA sign init failure\n"); ERR_print_errors(bio_err); count = -1; break; } ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20); if (ret == 0) { BIO_printf(bio_err, "EdDSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int EdDSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **edctx = tempargs->eddsa_ctx2; unsigned char *eddsasig = tempargs->buf2; size_t eddsasigsize = tempargs->sigsize; int ret, count; for (count = 0; COND(eddsa_c[testnum][1]); count++) { ret = EVP_DigestVerifyInit(edctx[testnum], NULL, NULL, NULL, NULL); if (ret == 0) { BIO_printf(bio_err, "EdDSA verify init failure\n"); ERR_print_errors(bio_err); count = -1; break; } ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20); if (ret != 1) { BIO_printf(bio_err, "EdDSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 static int SM2_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **sm2ctx = tempargs->sm2_ctx; unsigned char *sm2sig = tempargs->buf2; size_t sm2sigsize; int ret, count; EVP_PKEY **sm2_pkey = tempargs->sm2_pkey; const size_t max_size = EVP_PKEY_get_size(sm2_pkey[testnum]); for (count = 0; COND(sm2_c[testnum][0]); count++) { sm2sigsize = max_size; if (!EVP_DigestSignInit(sm2ctx[testnum], NULL, EVP_sm3(), NULL, sm2_pkey[testnum])) { BIO_printf(bio_err, "SM2 init sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } ret = EVP_DigestSign(sm2ctx[testnum], sm2sig, &sm2sigsize, buf, 20); if (ret == 0) { BIO_printf(bio_err, "SM2 sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } /* update the latest returned size and always use the fixed buffer size */ tempargs->sigsize = sm2sigsize; } return count; } static int SM2_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **sm2ctx = tempargs->sm2_vfy_ctx; unsigned char *sm2sig = tempargs->buf2; size_t sm2sigsize = tempargs->sigsize; int ret, count; EVP_PKEY **sm2_pkey = tempargs->sm2_pkey; for (count = 0; COND(sm2_c[testnum][1]); count++) { if (!EVP_DigestVerifyInit(sm2ctx[testnum], NULL, EVP_sm3(), NULL, sm2_pkey[testnum])) { BIO_printf(bio_err, "SM2 verify init failure\n"); ERR_print_errors(bio_err); count = -1; break; } ret = EVP_DigestVerify(sm2ctx[testnum], sm2sig, sm2sigsize, buf, 20); if (ret != 1) { BIO_printf(bio_err, "SM2 verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif /* OPENSSL_NO_SM2 */ static int KEM_keygen_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->kem_gen_ctx[testnum]; EVP_PKEY *pkey = NULL; int count; for (count = 0; COND(kems_c[testnum][0]); count++) { if (EVP_PKEY_keygen(ctx, &pkey) <= 0) return -1; /* * runtime defined to quite some degree by randomness, * so performance overhead of _free doesn't impact * results significantly. In any case this test is * meant to permit relative algorithm performance * comparison. */ EVP_PKEY_free(pkey); pkey = NULL; } return count; } static int KEM_encaps_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->kem_encaps_ctx[testnum]; size_t out_len = tempargs->kem_out_len[testnum]; size_t secret_len = tempargs->kem_secret_len[testnum]; unsigned char *out = tempargs->kem_out[testnum]; unsigned char *secret = tempargs->kem_send_secret[testnum]; int count; for (count = 0; COND(kems_c[testnum][1]); count++) { if (EVP_PKEY_encapsulate(ctx, out, &out_len, secret, &secret_len) <= 0) return -1; } return count; } static int KEM_decaps_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->kem_decaps_ctx[testnum]; size_t out_len = tempargs->kem_out_len[testnum]; size_t secret_len = tempargs->kem_secret_len[testnum]; unsigned char *out = tempargs->kem_out[testnum]; unsigned char *secret = tempargs->kem_send_secret[testnum]; int count; for (count = 0; COND(kems_c[testnum][2]); count++) { if (EVP_PKEY_decapsulate(ctx, secret, &secret_len, out, out_len) <= 0) return -1; } return count; } static int SIG_keygen_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->sig_gen_ctx[testnum]; EVP_PKEY *pkey = NULL; int count; for (count = 0; COND(kems_c[testnum][0]); count++) { EVP_PKEY_keygen(ctx, &pkey); /* TBD: How much does free influence runtime? */ EVP_PKEY_free(pkey); pkey = NULL; } return count; } static int SIG_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->sig_sign_ctx[testnum]; /* be sure to not change stored sig: */ unsigned char *sig = app_malloc(tempargs->sig_max_sig_len[testnum], "sig sign loop"); unsigned char md[SHA256_DIGEST_LENGTH] = { 0 }; size_t md_len = SHA256_DIGEST_LENGTH; int count; for (count = 0; COND(kems_c[testnum][1]); count++) { size_t sig_len = tempargs->sig_max_sig_len[testnum]; int ret = EVP_PKEY_sign(ctx, sig, &sig_len, md, md_len); if (ret <= 0) { BIO_printf(bio_err, "SIG sign failure at count %d\n", count); ERR_print_errors(bio_err); count = -1; break; } } OPENSSL_free(sig); return count; } static int SIG_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->sig_verify_ctx[testnum]; size_t sig_len = tempargs->sig_act_sig_len[testnum]; unsigned char *sig = tempargs->sig_sig[testnum]; unsigned char md[SHA256_DIGEST_LENGTH] = { 0 }; size_t md_len = SHA256_DIGEST_LENGTH; int count; for (count = 0; COND(kems_c[testnum][2]); count++) { int ret = EVP_PKEY_verify(ctx, sig, sig_len, md, md_len); if (ret <= 0) { BIO_printf(bio_err, "SIG verify failure at count %d\n", count); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int run_benchmark(int async_jobs, int (*loop_function) (void *), loopargs_t *loopargs) { int job_op_count = 0; int total_op_count = 0; int num_inprogress = 0; int error = 0, i = 0, ret = 0; OSSL_ASYNC_FD job_fd = 0; size_t num_job_fds = 0; if (async_jobs == 0) { return loop_function((void *)&loopargs); } for (i = 0; i < async_jobs && !error; i++) { loopargs_t *looparg_item = loopargs + i; /* Copy pointer content (looparg_t item address) into async context */ ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, &job_op_count, loop_function, (void *)&looparg_item, sizeof(looparg_item)); switch (ret) { case ASYNC_PAUSE: ++num_inprogress; break; case ASYNC_FINISH: if (job_op_count == -1) { error = 1; } else { total_op_count += job_op_count; } break; case ASYNC_NO_JOBS: case ASYNC_ERR: BIO_printf(bio_err, "Failure in the job\n"); ERR_print_errors(bio_err); error = 1; break; } } while (num_inprogress > 0) { #if defined(OPENSSL_SYS_WINDOWS) DWORD avail = 0; #elif defined(OPENSSL_SYS_UNIX) int select_result = 0; OSSL_ASYNC_FD max_fd = 0; fd_set waitfdset; FD_ZERO(&waitfdset); for (i = 0; i < async_jobs && num_inprogress > 0; i++) { if (loopargs[i].inprogress_job == NULL) continue; if (!ASYNC_WAIT_CTX_get_all_fds (loopargs[i].wait_ctx, NULL, &num_job_fds) || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); FD_SET(job_fd, &waitfdset); if (job_fd > max_fd) max_fd = job_fd; } if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { BIO_printf(bio_err, "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " "Decrease the value of async_jobs\n", max_fd, FD_SETSIZE); ERR_print_errors(bio_err); error = 1; break; } select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL); if (select_result == -1 && errno == EINTR) continue; if (select_result == -1) { BIO_printf(bio_err, "Failure in the select\n"); ERR_print_errors(bio_err); error = 1; break; } if (select_result == 0) continue; #endif for (i = 0; i < async_jobs; i++) { if (loopargs[i].inprogress_job == NULL) continue; if (!ASYNC_WAIT_CTX_get_all_fds (loopargs[i].wait_ctx, NULL, &num_job_fds) || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); #if defined(OPENSSL_SYS_UNIX) if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) continue; #elif defined(OPENSSL_SYS_WINDOWS) if (num_job_fds == 1 && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0) continue; #endif ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, &job_op_count, loop_function, (void *)(loopargs + i), sizeof(loopargs_t)); switch (ret) { case ASYNC_PAUSE: break; case ASYNC_FINISH: if (job_op_count == -1) { error = 1; } else { total_op_count += job_op_count; } --num_inprogress; loopargs[i].inprogress_job = NULL; break; case ASYNC_NO_JOBS: case ASYNC_ERR: --num_inprogress; loopargs[i].inprogress_job = NULL; BIO_printf(bio_err, "Failure in the job\n"); ERR_print_errors(bio_err); error = 1; break; } } } return error ? -1 : total_op_count; } typedef struct ec_curve_st { const char *name; unsigned int nid; unsigned int bits; size_t sigsize; /* only used for EdDSA curves */ } EC_CURVE; static EVP_PKEY *get_ecdsa(const EC_CURVE *curve) { EVP_PKEY_CTX *kctx = NULL; EVP_PKEY *key = NULL; /* Ensure that the error queue is empty */ if (ERR_peek_error()) { BIO_printf(bio_err, "WARNING: the error queue contains previous unhandled errors.\n"); ERR_print_errors(bio_err); } /* * Let's try to create a ctx directly from the NID: this works for * curves like Curve25519 that are not implemented through the low * level EC interface. * If this fails we try creating a EVP_PKEY_EC generic param ctx, * then we set the curve by NID before deriving the actual keygen * ctx for that specific curve. */ kctx = EVP_PKEY_CTX_new_id(curve->nid, NULL); if (kctx == NULL) { EVP_PKEY_CTX *pctx = NULL; EVP_PKEY *params = NULL; /* * If we reach this code EVP_PKEY_CTX_new_id() failed and a * "int_ctx_new:unsupported algorithm" error was added to the * error queue. * We remove it from the error queue as we are handling it. */ unsigned long error = ERR_peek_error(); if (error == ERR_peek_last_error() /* oldest and latest errors match */ /* check that the error origin matches */ && ERR_GET_LIB(error) == ERR_LIB_EVP && (ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM || ERR_GET_REASON(error) == ERR_R_UNSUPPORTED)) ERR_get_error(); /* pop error from queue */ if (ERR_peek_error()) { BIO_printf(bio_err, "Unhandled error in the error queue during EC key setup.\n"); ERR_print_errors(bio_err); return NULL; } /* Create the context for parameter generation */ if ((pctx = EVP_PKEY_CTX_new_from_name(NULL, "EC", NULL)) == NULL || EVP_PKEY_paramgen_init(pctx) <= 0 || EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, curve->nid) <= 0 || EVP_PKEY_paramgen(pctx, ¶ms) <= 0) { BIO_printf(bio_err, "EC params init failure.\n"); ERR_print_errors(bio_err); EVP_PKEY_CTX_free(pctx); return NULL; } EVP_PKEY_CTX_free(pctx); /* Create the context for the key generation */ kctx = EVP_PKEY_CTX_new(params, NULL); EVP_PKEY_free(params); } if (kctx == NULL || EVP_PKEY_keygen_init(kctx) <= 0 || EVP_PKEY_keygen(kctx, &key) <= 0) { BIO_printf(bio_err, "EC key generation failure.\n"); ERR_print_errors(bio_err); key = NULL; } EVP_PKEY_CTX_free(kctx); return key; } #define stop_it(do_it, test_num)\ memset(do_it + test_num, 0, OSSL_NELEM(do_it) - test_num); /* Checks to see if algorithms are fetchable */ #define IS_FETCHABLE(type, TYPE) \ static int is_ ## type ## _fetchable(const TYPE *alg) \ { \ TYPE *impl; \ const char *propq = app_get0_propq(); \ OSSL_LIB_CTX *libctx = app_get0_libctx(); \ const char *name = TYPE ## _get0_name(alg); \ \ ERR_set_mark(); \ impl = TYPE ## _fetch(libctx, name, propq); \ ERR_pop_to_mark(); \ if (impl == NULL) \ return 0; \ TYPE ## _free(impl); \ return 1; \ } IS_FETCHABLE(signature, EVP_SIGNATURE) IS_FETCHABLE(kem, EVP_KEM) DEFINE_STACK_OF(EVP_KEM) static int kems_cmp(const EVP_KEM * const *a, const EVP_KEM * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_KEM_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_KEM_get0_provider(*b))); } static void collect_kem(EVP_KEM *kem, void *stack) { STACK_OF(EVP_KEM) *kem_stack = stack; if (is_kem_fetchable(kem) && sk_EVP_KEM_push(kem_stack, kem) > 0) { EVP_KEM_up_ref(kem); } } static int kem_locate(const char *algo, unsigned int *idx) { unsigned int i; for (i = 0; i < kems_algs_len; i++) { if (strcmp(kems_algname[i], algo) == 0) { *idx = i; return 1; } } return 0; } DEFINE_STACK_OF(EVP_SIGNATURE) static int signatures_cmp(const EVP_SIGNATURE * const *a, const EVP_SIGNATURE * const *b) { return strcmp(OSSL_PROVIDER_get0_name(EVP_SIGNATURE_get0_provider(*a)), OSSL_PROVIDER_get0_name(EVP_SIGNATURE_get0_provider(*b))); } static void collect_signatures(EVP_SIGNATURE *sig, void *stack) { STACK_OF(EVP_SIGNATURE) *sig_stack = stack; if (is_signature_fetchable(sig) && sk_EVP_SIGNATURE_push(sig_stack, sig) > 0) EVP_SIGNATURE_up_ref(sig); } static int sig_locate(const char *algo, unsigned int *idx) { unsigned int i; for (i = 0; i < sigs_algs_len; i++) { if (strcmp(sigs_algname[i], algo) == 0) { *idx = i; return 1; } } return 0; } static int get_max(const uint8_t doit[], size_t algs_len) { size_t i = 0; int maxcnt = 0; for (i = 0; i < algs_len; i++) if (maxcnt < doit[i]) maxcnt = doit[i]; return maxcnt; } int speed_main(int argc, char **argv) { CONF *conf = NULL; ENGINE *e = NULL; loopargs_t *loopargs = NULL; const char *prog; const char *engine_id = NULL; EVP_CIPHER *evp_cipher = NULL; EVP_MAC *mac = NULL; double d = 0.0; OPTION_CHOICE o; int async_init = 0, multiblock = 0, pr_header = 0; uint8_t doit[ALGOR_NUM] = { 0 }; int ret = 1, misalign = 0, lengths_single = 0, aead = 0; STACK_OF(EVP_KEM) *kem_stack = NULL; STACK_OF(EVP_SIGNATURE) *sig_stack = NULL; long count = 0; unsigned int size_num = SIZE_NUM; unsigned int i, k, loopargs_len = 0, async_jobs = 0; unsigned int idx; int keylen; int buflen; size_t declen; BIGNUM *bn = NULL; EVP_PKEY_CTX *genctx = NULL; #ifndef NO_FORK int multi = 0; #endif long op_count = 1; openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS, ECDSA_SECONDS, ECDH_SECONDS, EdDSA_SECONDS, SM2_SECONDS, FFDH_SECONDS, KEM_SECONDS, SIG_SECONDS }; static const unsigned char key32[32] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 }; static const unsigned char deskey[] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, /* key1 */ 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, /* key2 */ 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 /* key3 */ }; static const struct { const unsigned char *data; unsigned int length; unsigned int bits; } rsa_keys[] = { { test512, sizeof(test512), 512 }, { test1024, sizeof(test1024), 1024 }, { test2048, sizeof(test2048), 2048 }, { test3072, sizeof(test3072), 3072 }, { test4096, sizeof(test4096), 4096 }, { test7680, sizeof(test7680), 7680 }, { test15360, sizeof(test15360), 15360 } }; uint8_t rsa_doit[RSA_NUM] = { 0 }; int primes = RSA_DEFAULT_PRIME_NUM; #ifndef OPENSSL_NO_DH typedef struct ffdh_params_st { const char *name; unsigned int nid; unsigned int bits; } FFDH_PARAMS; static const FFDH_PARAMS ffdh_params[FFDH_NUM] = { {"ffdh2048", NID_ffdhe2048, 2048}, {"ffdh3072", NID_ffdhe3072, 3072}, {"ffdh4096", NID_ffdhe4096, 4096}, {"ffdh6144", NID_ffdhe6144, 6144}, {"ffdh8192", NID_ffdhe8192, 8192} }; uint8_t ffdh_doit[FFDH_NUM] = { 0 }; #endif /* OPENSSL_NO_DH */ static const unsigned int dsa_bits[DSA_NUM] = { 1024, 2048 }; uint8_t dsa_doit[DSA_NUM] = { 0 }; /* * We only test over the following curves as they are representative, To * add tests over more curves, simply add the curve NID and curve name to * the following arrays and increase the |ecdh_choices| and |ecdsa_choices| * lists accordingly. */ static const EC_CURVE ec_curves[EC_NUM] = { /* Prime Curves */ {"secp160r1", NID_secp160r1, 160}, {"nistp192", NID_X9_62_prime192v1, 192}, {"nistp224", NID_secp224r1, 224}, {"nistp256", NID_X9_62_prime256v1, 256}, {"nistp384", NID_secp384r1, 384}, {"nistp521", NID_secp521r1, 521}, #ifndef OPENSSL_NO_EC2M /* Binary Curves */ {"nistk163", NID_sect163k1, 163}, {"nistk233", NID_sect233k1, 233}, {"nistk283", NID_sect283k1, 283}, {"nistk409", NID_sect409k1, 409}, {"nistk571", NID_sect571k1, 571}, {"nistb163", NID_sect163r2, 163}, {"nistb233", NID_sect233r1, 233}, {"nistb283", NID_sect283r1, 283}, {"nistb409", NID_sect409r1, 409}, {"nistb571", NID_sect571r1, 571}, #endif {"brainpoolP256r1", NID_brainpoolP256r1, 256}, {"brainpoolP256t1", NID_brainpoolP256t1, 256}, {"brainpoolP384r1", NID_brainpoolP384r1, 384}, {"brainpoolP384t1", NID_brainpoolP384t1, 384}, {"brainpoolP512r1", NID_brainpoolP512r1, 512}, {"brainpoolP512t1", NID_brainpoolP512t1, 512}, #ifndef OPENSSL_NO_ECX /* Other and ECDH only ones */ {"X25519", NID_X25519, 253}, {"X448", NID_X448, 448} #endif }; #ifndef OPENSSL_NO_ECX static const EC_CURVE ed_curves[EdDSA_NUM] = { /* EdDSA */ {"Ed25519", NID_ED25519, 253, 64}, {"Ed448", NID_ED448, 456, 114} }; #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 static const EC_CURVE sm2_curves[SM2_NUM] = { /* SM2 */ {"CurveSM2", NID_sm2, 256} }; uint8_t sm2_doit[SM2_NUM] = { 0 }; #endif uint8_t ecdsa_doit[ECDSA_NUM] = { 0 }; uint8_t ecdh_doit[EC_NUM] = { 0 }; #ifndef OPENSSL_NO_ECX uint8_t eddsa_doit[EdDSA_NUM] = { 0 }; #endif /* OPENSSL_NO_ECX */ uint8_t kems_doit[MAX_KEM_NUM] = { 0 }; uint8_t sigs_doit[MAX_SIG_NUM] = { 0 }; uint8_t do_kems = 0; uint8_t do_sigs = 0; /* checks declared curves against choices list. */ #ifndef OPENSSL_NO_ECX OPENSSL_assert(ed_curves[EdDSA_NUM - 1].nid == NID_ED448); OPENSSL_assert(strcmp(eddsa_choices[EdDSA_NUM - 1].name, "ed448") == 0); OPENSSL_assert(ec_curves[EC_NUM - 1].nid == NID_X448); OPENSSL_assert(strcmp(ecdh_choices[EC_NUM - 1].name, "ecdhx448") == 0); OPENSSL_assert(ec_curves[ECDSA_NUM - 1].nid == NID_brainpoolP512t1); OPENSSL_assert(strcmp(ecdsa_choices[ECDSA_NUM - 1].name, "ecdsabrp512t1") == 0); #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 OPENSSL_assert(sm2_curves[SM2_NUM - 1].nid == NID_sm2); OPENSSL_assert(strcmp(sm2_choices[SM2_NUM - 1].name, "curveSM2") == 0); #endif prog = opt_init(argc, argv, speed_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opterr: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(speed_options); ret = 0; goto end; case OPT_ELAPSED: usertime = 0; break; case OPT_EVP: if (doit[D_EVP]) { BIO_printf(bio_err, "%s: -evp option cannot be used more than once\n", prog); goto opterr; } ERR_set_mark(); if (!opt_cipher_silent(opt_arg(), &evp_cipher)) { if (have_md(opt_arg())) evp_md_name = opt_arg(); } if (evp_cipher == NULL && evp_md_name == NULL) { ERR_clear_last_mark(); BIO_printf(bio_err, "%s: %s is an unknown cipher or digest\n", prog, opt_arg()); goto end; } ERR_pop_to_mark(); doit[D_EVP] = 1; break; case OPT_HMAC: if (!have_md(opt_arg())) { BIO_printf(bio_err, "%s: %s is an unknown digest\n", prog, opt_arg()); goto end; } evp_mac_mdname = opt_arg(); doit[D_HMAC] = 1; break; case OPT_CMAC: if (!have_cipher(opt_arg())) { BIO_printf(bio_err, "%s: %s is an unknown cipher\n", prog, opt_arg()); goto end; } evp_mac_ciphername = opt_arg(); doit[D_EVP_CMAC] = 1; break; case OPT_DECRYPT: decrypt = 1; break; case OPT_ENGINE: /* * In a forked execution, an engine might need to be * initialised by each child process, not by the parent. * So store the name here and run setup_engine() later on. */ engine_id = opt_arg(); break; case OPT_MULTI: #ifndef NO_FORK multi = opt_int_arg(); if ((size_t)multi >= SIZE_MAX / sizeof(int)) { BIO_printf(bio_err, "%s: multi argument too large\n", prog); return 0; } #endif break; case OPT_ASYNCJOBS: #ifndef OPENSSL_NO_ASYNC async_jobs = opt_int_arg(); if (!ASYNC_is_capable()) { BIO_printf(bio_err, "%s: async_jobs specified but async not supported\n", prog); goto opterr; } if (async_jobs > 99999) { BIO_printf(bio_err, "%s: too many async_jobs\n", prog); goto opterr; } #endif break; case OPT_MISALIGN: misalign = opt_int_arg(); if (misalign > MISALIGN) { BIO_printf(bio_err, "%s: Maximum offset is %d\n", prog, MISALIGN); goto opterr; } break; case OPT_MR: mr = 1; break; case OPT_MB: multiblock = 1; #ifdef OPENSSL_NO_MULTIBLOCK BIO_printf(bio_err, "%s: -mb specified but multi-block support is disabled\n", prog); goto end; #endif break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_PROV_CASES: if (!opt_provider(o)) goto end; break; case OPT_CONFIG: conf = app_load_config_modules(opt_arg()); if (conf == NULL) goto end; break; case OPT_PRIMES: primes = opt_int_arg(); break; case OPT_SECONDS: seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa = seconds.ecdh = seconds.eddsa = seconds.sm2 = seconds.ffdh = seconds.kem = seconds.sig = opt_int_arg(); break; case OPT_BYTES: lengths_single = opt_int_arg(); lengths = &lengths_single; size_num = 1; break; case OPT_AEAD: aead = 1; break; case OPT_KEM: do_kems = 1; break; case OPT_SIG: do_sigs = 1; break; case OPT_MLOCK: domlock = 1; #if !defined(_WIN32) && !defined(OPENSSL_SYS_LINUX) BIO_printf(bio_err, "%s: -mlock not supported on this platform\n", prog); goto end; #endif break; } } /* find all KEMs currently available */ kem_stack = sk_EVP_KEM_new(kems_cmp); EVP_KEM_do_all_provided(app_get0_libctx(), collect_kem, kem_stack); kems_algs_len = 0; for (idx = 0; idx < (unsigned int)sk_EVP_KEM_num(kem_stack); idx++) { EVP_KEM *kem = sk_EVP_KEM_value(kem_stack, idx); if (strcmp(EVP_KEM_get0_name(kem), "RSA") == 0) { if (kems_algs_len + OSSL_NELEM(rsa_choices) >= MAX_KEM_NUM) { BIO_printf(bio_err, "Too many KEMs registered. Change MAX_KEM_NUM.\n"); goto end; } for (i = 0; i < OSSL_NELEM(rsa_choices); i++) { kems_doit[kems_algs_len] = 1; kems_algname[kems_algs_len++] = OPENSSL_strdup(rsa_choices[i].name); } } else if (strcmp(EVP_KEM_get0_name(kem), "EC") == 0) { if (kems_algs_len + 3 >= MAX_KEM_NUM) { BIO_printf(bio_err, "Too many KEMs registered. Change MAX_KEM_NUM.\n"); goto end; } kems_doit[kems_algs_len] = 1; kems_algname[kems_algs_len++] = OPENSSL_strdup("ECP-256"); kems_doit[kems_algs_len] = 1; kems_algname[kems_algs_len++] = OPENSSL_strdup("ECP-384"); kems_doit[kems_algs_len] = 1; kems_algname[kems_algs_len++] = OPENSSL_strdup("ECP-521"); } else { if (kems_algs_len + 1 >= MAX_KEM_NUM) { BIO_printf(bio_err, "Too many KEMs registered. Change MAX_KEM_NUM.\n"); goto end; } kems_doit[kems_algs_len] = 1; kems_algname[kems_algs_len++] = OPENSSL_strdup(EVP_KEM_get0_name(kem)); } } sk_EVP_KEM_pop_free(kem_stack, EVP_KEM_free); kem_stack = NULL; /* find all SIGNATUREs currently available */ sig_stack = sk_EVP_SIGNATURE_new(signatures_cmp); EVP_SIGNATURE_do_all_provided(app_get0_libctx(), collect_signatures, sig_stack); sigs_algs_len = 0; for (idx = 0; idx < (unsigned int)sk_EVP_SIGNATURE_num(sig_stack); idx++) { EVP_SIGNATURE *s = sk_EVP_SIGNATURE_value(sig_stack, idx); const char *sig_name = EVP_SIGNATURE_get0_name(s); if (strcmp(sig_name, "RSA") == 0) { if (sigs_algs_len + OSSL_NELEM(rsa_choices) >= MAX_SIG_NUM) { BIO_printf(bio_err, "Too many signatures registered. Change MAX_SIG_NUM.\n"); goto end; } for (i = 0; i < OSSL_NELEM(rsa_choices); i++) { sigs_doit[sigs_algs_len] = 1; sigs_algname[sigs_algs_len++] = OPENSSL_strdup(rsa_choices[i].name); } } else if (strcmp(sig_name, "DSA") == 0) { if (sigs_algs_len + DSA_NUM >= MAX_SIG_NUM) { BIO_printf(bio_err, "Too many signatures registered. Change MAX_SIG_NUM.\n"); goto end; } for (i = 0; i < DSA_NUM; i++) { sigs_doit[sigs_algs_len] = 1; sigs_algname[sigs_algs_len++] = OPENSSL_strdup(dsa_choices[i].name); } } /* skipping these algs as tested elsewhere - and b/o setup is a pain */ else if (strcmp(sig_name, "ED25519") && strcmp(sig_name, "ED448") && strcmp(sig_name, "ECDSA") && strcmp(sig_name, "HMAC") && strcmp(sig_name, "SIPHASH") && strcmp(sig_name, "POLY1305") && strcmp(sig_name, "CMAC") && strcmp(sig_name, "SM2")) { /* skip alg */ if (sigs_algs_len + 1 >= MAX_SIG_NUM) { BIO_printf(bio_err, "Too many signatures registered. Change MAX_SIG_NUM.\n"); goto end; } /* activate this provider algorithm */ sigs_doit[sigs_algs_len] = 1; sigs_algname[sigs_algs_len++] = OPENSSL_strdup(sig_name); } } sk_EVP_SIGNATURE_pop_free(sig_stack, EVP_SIGNATURE_free); sig_stack = NULL; /* Remaining arguments are algorithms. */ argc = opt_num_rest(); argv = opt_rest(); if (!app_RAND_load()) goto end; for (; *argv; argv++) { const char *algo = *argv; int algo_found = 0; if (opt_found(algo, doit_choices, &i)) { doit[i] = 1; algo_found = 1; } if (strcmp(algo, "des") == 0) { doit[D_CBC_DES] = doit[D_EDE3_DES] = 1; algo_found = 1; } if (strcmp(algo, "sha") == 0) { doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1; algo_found = 1; } #ifndef OPENSSL_NO_DEPRECATED_3_0 if (strcmp(algo, "openssl") == 0) /* just for compatibility */ algo_found = 1; #endif if (HAS_PREFIX(algo, "rsa")) { if (algo[sizeof("rsa") - 1] == '\0') { memset(rsa_doit, 1, sizeof(rsa_doit)); algo_found = 1; } if (opt_found(algo, rsa_choices, &i)) { rsa_doit[i] = 1; algo_found = 1; } } #ifndef OPENSSL_NO_DH if (HAS_PREFIX(algo, "ffdh")) { if (algo[sizeof("ffdh") - 1] == '\0') { memset(ffdh_doit, 1, sizeof(ffdh_doit)); algo_found = 1; } if (opt_found(algo, ffdh_choices, &i)) { ffdh_doit[i] = 2; algo_found = 1; } } #endif if (HAS_PREFIX(algo, "dsa")) { if (algo[sizeof("dsa") - 1] == '\0') { memset(dsa_doit, 1, sizeof(dsa_doit)); algo_found = 1; } if (opt_found(algo, dsa_choices, &i)) { dsa_doit[i] = 2; algo_found = 1; } } if (strcmp(algo, "aes") == 0) { doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1; algo_found = 1; } if (strcmp(algo, "camellia") == 0) { doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1; algo_found = 1; } if (HAS_PREFIX(algo, "ecdsa")) { if (algo[sizeof("ecdsa") - 1] == '\0') { memset(ecdsa_doit, 1, sizeof(ecdsa_doit)); algo_found = 1; } if (opt_found(algo, ecdsa_choices, &i)) { ecdsa_doit[i] = 2; algo_found = 1; } } if (HAS_PREFIX(algo, "ecdh")) { if (algo[sizeof("ecdh") - 1] == '\0') { memset(ecdh_doit, 1, sizeof(ecdh_doit)); algo_found = 1; } if (opt_found(algo, ecdh_choices, &i)) { ecdh_doit[i] = 2; algo_found = 1; } } #ifndef OPENSSL_NO_ECX if (strcmp(algo, "eddsa") == 0) { memset(eddsa_doit, 1, sizeof(eddsa_doit)); algo_found = 1; } if (opt_found(algo, eddsa_choices, &i)) { eddsa_doit[i] = 2; algo_found = 1; } #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 if (strcmp(algo, "sm2") == 0) { memset(sm2_doit, 1, sizeof(sm2_doit)); algo_found = 1; } if (opt_found(algo, sm2_choices, &i)) { sm2_doit[i] = 2; algo_found = 1; } #endif if (kem_locate(algo, &idx)) { kems_doit[idx]++; do_kems = 1; algo_found = 1; } if (sig_locate(algo, &idx)) { sigs_doit[idx]++; do_sigs = 1; algo_found = 1; } if (strcmp(algo, "kmac") == 0) { doit[D_KMAC128] = doit[D_KMAC256] = 1; algo_found = 1; } if (strcmp(algo, "cmac") == 0) { doit[D_EVP_CMAC] = 1; algo_found = 1; } if (!algo_found) { BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, algo); goto end; } } /* Sanity checks */ if (aead) { if (evp_cipher == NULL) { BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n"); goto end; } else if (!(EVP_CIPHER_get_flags(evp_cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { BIO_printf(bio_err, "%s is not an AEAD cipher\n", EVP_CIPHER_get0_name(evp_cipher)); goto end; } } if (kems_algs_len > 0) { int maxcnt = get_max(kems_doit, kems_algs_len); if (maxcnt > 1) { /* some algs explicitly selected */ for (i = 0; i < kems_algs_len; i++) { /* disable the rest */ kems_doit[i]--; } } } if (sigs_algs_len > 0) { int maxcnt = get_max(sigs_doit, sigs_algs_len); if (maxcnt > 1) { /* some algs explicitly selected */ for (i = 0; i < sigs_algs_len; i++) { /* disable the rest */ sigs_doit[i]--; } } } if (multiblock) { if (evp_cipher == NULL) { BIO_printf(bio_err, "-mb can be used only with a multi-block" " capable cipher\n"); goto end; } else if (!(EVP_CIPHER_get_flags(evp_cipher) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { BIO_printf(bio_err, "%s is not a multi-block capable\n", EVP_CIPHER_get0_name(evp_cipher)); goto end; } else if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with -mb"); goto end; } } /* Initialize the job pool if async mode is enabled */ if (async_jobs > 0) { async_init = ASYNC_init_thread(async_jobs, async_jobs); if (!async_init) { BIO_printf(bio_err, "Error creating the ASYNC job pool\n"); goto end; } } loopargs_len = (async_jobs == 0 ? 1 : async_jobs); loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); buflen = lengths[size_num - 1]; if (buflen < 36) /* size of random vector in RSA benchmark */ buflen = 36; if (INT_MAX - (MAX_MISALIGNMENT + 1) < buflen) { BIO_printf(bio_err, "Error: buffer size too large\n"); goto end; } buflen += MAX_MISALIGNMENT + 1; for (i = 0; i < loopargs_len; i++) { if (async_jobs > 0) { loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new(); if (loopargs[i].wait_ctx == NULL) { BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n"); goto end; } } loopargs[i].buf_malloc = app_malloc(buflen, "input buffer"); loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer"); /* Align the start of buffers on a 64 byte boundary */ loopargs[i].buf = loopargs[i].buf_malloc + misalign; loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; loopargs[i].buflen = buflen - misalign; loopargs[i].sigsize = buflen - misalign; loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); #ifndef OPENSSL_NO_DH loopargs[i].secret_ff_a = app_malloc(MAX_FFDH_SIZE, "FFDH secret a"); loopargs[i].secret_ff_b = app_malloc(MAX_FFDH_SIZE, "FFDH secret b"); #endif } #ifndef NO_FORK if (multi && do_multi(multi, size_num)) goto show_res; #endif for (i = 0; i < loopargs_len; ++i) { if (domlock) { #if defined(_WIN32) (void)VirtualLock(loopargs[i].buf_malloc, buflen); (void)VirtualLock(loopargs[i].buf2_malloc, buflen); #elif defined(OPENSSL_SYS_LINUX) (void)mlock(loopargs[i].buf_malloc, buflen); (void)mlock(loopargs[i].buf_malloc, buflen); #endif } memset(loopargs[i].buf_malloc, 0, buflen); memset(loopargs[i].buf2_malloc, 0, buflen); } /* Initialize the engine after the fork */ e = setup_engine(engine_id, 0); /* No parameters; turn on everything. */ if (argc == 0 && !doit[D_EVP] && !doit[D_HMAC] && !doit[D_EVP_CMAC] && !do_kems && !do_sigs) { memset(doit, 1, sizeof(doit)); doit[D_EVP] = doit[D_EVP_CMAC] = 0; ERR_set_mark(); for (i = D_MD2; i <= D_WHIRLPOOL; i++) { if (!have_md(names[i])) doit[i] = 0; } for (i = D_CBC_DES; i <= D_CBC_256_CML; i++) { if (!have_cipher(names[i])) doit[i] = 0; } if ((mac = EVP_MAC_fetch(app_get0_libctx(), "GMAC", app_get0_propq())) != NULL) { EVP_MAC_free(mac); mac = NULL; } else { doit[D_GHASH] = 0; } if ((mac = EVP_MAC_fetch(app_get0_libctx(), "HMAC", app_get0_propq())) != NULL) { EVP_MAC_free(mac); mac = NULL; } else { doit[D_HMAC] = 0; } ERR_pop_to_mark(); memset(rsa_doit, 1, sizeof(rsa_doit)); #ifndef OPENSSL_NO_DH memset(ffdh_doit, 1, sizeof(ffdh_doit)); #endif memset(dsa_doit, 1, sizeof(dsa_doit)); #ifndef OPENSSL_NO_ECX memset(ecdsa_doit, 1, sizeof(ecdsa_doit)); memset(ecdh_doit, 1, sizeof(ecdh_doit)); memset(eddsa_doit, 1, sizeof(eddsa_doit)); #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 memset(sm2_doit, 1, sizeof(sm2_doit)); #endif memset(kems_doit, 1, sizeof(kems_doit)); do_kems = 1; memset(sigs_doit, 1, sizeof(sigs_doit)); do_sigs = 1; } for (i = 0; i < ALGOR_NUM; i++) if (doit[i]) pr_header++; if (usertime == 0 && !mr) BIO_printf(bio_err, "You have chosen to measure elapsed time " "instead of user CPU time.\n"); #if SIGALRM > 0 signal(SIGALRM, alarmed); #endif if (doit[D_MD2]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD2], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs); d = Time_F(STOP); print_result(D_MD2, testnum, count, d); if (count < 0) break; } } if (doit[D_MDC2]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MDC2], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs); d = Time_F(STOP); print_result(D_MDC2, testnum, count, d); if (count < 0) break; } } if (doit[D_MD4]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD4], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs); d = Time_F(STOP); print_result(D_MD4, testnum, count, d); if (count < 0) break; } } if (doit[D_MD5]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD5], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, MD5_loop, loopargs); d = Time_F(STOP); print_result(D_MD5, testnum, count, d); if (count < 0) break; } } if (doit[D_SHA1]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA1], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA1_loop, loopargs); d = Time_F(STOP); print_result(D_SHA1, testnum, count, d); if (count < 0) break; } } if (doit[D_SHA256]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA256], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA256_loop, loopargs); d = Time_F(STOP); print_result(D_SHA256, testnum, count, d); if (count < 0) break; } } if (doit[D_SHA512]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA512], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA512_loop, loopargs); d = Time_F(STOP); print_result(D_SHA512, testnum, count, d); if (count < 0) break; } } if (doit[D_WHIRLPOOL]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_WHIRLPOOL], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); d = Time_F(STOP); print_result(D_WHIRLPOOL, testnum, count, d); if (count < 0) break; } } if (doit[D_RMD160]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RMD160], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); d = Time_F(STOP); print_result(D_RMD160, testnum, count, d); if (count < 0) break; } } if (doit[D_HMAC]) { static const char hmac_key[] = "This is a key..."; int len = strlen(hmac_key); OSSL_PARAM params[3]; if (evp_mac_mdname == NULL) goto end; evp_hmac_name = app_malloc(sizeof("hmac()") + strlen(evp_mac_mdname), "HMAC name"); sprintf(evp_hmac_name, "hmac(%s)", evp_mac_mdname); names[D_HMAC] = evp_hmac_name; params[0] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, evp_mac_mdname, 0); params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (char *)hmac_key, len); params[2] = OSSL_PARAM_construct_end(); if (mac_setup("HMAC", &mac, params, loopargs, loopargs_len) < 1) goto end; for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_HMAC], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, HMAC_loop, loopargs); d = Time_F(STOP); print_result(D_HMAC, testnum, count, d); if (count < 0) break; } mac_teardown(&mac, loopargs, loopargs_len); } if (doit[D_CBC_DES]) { int st = 1; for (i = 0; st && i < loopargs_len; i++) { loopargs[i].ctx = init_evp_cipher_ctx("des-cbc", deskey, sizeof(deskey) / 3); st = loopargs[i].ctx != NULL; } algindex = D_CBC_DES; for (testnum = 0; st && testnum < size_num; testnum++) { print_message(names[D_CBC_DES], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Cipher_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_DES, testnum, count, d); } for (i = 0; i < loopargs_len; i++) EVP_CIPHER_CTX_free(loopargs[i].ctx); } if (doit[D_EDE3_DES]) { int st = 1; for (i = 0; st && i < loopargs_len; i++) { loopargs[i].ctx = init_evp_cipher_ctx("des-ede3-cbc", deskey, sizeof(deskey)); st = loopargs[i].ctx != NULL; } algindex = D_EDE3_DES; for (testnum = 0; st && testnum < size_num; testnum++) { print_message(names[D_EDE3_DES], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Cipher_loop, loopargs); d = Time_F(STOP); print_result(D_EDE3_DES, testnum, count, d); } for (i = 0; i < loopargs_len; i++) EVP_CIPHER_CTX_free(loopargs[i].ctx); } for (k = 0; k < 3; k++) { algindex = D_CBC_128_AES + k; if (doit[algindex]) { int st = 1; keylen = 16 + k * 8; for (i = 0; st && i < loopargs_len; i++) { loopargs[i].ctx = init_evp_cipher_ctx(names[algindex], key32, keylen); st = loopargs[i].ctx != NULL; } for (testnum = 0; st && testnum < size_num; testnum++) { print_message(names[algindex], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Cipher_loop, loopargs); d = Time_F(STOP); print_result(algindex, testnum, count, d); } for (i = 0; i < loopargs_len; i++) EVP_CIPHER_CTX_free(loopargs[i].ctx); } } for (k = 0; k < 3; k++) { algindex = D_CBC_128_CML + k; if (doit[algindex]) { int st = 1; keylen = 16 + k * 8; for (i = 0; st && i < loopargs_len; i++) { loopargs[i].ctx = init_evp_cipher_ctx(names[algindex], key32, keylen); st = loopargs[i].ctx != NULL; } for (testnum = 0; st && testnum < size_num; testnum++) { print_message(names[algindex], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Cipher_loop, loopargs); d = Time_F(STOP); print_result(algindex, testnum, count, d); } for (i = 0; i < loopargs_len; i++) EVP_CIPHER_CTX_free(loopargs[i].ctx); } } for (algindex = D_RC4; algindex <= D_CBC_CAST; algindex++) { if (doit[algindex]) { int st = 1; keylen = 16; for (i = 0; st && i < loopargs_len; i++) { loopargs[i].ctx = init_evp_cipher_ctx(names[algindex], key32, keylen); st = loopargs[i].ctx != NULL; } for (testnum = 0; st && testnum < size_num; testnum++) { print_message(names[algindex], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Cipher_loop, loopargs); d = Time_F(STOP); print_result(algindex, testnum, count, d); } for (i = 0; i < loopargs_len; i++) EVP_CIPHER_CTX_free(loopargs[i].ctx); } } if (doit[D_GHASH]) { static const char gmac_iv[] = "0123456789ab"; OSSL_PARAM params[4]; params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER, "aes-128-gcm", 0); params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV, (char *)gmac_iv, sizeof(gmac_iv) - 1); params[2] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (void *)key32, 16); params[3] = OSSL_PARAM_construct_end(); if (mac_setup("GMAC", &mac, params, loopargs, loopargs_len) < 1) goto end; /* b/c of the definition of GHASH_loop(), init() calls are needed here */ for (i = 0; i < loopargs_len; i++) { if (!EVP_MAC_init(loopargs[i].mctx, NULL, 0, NULL)) goto end; } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_GHASH], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, GHASH_loop, loopargs); d = Time_F(STOP); print_result(D_GHASH, testnum, count, d); if (count < 0) break; } mac_teardown(&mac, loopargs, loopargs_len); } if (doit[D_RAND]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RAND], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs); d = Time_F(STOP); print_result(D_RAND, testnum, count, d); } } if (doit[D_EVP]) { if (evp_cipher != NULL) { int (*loopfunc) (void *) = EVP_Update_loop; if (multiblock && (EVP_CIPHER_get_flags(evp_cipher) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { multiblock_speed(evp_cipher, lengths_single, &seconds); ret = 0; goto end; } names[D_EVP] = EVP_CIPHER_get0_name(evp_cipher); if (EVP_CIPHER_get_mode(evp_cipher) == EVP_CIPH_CCM_MODE) { loopfunc = EVP_Update_loop_ccm; } else if (aead && (EVP_CIPHER_get_flags(evp_cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { loopfunc = EVP_Update_loop_aead; if (lengths == lengths_list) { lengths = aead_lengths_list; size_num = OSSL_NELEM(aead_lengths_list); } } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP], lengths[testnum], seconds.sym); for (k = 0; k < loopargs_len; k++) { loopargs[k].ctx = EVP_CIPHER_CTX_new(); if (loopargs[k].ctx == NULL) { BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n"); exit(1); } if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, NULL, iv, decrypt ? 0 : 1)) { BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); ERR_print_errors(bio_err); exit(1); } EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); keylen = EVP_CIPHER_CTX_get_key_length(loopargs[k].ctx); loopargs[k].key = app_malloc(keylen, "evp_cipher key"); EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key); if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL, loopargs[k].key, NULL, -1)) { BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); ERR_print_errors(bio_err); exit(1); } OPENSSL_clear_free(loopargs[k].key, keylen); /* GCM-SIV/SIV mode only allows for a single Update operation */ if (EVP_CIPHER_get_mode(evp_cipher) == EVP_CIPH_SIV_MODE || EVP_CIPHER_get_mode(evp_cipher) == EVP_CIPH_GCM_SIV_MODE) (void)EVP_CIPHER_CTX_ctrl(loopargs[k].ctx, EVP_CTRL_SET_SPEED, 1, NULL); } Time_F(START); count = run_benchmark(async_jobs, loopfunc, loopargs); d = Time_F(STOP); for (k = 0; k < loopargs_len; k++) EVP_CIPHER_CTX_free(loopargs[k].ctx); print_result(D_EVP, testnum, count, d); } } else if (evp_md_name != NULL) { names[D_EVP] = evp_md_name; for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_md_loop, loopargs); d = Time_F(STOP); print_result(D_EVP, testnum, count, d); if (count < 0) break; } } } if (doit[D_EVP_CMAC]) { OSSL_PARAM params[3]; EVP_CIPHER *cipher = NULL; if (!opt_cipher(evp_mac_ciphername, &cipher)) goto end; keylen = EVP_CIPHER_get_key_length(cipher); EVP_CIPHER_free(cipher); if (keylen <= 0 || keylen > (int)sizeof(key32)) { BIO_printf(bio_err, "\nRequested CMAC cipher with unsupported key length.\n"); goto end; } evp_cmac_name = app_malloc(sizeof("cmac()") + strlen(evp_mac_ciphername), "CMAC name"); sprintf(evp_cmac_name, "cmac(%s)", evp_mac_ciphername); names[D_EVP_CMAC] = evp_cmac_name; params[0] = OSSL_PARAM_construct_utf8_string(OSSL_ALG_PARAM_CIPHER, evp_mac_ciphername, 0); params[1] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (char *)key32, keylen); params[2] = OSSL_PARAM_construct_end(); if (mac_setup("CMAC", &mac, params, loopargs, loopargs_len) < 1) goto end; for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP_CMAC], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, CMAC_loop, loopargs); d = Time_F(STOP); print_result(D_EVP_CMAC, testnum, count, d); if (count < 0) break; } mac_teardown(&mac, loopargs, loopargs_len); } if (doit[D_KMAC128]) { OSSL_PARAM params[2]; params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (void *)key32, 16); params[1] = OSSL_PARAM_construct_end(); if (mac_setup("KMAC-128", &mac, params, loopargs, loopargs_len) < 1) goto end; for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_KMAC128], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, KMAC128_loop, loopargs); d = Time_F(STOP); print_result(D_KMAC128, testnum, count, d); if (count < 0) break; } mac_teardown(&mac, loopargs, loopargs_len); } if (doit[D_KMAC256]) { OSSL_PARAM params[2]; params[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_KEY, (void *)key32, 32); params[1] = OSSL_PARAM_construct_end(); if (mac_setup("KMAC-256", &mac, params, loopargs, loopargs_len) < 1) goto end; for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_KMAC256], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, KMAC256_loop, loopargs); d = Time_F(STOP); print_result(D_KMAC256, testnum, count, d); if (count < 0) break; } mac_teardown(&mac, loopargs, loopargs_len); } for (i = 0; i < loopargs_len; i++) if (RAND_bytes(loopargs[i].buf, 36) <= 0) goto end; for (testnum = 0; testnum < RSA_NUM; testnum++) { EVP_PKEY *rsa_key = NULL; int st = 0; if (!rsa_doit[testnum]) continue; if (primes > RSA_DEFAULT_PRIME_NUM) { /* we haven't set keys yet, generate multi-prime RSA keys */ bn = BN_new(); st = bn != NULL && BN_set_word(bn, RSA_F4) && init_gen_str(&genctx, "RSA", NULL, 0, NULL, NULL) && EVP_PKEY_CTX_set_rsa_keygen_bits(genctx, rsa_keys[testnum].bits) > 0 && EVP_PKEY_CTX_set1_rsa_keygen_pubexp(genctx, bn) > 0 && EVP_PKEY_CTX_set_rsa_keygen_primes(genctx, primes) > 0 && EVP_PKEY_keygen(genctx, &rsa_key); BN_free(bn); bn = NULL; EVP_PKEY_CTX_free(genctx); genctx = NULL; } else { const unsigned char *p = rsa_keys[testnum].data; st = (rsa_key = d2i_PrivateKey(EVP_PKEY_RSA, NULL, &p, rsa_keys[testnum].length)) != NULL; } for (i = 0; st && i < loopargs_len; i++) { loopargs[i].rsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL); loopargs[i].sigsize = loopargs[i].buflen; if (loopargs[i].rsa_sign_ctx[testnum] == NULL || EVP_PKEY_sign_init(loopargs[i].rsa_sign_ctx[testnum]) <= 0 || EVP_PKEY_sign(loopargs[i].rsa_sign_ctx[testnum], loopargs[i].buf2, &loopargs[i].sigsize, loopargs[i].buf, 36) <= 0) st = 0; } if (!st) { BIO_printf(bio_err, "RSA sign setup failure. No RSA sign will be done.\n"); ERR_print_errors(bio_err); op_count = 1; } else { pkey_print_message("private", "rsa sign", rsa_keys[testnum].bits, seconds.rsa); /* RSA_blinding_on(rsa_key[testnum],NULL); */ Time_F(START); count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R1:%ld:%d:%.2f\n" : "%ld %u bits private RSA sign ops in %.2fs\n", count, rsa_keys[testnum].bits, d); rsa_results[testnum][0] = (double)count / d; op_count = count; } for (i = 0; st && i < loopargs_len; i++) { loopargs[i].rsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL); if (loopargs[i].rsa_verify_ctx[testnum] == NULL || EVP_PKEY_verify_init(loopargs[i].rsa_verify_ctx[testnum]) <= 0 || EVP_PKEY_verify(loopargs[i].rsa_verify_ctx[testnum], loopargs[i].buf2, loopargs[i].sigsize, loopargs[i].buf, 36) <= 0) st = 0; } if (!st) { BIO_printf(bio_err, "RSA verify setup failure. No RSA verify will be done.\n"); ERR_print_errors(bio_err); rsa_doit[testnum] = 0; } else { pkey_print_message("public", "rsa verify", rsa_keys[testnum].bits, seconds.rsa); Time_F(START); count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R2:%ld:%d:%.2f\n" : "%ld %u bits public RSA verify ops in %.2fs\n", count, rsa_keys[testnum].bits, d); rsa_results[testnum][1] = (double)count / d; } for (i = 0; st && i < loopargs_len; i++) { loopargs[i].rsa_encrypt_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL); loopargs[i].encsize = loopargs[i].buflen; if (loopargs[i].rsa_encrypt_ctx[testnum] == NULL || EVP_PKEY_encrypt_init(loopargs[i].rsa_encrypt_ctx[testnum]) <= 0 || EVP_PKEY_encrypt(loopargs[i].rsa_encrypt_ctx[testnum], loopargs[i].buf2, &loopargs[i].encsize, loopargs[i].buf, 36) <= 0) st = 0; } if (!st) { BIO_printf(bio_err, "RSA encrypt setup failure. No RSA encrypt will be done.\n"); ERR_print_errors(bio_err); op_count = 1; } else { pkey_print_message("private", "rsa encrypt", rsa_keys[testnum].bits, seconds.rsa); /* RSA_blinding_on(rsa_key[testnum],NULL); */ Time_F(START); count = run_benchmark(async_jobs, RSA_encrypt_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R3:%ld:%d:%.2f\n" : "%ld %u bits public RSA encrypt ops in %.2fs\n", count, rsa_keys[testnum].bits, d); rsa_results[testnum][2] = (double)count / d; op_count = count; } for (i = 0; st && i < loopargs_len; i++) { loopargs[i].rsa_decrypt_ctx[testnum] = EVP_PKEY_CTX_new(rsa_key, NULL); declen = loopargs[i].buflen; if (loopargs[i].rsa_decrypt_ctx[testnum] == NULL || EVP_PKEY_decrypt_init(loopargs[i].rsa_decrypt_ctx[testnum]) <= 0 || EVP_PKEY_decrypt(loopargs[i].rsa_decrypt_ctx[testnum], loopargs[i].buf, &declen, loopargs[i].buf2, loopargs[i].encsize) <= 0) st = 0; } if (!st) { BIO_printf(bio_err, "RSA decrypt setup failure. No RSA decrypt will be done.\n"); ERR_print_errors(bio_err); op_count = 1; } else { pkey_print_message("private", "rsa decrypt", rsa_keys[testnum].bits, seconds.rsa); /* RSA_blinding_on(rsa_key[testnum],NULL); */ Time_F(START); count = run_benchmark(async_jobs, RSA_decrypt_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R4:%ld:%d:%.2f\n" : "%ld %u bits private RSA decrypt ops in %.2fs\n", count, rsa_keys[testnum].bits, d); rsa_results[testnum][3] = (double)count / d; op_count = count; } if (op_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(rsa_doit, testnum); } EVP_PKEY_free(rsa_key); } for (testnum = 0; testnum < DSA_NUM; testnum++) { EVP_PKEY *dsa_key = NULL; int st; if (!dsa_doit[testnum]) continue; st = (dsa_key = get_dsa(dsa_bits[testnum])) != NULL; for (i = 0; st && i < loopargs_len; i++) { loopargs[i].dsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key, NULL); loopargs[i].sigsize = loopargs[i].buflen; if (loopargs[i].dsa_sign_ctx[testnum] == NULL || EVP_PKEY_sign_init(loopargs[i].dsa_sign_ctx[testnum]) <= 0 || EVP_PKEY_sign(loopargs[i].dsa_sign_ctx[testnum], loopargs[i].buf2, &loopargs[i].sigsize, loopargs[i].buf, 20) <= 0) st = 0; } if (!st) { BIO_printf(bio_err, "DSA sign setup failure. No DSA sign will be done.\n"); ERR_print_errors(bio_err); op_count = 1; } else { pkey_print_message("sign", "dsa", dsa_bits[testnum], seconds.dsa); Time_F(START); count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R5:%ld:%u:%.2f\n" : "%ld %u bits DSA sign ops in %.2fs\n", count, dsa_bits[testnum], d); dsa_results[testnum][0] = (double)count / d; op_count = count; } for (i = 0; st && i < loopargs_len; i++) { loopargs[i].dsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(dsa_key, NULL); if (loopargs[i].dsa_verify_ctx[testnum] == NULL || EVP_PKEY_verify_init(loopargs[i].dsa_verify_ctx[testnum]) <= 0 || EVP_PKEY_verify(loopargs[i].dsa_verify_ctx[testnum], loopargs[i].buf2, loopargs[i].sigsize, loopargs[i].buf, 36) <= 0) st = 0; } if (!st) { BIO_printf(bio_err, "DSA verify setup failure. No DSA verify will be done.\n"); ERR_print_errors(bio_err); dsa_doit[testnum] = 0; } else { pkey_print_message("verify", "dsa", dsa_bits[testnum], seconds.dsa); Time_F(START); count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R6:%ld:%u:%.2f\n" : "%ld %u bits DSA verify ops in %.2fs\n", count, dsa_bits[testnum], d); dsa_results[testnum][1] = (double)count / d; } if (op_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(dsa_doit, testnum); } EVP_PKEY_free(dsa_key); } for (testnum = 0; testnum < ECDSA_NUM; testnum++) { EVP_PKEY *ecdsa_key = NULL; int st; if (!ecdsa_doit[testnum]) continue; st = (ecdsa_key = get_ecdsa(&ec_curves[testnum])) != NULL; for (i = 0; st && i < loopargs_len; i++) { loopargs[i].ecdsa_sign_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key, NULL); loopargs[i].sigsize = loopargs[i].buflen; if (loopargs[i].ecdsa_sign_ctx[testnum] == NULL || EVP_PKEY_sign_init(loopargs[i].ecdsa_sign_ctx[testnum]) <= 0 || EVP_PKEY_sign(loopargs[i].ecdsa_sign_ctx[testnum], loopargs[i].buf2, &loopargs[i].sigsize, loopargs[i].buf, 20) <= 0) st = 0; } if (!st) { BIO_printf(bio_err, "ECDSA sign setup failure. No ECDSA sign will be done.\n"); ERR_print_errors(bio_err); op_count = 1; } else { pkey_print_message("sign", "ecdsa", ec_curves[testnum].bits, seconds.ecdsa); Time_F(START); count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R7:%ld:%u:%.2f\n" : "%ld %u bits ECDSA sign ops in %.2fs\n", count, ec_curves[testnum].bits, d); ecdsa_results[testnum][0] = (double)count / d; op_count = count; } for (i = 0; st && i < loopargs_len; i++) { loopargs[i].ecdsa_verify_ctx[testnum] = EVP_PKEY_CTX_new(ecdsa_key, NULL); if (loopargs[i].ecdsa_verify_ctx[testnum] == NULL || EVP_PKEY_verify_init(loopargs[i].ecdsa_verify_ctx[testnum]) <= 0 || EVP_PKEY_verify(loopargs[i].ecdsa_verify_ctx[testnum], loopargs[i].buf2, loopargs[i].sigsize, loopargs[i].buf, 20) <= 0) st = 0; } if (!st) { BIO_printf(bio_err, "ECDSA verify setup failure. No ECDSA verify will be done.\n"); ERR_print_errors(bio_err); ecdsa_doit[testnum] = 0; } else { pkey_print_message("verify", "ecdsa", ec_curves[testnum].bits, seconds.ecdsa); Time_F(START); count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R8:%ld:%u:%.2f\n" : "%ld %u bits ECDSA verify ops in %.2fs\n", count, ec_curves[testnum].bits, d); ecdsa_results[testnum][1] = (double)count / d; } if (op_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(ecdsa_doit, testnum); } } for (testnum = 0; testnum < EC_NUM; testnum++) { int ecdh_checks = 1; if (!ecdh_doit[testnum]) continue; for (i = 0; i < loopargs_len; i++) { EVP_PKEY_CTX *test_ctx = NULL; EVP_PKEY_CTX *ctx = NULL; EVP_PKEY *key_A = NULL; EVP_PKEY *key_B = NULL; size_t outlen; size_t test_outlen; if ((key_A = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key A */ || (key_B = get_ecdsa(&ec_curves[testnum])) == NULL /* generate secret key B */ || (ctx = EVP_PKEY_CTX_new(key_A, NULL)) == NULL /* derivation ctx from skeyA */ || EVP_PKEY_derive_init(ctx) <= 0 /* init derivation ctx */ || EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 /* set peer pubkey in ctx */ || EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 /* determine max length */ || outlen == 0 /* ensure outlen is a valid size */ || outlen > MAX_ECDH_SIZE /* avoid buffer overflow */) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH key generation failure.\n"); ERR_print_errors(bio_err); op_count = 1; break; } /* * Here we perform a test run, comparing the output of a*B and b*A; * we try this here and assume that further EVP_PKEY_derive calls * never fail, so we can skip checks in the actually benchmarked * code, for maximum performance. */ if ((test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) == NULL /* test ctx from skeyB */ || EVP_PKEY_derive_init(test_ctx) <= 0 /* init derivation test_ctx */ || EVP_PKEY_derive_set_peer(test_ctx, key_A) <= 0 /* set peer pubkey in test_ctx */ || EVP_PKEY_derive(test_ctx, NULL, &test_outlen) <= 0 /* determine max length */ || EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) <= 0 /* compute a*B */ || EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) <= 0 /* compute b*A */ || test_outlen != outlen /* compare output length */) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH computation failure.\n"); ERR_print_errors(bio_err); op_count = 1; break; } /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */ if (CRYPTO_memcmp(loopargs[i].secret_a, loopargs[i].secret_b, outlen)) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH computations don't match.\n"); ERR_print_errors(bio_err); op_count = 1; break; } loopargs[i].ecdh_ctx[testnum] = ctx; loopargs[i].outlen[testnum] = outlen; EVP_PKEY_free(key_A); EVP_PKEY_free(key_B); EVP_PKEY_CTX_free(test_ctx); test_ctx = NULL; } if (ecdh_checks != 0) { pkey_print_message("", "ecdh", ec_curves[testnum].bits, seconds.ecdh); Time_F(START); count = run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R9:%ld:%d:%.2f\n" : "%ld %u-bits ECDH ops in %.2fs\n", count, ec_curves[testnum].bits, d); ecdh_results[testnum][0] = (double)count / d; op_count = count; } if (op_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(ecdh_doit, testnum); } } #ifndef OPENSSL_NO_ECX for (testnum = 0; testnum < EdDSA_NUM; testnum++) { int st = 1; EVP_PKEY *ed_pkey = NULL; EVP_PKEY_CTX *ed_pctx = NULL; if (!eddsa_doit[testnum]) continue; /* Ignore Curve */ for (i = 0; i < loopargs_len; i++) { loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new(); if (loopargs[i].eddsa_ctx[testnum] == NULL) { st = 0; break; } loopargs[i].eddsa_ctx2[testnum] = EVP_MD_CTX_new(); if (loopargs[i].eddsa_ctx2[testnum] == NULL) { st = 0; break; } if ((ed_pctx = EVP_PKEY_CTX_new_id(ed_curves[testnum].nid, NULL)) == NULL || EVP_PKEY_keygen_init(ed_pctx) <= 0 || EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) { st = 0; EVP_PKEY_CTX_free(ed_pctx); break; } EVP_PKEY_CTX_free(ed_pctx); if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL, NULL, ed_pkey)) { st = 0; EVP_PKEY_free(ed_pkey); break; } if (!EVP_DigestVerifyInit(loopargs[i].eddsa_ctx2[testnum], NULL, NULL, NULL, ed_pkey)) { st = 0; EVP_PKEY_free(ed_pkey); break; } EVP_PKEY_free(ed_pkey); ed_pkey = NULL; } if (st == 0) { BIO_printf(bio_err, "EdDSA failure.\n"); ERR_print_errors(bio_err); op_count = 1; } else { for (i = 0; i < loopargs_len; i++) { /* Perform EdDSA signature test */ loopargs[i].sigsize = ed_curves[testnum].sigsize; st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum], loopargs[i].buf2, &loopargs[i].sigsize, loopargs[i].buf, 20); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "EdDSA sign failure. No EdDSA sign will be done.\n"); ERR_print_errors(bio_err); op_count = 1; } else { pkey_print_message("sign", ed_curves[testnum].name, ed_curves[testnum].bits, seconds.eddsa); Time_F(START); count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R10:%ld:%u:%s:%.2f\n" : "%ld %u bits %s sign ops in %.2fs \n", count, ed_curves[testnum].bits, ed_curves[testnum].name, d); eddsa_results[testnum][0] = (double)count / d; op_count = count; } /* Perform EdDSA verification test */ for (i = 0; i < loopargs_len; i++) { st = EVP_DigestVerify(loopargs[i].eddsa_ctx2[testnum], loopargs[i].buf2, loopargs[i].sigsize, loopargs[i].buf, 20); if (st != 1) break; } if (st != 1) { BIO_printf(bio_err, "EdDSA verify failure. No EdDSA verify will be done.\n"); ERR_print_errors(bio_err); eddsa_doit[testnum] = 0; } else { pkey_print_message("verify", ed_curves[testnum].name, ed_curves[testnum].bits, seconds.eddsa); Time_F(START); count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R11:%ld:%u:%s:%.2f\n" : "%ld %u bits %s verify ops in %.2fs\n", count, ed_curves[testnum].bits, ed_curves[testnum].name, d); eddsa_results[testnum][1] = (double)count / d; } if (op_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(eddsa_doit, testnum); } } } #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 for (testnum = 0; testnum < SM2_NUM; testnum++) { int st = 1; EVP_PKEY *sm2_pkey = NULL; if (!sm2_doit[testnum]) continue; /* Ignore Curve */ /* Init signing and verification */ for (i = 0; i < loopargs_len; i++) { EVP_PKEY_CTX *sm2_pctx = NULL; EVP_PKEY_CTX *sm2_vfy_pctx = NULL; EVP_PKEY_CTX *pctx = NULL; st = 0; loopargs[i].sm2_ctx[testnum] = EVP_MD_CTX_new(); loopargs[i].sm2_vfy_ctx[testnum] = EVP_MD_CTX_new(); if (loopargs[i].sm2_ctx[testnum] == NULL || loopargs[i].sm2_vfy_ctx[testnum] == NULL) break; sm2_pkey = NULL; st = !((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_SM2, NULL)) == NULL || EVP_PKEY_keygen_init(pctx) <= 0 || EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, sm2_curves[testnum].nid) <= 0 || EVP_PKEY_keygen(pctx, &sm2_pkey) <= 0); EVP_PKEY_CTX_free(pctx); if (st == 0) break; st = 0; /* set back to zero */ /* attach it sooner to rely on main final cleanup */ loopargs[i].sm2_pkey[testnum] = sm2_pkey; loopargs[i].sigsize = EVP_PKEY_get_size(sm2_pkey); sm2_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL); sm2_vfy_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL); if (sm2_pctx == NULL || sm2_vfy_pctx == NULL) { EVP_PKEY_CTX_free(sm2_vfy_pctx); break; } /* attach them directly to respective ctx */ EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_ctx[testnum], sm2_pctx); EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_vfy_ctx[testnum], sm2_vfy_pctx); /* * No need to allow user to set an explicit ID here, just use * the one defined in the 'draft-yang-tls-tl13-sm-suites' I-D. */ if (EVP_PKEY_CTX_set1_id(sm2_pctx, SM2_ID, SM2_ID_LEN) != 1 || EVP_PKEY_CTX_set1_id(sm2_vfy_pctx, SM2_ID, SM2_ID_LEN) != 1) break; if (!EVP_DigestSignInit(loopargs[i].sm2_ctx[testnum], NULL, EVP_sm3(), NULL, sm2_pkey)) break; if (!EVP_DigestVerifyInit(loopargs[i].sm2_vfy_ctx[testnum], NULL, EVP_sm3(), NULL, sm2_pkey)) break; st = 1; /* mark loop as succeeded */ } if (st == 0) { BIO_printf(bio_err, "SM2 init failure.\n"); ERR_print_errors(bio_err); op_count = 1; } else { for (i = 0; i < loopargs_len; i++) { /* Perform SM2 signature test */ st = EVP_DigestSign(loopargs[i].sm2_ctx[testnum], loopargs[i].buf2, &loopargs[i].sigsize, loopargs[i].buf, 20); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "SM2 sign failure. No SM2 sign will be done.\n"); ERR_print_errors(bio_err); op_count = 1; } else { pkey_print_message("sign", sm2_curves[testnum].name, sm2_curves[testnum].bits, seconds.sm2); Time_F(START); count = run_benchmark(async_jobs, SM2_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R12:%ld:%u:%s:%.2f\n" : "%ld %u bits %s sign ops in %.2fs \n", count, sm2_curves[testnum].bits, sm2_curves[testnum].name, d); sm2_results[testnum][0] = (double)count / d; op_count = count; } /* Perform SM2 verification test */ for (i = 0; i < loopargs_len; i++) { st = EVP_DigestVerify(loopargs[i].sm2_vfy_ctx[testnum], loopargs[i].buf2, loopargs[i].sigsize, loopargs[i].buf, 20); if (st != 1) break; } if (st != 1) { BIO_printf(bio_err, "SM2 verify failure. No SM2 verify will be done.\n"); ERR_print_errors(bio_err); sm2_doit[testnum] = 0; } else { pkey_print_message("verify", sm2_curves[testnum].name, sm2_curves[testnum].bits, seconds.sm2); Time_F(START); count = run_benchmark(async_jobs, SM2_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R13:%ld:%u:%s:%.2f\n" : "%ld %u bits %s verify ops in %.2fs\n", count, sm2_curves[testnum].bits, sm2_curves[testnum].name, d); sm2_results[testnum][1] = (double)count / d; } if (op_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < SM2_NUM; testnum++) sm2_doit[testnum] = 0; } } } #endif /* OPENSSL_NO_SM2 */ #ifndef OPENSSL_NO_DH for (testnum = 0; testnum < FFDH_NUM; testnum++) { int ffdh_checks = 1; if (!ffdh_doit[testnum]) continue; for (i = 0; i < loopargs_len; i++) { EVP_PKEY *pkey_A = NULL; EVP_PKEY *pkey_B = NULL; EVP_PKEY_CTX *ffdh_ctx = NULL; EVP_PKEY_CTX *test_ctx = NULL; size_t secret_size; size_t test_out; /* Ensure that the error queue is empty */ if (ERR_peek_error()) { BIO_printf(bio_err, "WARNING: the error queue contains previous unhandled errors.\n"); ERR_print_errors(bio_err); } pkey_A = EVP_PKEY_new(); if (!pkey_A) { BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } pkey_B = EVP_PKEY_new(); if (!pkey_B) { BIO_printf(bio_err, "Error while initialising EVP_PKEY (out of memory?).\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } ffdh_ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_DH, NULL); if (!ffdh_ctx) { BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } if (EVP_PKEY_keygen_init(ffdh_ctx) <= 0) { BIO_printf(bio_err, "Error while initialising EVP_PKEY_CTX.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } if (EVP_PKEY_CTX_set_dh_nid(ffdh_ctx, ffdh_params[testnum].nid) <= 0) { BIO_printf(bio_err, "Error setting DH key size for keygen.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } if (EVP_PKEY_keygen(ffdh_ctx, &pkey_A) <= 0 || EVP_PKEY_keygen(ffdh_ctx, &pkey_B) <= 0) { BIO_printf(bio_err, "FFDH key generation failure.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } EVP_PKEY_CTX_free(ffdh_ctx); /* * check if the derivation works correctly both ways so that * we know if future derive calls will fail, and we can skip * error checking in benchmarked code */ ffdh_ctx = EVP_PKEY_CTX_new(pkey_A, NULL); if (ffdh_ctx == NULL) { BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } if (EVP_PKEY_derive_init(ffdh_ctx) <= 0) { BIO_printf(bio_err, "FFDH derivation context init failure.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } if (EVP_PKEY_derive_set_peer(ffdh_ctx, pkey_B) <= 0) { BIO_printf(bio_err, "Assigning peer key for derivation failed.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } if (EVP_PKEY_derive(ffdh_ctx, NULL, &secret_size) <= 0) { BIO_printf(bio_err, "Checking size of shared secret failed.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } if (secret_size > MAX_FFDH_SIZE) { BIO_printf(bio_err, "Assertion failure: shared secret too large.\n"); op_count = 1; ffdh_checks = 0; break; } if (EVP_PKEY_derive(ffdh_ctx, loopargs[i].secret_ff_a, &secret_size) <= 0) { BIO_printf(bio_err, "Shared secret derive failure.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } /* Now check from side B */ test_ctx = EVP_PKEY_CTX_new(pkey_B, NULL); if (!test_ctx) { BIO_printf(bio_err, "Error while allocating EVP_PKEY_CTX.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } if (EVP_PKEY_derive_init(test_ctx) <= 0 || EVP_PKEY_derive_set_peer(test_ctx, pkey_A) <= 0 || EVP_PKEY_derive(test_ctx, NULL, &test_out) <= 0 || EVP_PKEY_derive(test_ctx, loopargs[i].secret_ff_b, &test_out) <= 0 || test_out != secret_size) { BIO_printf(bio_err, "FFDH computation failure.\n"); op_count = 1; ffdh_checks = 0; break; } /* compare the computed secrets */ if (CRYPTO_memcmp(loopargs[i].secret_ff_a, loopargs[i].secret_ff_b, secret_size)) { BIO_printf(bio_err, "FFDH computations don't match.\n"); ERR_print_errors(bio_err); op_count = 1; ffdh_checks = 0; break; } loopargs[i].ffdh_ctx[testnum] = ffdh_ctx; EVP_PKEY_free(pkey_A); pkey_A = NULL; EVP_PKEY_free(pkey_B); pkey_B = NULL; EVP_PKEY_CTX_free(test_ctx); test_ctx = NULL; } if (ffdh_checks != 0) { pkey_print_message("", "ffdh", ffdh_params[testnum].bits, seconds.ffdh); Time_F(START); count = run_benchmark(async_jobs, FFDH_derive_key_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R14:%ld:%d:%.2f\n" : "%ld %u-bits FFDH ops in %.2fs\n", count, ffdh_params[testnum].bits, d); ffdh_results[testnum][0] = (double)count / d; op_count = count; } if (op_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(ffdh_doit, testnum); } } #endif /* OPENSSL_NO_DH */ for (testnum = 0; testnum < kems_algs_len; testnum++) { int kem_checks = 1; const char *kem_name = kems_algname[testnum]; if (!kems_doit[testnum] || !do_kems) continue; for (i = 0; i < loopargs_len; i++) { EVP_PKEY *pkey = NULL; EVP_PKEY_CTX *kem_gen_ctx = NULL; EVP_PKEY_CTX *kem_encaps_ctx = NULL; EVP_PKEY_CTX *kem_decaps_ctx = NULL; size_t send_secret_len, out_len; size_t rcv_secret_len; unsigned char *out = NULL, *send_secret = NULL, *rcv_secret; unsigned int bits; char *name; char sfx[MAX_ALGNAME_SUFFIX]; OSSL_PARAM params[] = { OSSL_PARAM_END, OSSL_PARAM_END }; int use_params = 0; enum kem_type_t { KEM_RSA = 1, KEM_EC, KEM_X25519, KEM_X448 } kem_type; /* no string after rsa permitted: */ if (strlen(kem_name) < MAX_ALGNAME_SUFFIX + 4 /* rsa+digit */ && sscanf(kem_name, "rsa%u%s", &bits, sfx) == 1) kem_type = KEM_RSA; else if (strncmp(kem_name, "EC", 2) == 0) kem_type = KEM_EC; else if (strcmp(kem_name, "X25519") == 0) kem_type = KEM_X25519; else if (strcmp(kem_name, "X448") == 0) kem_type = KEM_X448; else kem_type = 0; if (ERR_peek_error()) { BIO_printf(bio_err, "WARNING: the error queue contains previous unhandled errors.\n"); ERR_print_errors(bio_err); } if (kem_type == KEM_RSA) { params[0] = OSSL_PARAM_construct_uint(OSSL_PKEY_PARAM_RSA_BITS, &bits); use_params = 1; } else if (kem_type == KEM_EC) { name = (char *)(kem_name + 2); params[0] = OSSL_PARAM_construct_utf8_string(OSSL_PKEY_PARAM_GROUP_NAME, name, 0); use_params = 1; } kem_gen_ctx = EVP_PKEY_CTX_new_from_name(app_get0_libctx(), (kem_type == KEM_RSA) ? "RSA": (kem_type == KEM_EC) ? "EC": kem_name, app_get0_propq()); if ((!kem_gen_ctx || EVP_PKEY_keygen_init(kem_gen_ctx) <= 0) || (use_params && EVP_PKEY_CTX_set_params(kem_gen_ctx, params) <= 0)) { BIO_printf(bio_err, "Error initializing keygen ctx for %s.\n", kem_name); goto kem_err_break; } if (EVP_PKEY_keygen(kem_gen_ctx, &pkey) <= 0) { BIO_printf(bio_err, "Error while generating KEM EVP_PKEY.\n"); goto kem_err_break; } /* Now prepare encaps data structs */ kem_encaps_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(), pkey, app_get0_propq()); if (kem_encaps_ctx == NULL || EVP_PKEY_encapsulate_init(kem_encaps_ctx, NULL) <= 0 || (kem_type == KEM_RSA && EVP_PKEY_CTX_set_kem_op(kem_encaps_ctx, "RSASVE") <= 0) || ((kem_type == KEM_EC || kem_type == KEM_X25519 || kem_type == KEM_X448) && EVP_PKEY_CTX_set_kem_op(kem_encaps_ctx, "DHKEM") <= 0) || EVP_PKEY_encapsulate(kem_encaps_ctx, NULL, &out_len, NULL, &send_secret_len) <= 0) { BIO_printf(bio_err, "Error while initializing encaps data structs for %s.\n", kem_name); goto kem_err_break; } out = app_malloc(out_len, "encaps result"); send_secret = app_malloc(send_secret_len, "encaps secret"); if (out == NULL || send_secret == NULL) { BIO_printf(bio_err, "MemAlloc error in encaps for %s.\n", kem_name); goto kem_err_break; } if (EVP_PKEY_encapsulate(kem_encaps_ctx, out, &out_len, send_secret, &send_secret_len) <= 0) { BIO_printf(bio_err, "Encaps error for %s.\n", kem_name); goto kem_err_break; } /* Now prepare decaps data structs */ kem_decaps_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(), pkey, app_get0_propq()); if (kem_decaps_ctx == NULL || EVP_PKEY_decapsulate_init(kem_decaps_ctx, NULL) <= 0 || (kem_type == KEM_RSA && EVP_PKEY_CTX_set_kem_op(kem_decaps_ctx, "RSASVE") <= 0) || ((kem_type == KEM_EC || kem_type == KEM_X25519 || kem_type == KEM_X448) && EVP_PKEY_CTX_set_kem_op(kem_decaps_ctx, "DHKEM") <= 0) || EVP_PKEY_decapsulate(kem_decaps_ctx, NULL, &rcv_secret_len, out, out_len) <= 0) { BIO_printf(bio_err, "Error while initializing decaps data structs for %s.\n", kem_name); goto kem_err_break; } rcv_secret = app_malloc(rcv_secret_len, "KEM decaps secret"); if (rcv_secret == NULL) { BIO_printf(bio_err, "MemAlloc failure in decaps for %s.\n", kem_name); goto kem_err_break; } if (EVP_PKEY_decapsulate(kem_decaps_ctx, rcv_secret, &rcv_secret_len, out, out_len) <= 0 || rcv_secret_len != send_secret_len || memcmp(send_secret, rcv_secret, send_secret_len)) { BIO_printf(bio_err, "Decaps error for %s.\n", kem_name); goto kem_err_break; } loopargs[i].kem_gen_ctx[testnum] = kem_gen_ctx; loopargs[i].kem_encaps_ctx[testnum] = kem_encaps_ctx; loopargs[i].kem_decaps_ctx[testnum] = kem_decaps_ctx; loopargs[i].kem_out_len[testnum] = out_len; loopargs[i].kem_secret_len[testnum] = send_secret_len; loopargs[i].kem_out[testnum] = out; loopargs[i].kem_send_secret[testnum] = send_secret; loopargs[i].kem_rcv_secret[testnum] = rcv_secret; EVP_PKEY_free(pkey); pkey = NULL; continue; kem_err_break: ERR_print_errors(bio_err); EVP_PKEY_free(pkey); op_count = 1; kem_checks = 0; break; } if (kem_checks != 0) { kskey_print_message(kem_name, "keygen", seconds.kem); Time_F(START); count = run_benchmark(async_jobs, KEM_keygen_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R15:%ld:%s:%.2f\n" : "%ld %s KEM keygen ops in %.2fs\n", count, kem_name, d); kems_results[testnum][0] = (double)count / d; op_count = count; kskey_print_message(kem_name, "encaps", seconds.kem); Time_F(START); count = run_benchmark(async_jobs, KEM_encaps_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R16:%ld:%s:%.2f\n" : "%ld %s KEM encaps ops in %.2fs\n", count, kem_name, d); kems_results[testnum][1] = (double)count / d; op_count = count; kskey_print_message(kem_name, "decaps", seconds.kem); Time_F(START); count = run_benchmark(async_jobs, KEM_decaps_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R17:%ld:%s:%.2f\n" : "%ld %s KEM decaps ops in %.2fs\n", count, kem_name, d); kems_results[testnum][2] = (double)count / d; op_count = count; } if (op_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(kems_doit, testnum); } } for (testnum = 0; testnum < sigs_algs_len; testnum++) { int sig_checks = 1; const char *sig_name = sigs_algname[testnum]; if (!sigs_doit[testnum] || !do_sigs) continue; for (i = 0; i < loopargs_len; i++) { EVP_PKEY *pkey = NULL; EVP_PKEY_CTX *ctx_params = NULL; EVP_PKEY* pkey_params = NULL; EVP_PKEY_CTX *sig_gen_ctx = NULL; EVP_PKEY_CTX *sig_sign_ctx = NULL; EVP_PKEY_CTX *sig_verify_ctx = NULL; unsigned char md[SHA256_DIGEST_LENGTH]; unsigned char *sig; char sfx[MAX_ALGNAME_SUFFIX]; size_t md_len = SHA256_DIGEST_LENGTH; size_t max_sig_len, sig_len; unsigned int bits; OSSL_PARAM params[] = { OSSL_PARAM_END, OSSL_PARAM_END }; int use_params = 0; /* only sign little data to avoid measuring digest performance */ memset(md, 0, SHA256_DIGEST_LENGTH); if (ERR_peek_error()) { BIO_printf(bio_err, "WARNING: the error queue contains previous unhandled errors.\n"); ERR_print_errors(bio_err); } /* no string after rsa permitted: */ if (strlen(sig_name) < MAX_ALGNAME_SUFFIX + 4 /* rsa+digit */ && sscanf(sig_name, "rsa%u%s", &bits, sfx) == 1) { params[0] = OSSL_PARAM_construct_uint(OSSL_PKEY_PARAM_RSA_BITS, &bits); use_params = 1; } if (strncmp(sig_name, "dsa", 3) == 0) { ctx_params = EVP_PKEY_CTX_new_id(EVP_PKEY_DSA, NULL); if (ctx_params == NULL || EVP_PKEY_paramgen_init(ctx_params) <= 0 || EVP_PKEY_CTX_set_dsa_paramgen_bits(ctx_params, atoi(sig_name + 3)) <= 0 || EVP_PKEY_paramgen(ctx_params, &pkey_params) <= 0 || (sig_gen_ctx = EVP_PKEY_CTX_new(pkey_params, NULL)) == NULL || EVP_PKEY_keygen_init(sig_gen_ctx) <= 0) { BIO_printf(bio_err, "Error initializing classic keygen ctx for %s.\n", sig_name); goto sig_err_break; } } if (sig_gen_ctx == NULL) sig_gen_ctx = EVP_PKEY_CTX_new_from_name(app_get0_libctx(), use_params == 1 ? "RSA" : sig_name, app_get0_propq()); if (!sig_gen_ctx || EVP_PKEY_keygen_init(sig_gen_ctx) <= 0 || (use_params && EVP_PKEY_CTX_set_params(sig_gen_ctx, params) <= 0)) { BIO_printf(bio_err, "Error initializing keygen ctx for %s.\n", sig_name); goto sig_err_break; } if (EVP_PKEY_keygen(sig_gen_ctx, &pkey) <= 0) { BIO_printf(bio_err, "Error while generating signature EVP_PKEY for %s.\n", sig_name); goto sig_err_break; } /* Now prepare signature data structs */ sig_sign_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(), pkey, app_get0_propq()); if (sig_sign_ctx == NULL || EVP_PKEY_sign_init(sig_sign_ctx) <= 0 || (use_params == 1 && (EVP_PKEY_CTX_set_rsa_padding(sig_sign_ctx, RSA_PKCS1_PADDING) <= 0)) || EVP_PKEY_sign(sig_sign_ctx, NULL, &max_sig_len, md, md_len) <= 0) { BIO_printf(bio_err, "Error while initializing signing data structs for %s.\n", sig_name); goto sig_err_break; } sig = app_malloc(sig_len = max_sig_len, "signature buffer"); if (sig == NULL) { BIO_printf(bio_err, "MemAlloc error in sign for %s.\n", sig_name); goto sig_err_break; } if (EVP_PKEY_sign(sig_sign_ctx, sig, &sig_len, md, md_len) <= 0) { BIO_printf(bio_err, "Signing error for %s.\n", sig_name); goto sig_err_break; } /* Now prepare verify data structs */ memset(md, 0, SHA256_DIGEST_LENGTH); sig_verify_ctx = EVP_PKEY_CTX_new_from_pkey(app_get0_libctx(), pkey, app_get0_propq()); if (sig_verify_ctx == NULL || EVP_PKEY_verify_init(sig_verify_ctx) <= 0 || (use_params == 1 && (EVP_PKEY_CTX_set_rsa_padding(sig_verify_ctx, RSA_PKCS1_PADDING) <= 0))) { BIO_printf(bio_err, "Error while initializing verify data structs for %s.\n", sig_name); goto sig_err_break; } if (EVP_PKEY_verify(sig_verify_ctx, sig, sig_len, md, md_len) <= 0) { BIO_printf(bio_err, "Verify error for %s.\n", sig_name); goto sig_err_break; } if (EVP_PKEY_verify(sig_verify_ctx, sig, sig_len, md, md_len) <= 0) { BIO_printf(bio_err, "Verify 2 error for %s.\n", sig_name); goto sig_err_break; } loopargs[i].sig_gen_ctx[testnum] = sig_gen_ctx; loopargs[i].sig_sign_ctx[testnum] = sig_sign_ctx; loopargs[i].sig_verify_ctx[testnum] = sig_verify_ctx; loopargs[i].sig_max_sig_len[testnum] = max_sig_len; loopargs[i].sig_act_sig_len[testnum] = sig_len; loopargs[i].sig_sig[testnum] = sig; EVP_PKEY_free(pkey); pkey = NULL; continue; sig_err_break: ERR_print_errors(bio_err); EVP_PKEY_free(pkey); op_count = 1; sig_checks = 0; break; } if (sig_checks != 0) { kskey_print_message(sig_name, "keygen", seconds.sig); Time_F(START); count = run_benchmark(async_jobs, SIG_keygen_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R18:%ld:%s:%.2f\n" : "%ld %s signature keygen ops in %.2fs\n", count, sig_name, d); sigs_results[testnum][0] = (double)count / d; op_count = count; kskey_print_message(sig_name, "signs", seconds.sig); Time_F(START); count = run_benchmark(async_jobs, SIG_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R19:%ld:%s:%.2f\n" : "%ld %s signature sign ops in %.2fs\n", count, sig_name, d); sigs_results[testnum][1] = (double)count / d; op_count = count; kskey_print_message(sig_name, "verify", seconds.sig); Time_F(START); count = run_benchmark(async_jobs, SIG_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R20:%ld:%s:%.2f\n" : "%ld %s signature verify ops in %.2fs\n", count, sig_name, d); sigs_results[testnum][2] = (double)count / d; op_count = count; } if (op_count <= 1) stop_it(sigs_doit, testnum); } #ifndef NO_FORK show_res: #endif if (!mr) { printf("version: %s\n", OpenSSL_version(OPENSSL_FULL_VERSION_STRING)); printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON)); printf("options: %s\n", BN_options()); printf("%s\n", OpenSSL_version(OPENSSL_CFLAGS)); printf("%s\n", OpenSSL_version(OPENSSL_CPU_INFO)); } if (pr_header) { if (mr) { printf("+H"); } else { printf("The 'numbers' are in 1000s of bytes per second processed.\n"); printf("type "); } for (testnum = 0; testnum < size_num; testnum++) printf(mr ? ":%d" : "%7d bytes", lengths[testnum]); printf("\n"); } for (k = 0; k < ALGOR_NUM; k++) { const char *alg_name = names[k]; if (!doit[k]) continue; if (k == D_EVP) { if (evp_cipher == NULL) alg_name = evp_md_name; else if ((alg_name = EVP_CIPHER_get0_name(evp_cipher)) == NULL) app_bail_out("failed to get name of cipher '%s'\n", evp_cipher); } if (mr) printf("+F:%u:%s", k, alg_name); else printf("%-13s", alg_name); for (testnum = 0; testnum < size_num; testnum++) { if (results[k][testnum] > 10000 && !mr) printf(" %11.2fk", results[k][testnum] / 1e3); else printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]); } printf("\n"); } testnum = 1; for (k = 0; k < RSA_NUM; k++) { if (!rsa_doit[k]) continue; if (testnum && !mr) { printf("%19ssign verify encrypt decrypt sign/s verify/s encr./s decr./s\n", " "); testnum = 0; } if (mr) printf("+F2:%u:%u:%f:%f:%f:%f\n", k, rsa_keys[k].bits, rsa_results[k][0], rsa_results[k][1], rsa_results[k][2], rsa_results[k][3]); else printf("rsa %5u bits %8.6fs %8.6fs %8.6fs %8.6fs %8.1f %8.1f %8.1f %8.1f\n", rsa_keys[k].bits, 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1], 1.0 / rsa_results[k][2], 1.0 / rsa_results[k][3], rsa_results[k][0], rsa_results[k][1], rsa_results[k][2], rsa_results[k][3]); } testnum = 1; for (k = 0; k < DSA_NUM; k++) { if (!dsa_doit[k]) continue; if (testnum && !mr) { printf("%18ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F3:%u:%u:%f:%f\n", k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); else printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1], dsa_results[k][0], dsa_results[k][1]); } testnum = 1; for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) { if (!ecdsa_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F4:%u:%u:%f:%f\n", k, ec_curves[k].bits, ecdsa_results[k][0], ecdsa_results[k][1]); else printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", ec_curves[k].bits, ec_curves[k].name, 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1], ecdsa_results[k][0], ecdsa_results[k][1]); } testnum = 1; for (k = 0; k < EC_NUM; k++) { if (!ecdh_doit[k]) continue; if (testnum && !mr) { printf("%30sop op/s\n", " "); testnum = 0; } if (mr) printf("+F5:%u:%u:%f:%f\n", k, ec_curves[k].bits, ecdh_results[k][0], 1.0 / ecdh_results[k][0]); else printf("%4u bits ecdh (%s) %8.4fs %8.1f\n", ec_curves[k].bits, ec_curves[k].name, 1.0 / ecdh_results[k][0], ecdh_results[k][0]); } #ifndef OPENSSL_NO_ECX testnum = 1; for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) { if (!eddsa_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F6:%u:%u:%s:%f:%f\n", k, ed_curves[k].bits, ed_curves[k].name, eddsa_results[k][0], eddsa_results[k][1]); else printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n", ed_curves[k].bits, ed_curves[k].name, 1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1], eddsa_results[k][0], eddsa_results[k][1]); } #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 testnum = 1; for (k = 0; k < OSSL_NELEM(sm2_doit); k++) { if (!sm2_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F7:%u:%u:%s:%f:%f\n", k, sm2_curves[k].bits, sm2_curves[k].name, sm2_results[k][0], sm2_results[k][1]); else printf("%4u bits SM2 (%s) %8.4fs %8.4fs %8.1f %8.1f\n", sm2_curves[k].bits, sm2_curves[k].name, 1.0 / sm2_results[k][0], 1.0 / sm2_results[k][1], sm2_results[k][0], sm2_results[k][1]); } #endif #ifndef OPENSSL_NO_DH testnum = 1; for (k = 0; k < FFDH_NUM; k++) { if (!ffdh_doit[k]) continue; if (testnum && !mr) { printf("%23sop op/s\n", " "); testnum = 0; } if (mr) printf("+F8:%u:%u:%f:%f\n", k, ffdh_params[k].bits, ffdh_results[k][0], 1.0 / ffdh_results[k][0]); else printf("%4u bits ffdh %8.4fs %8.1f\n", ffdh_params[k].bits, 1.0 / ffdh_results[k][0], ffdh_results[k][0]); } #endif /* OPENSSL_NO_DH */ testnum = 1; for (k = 0; k < kems_algs_len; k++) { const char *kem_name = kems_algname[k]; if (!kems_doit[k] || !do_kems) continue; if (testnum && !mr) { printf("%31skeygen encaps decaps keygens/s encaps/s decaps/s\n", " "); testnum = 0; } if (mr) printf("+F9:%u:%f:%f:%f\n", k, kems_results[k][0], kems_results[k][1], kems_results[k][2]); else printf("%27s %8.6fs %8.6fs %8.6fs %9.1f %9.1f %9.1f\n", kem_name, 1.0 / kems_results[k][0], 1.0 / kems_results[k][1], 1.0 / kems_results[k][2], kems_results[k][0], kems_results[k][1], kems_results[k][2]); } ret = 0; testnum = 1; for (k = 0; k < sigs_algs_len; k++) { const char *sig_name = sigs_algname[k]; if (!sigs_doit[k] || !do_sigs) continue; if (testnum && !mr) { printf("%31skeygen signs verify keygens/s sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F10:%u:%f:%f:%f\n", k, sigs_results[k][0], sigs_results[k][1], sigs_results[k][2]); else printf("%27s %8.6fs %8.6fs %8.6fs %9.1f %9.1f %9.1f\n", sig_name, 1.0 / sigs_results[k][0], 1.0 / sigs_results[k][1], 1.0 / sigs_results[k][2], sigs_results[k][0], sigs_results[k][1], sigs_results[k][2]); } ret = 0; end: ERR_print_errors(bio_err); for (i = 0; i < loopargs_len; i++) { OPENSSL_free(loopargs[i].buf_malloc); OPENSSL_free(loopargs[i].buf2_malloc); BN_free(bn); EVP_PKEY_CTX_free(genctx); for (k = 0; k < RSA_NUM; k++) { EVP_PKEY_CTX_free(loopargs[i].rsa_sign_ctx[k]); EVP_PKEY_CTX_free(loopargs[i].rsa_verify_ctx[k]); EVP_PKEY_CTX_free(loopargs[i].rsa_encrypt_ctx[k]); EVP_PKEY_CTX_free(loopargs[i].rsa_decrypt_ctx[k]); } #ifndef OPENSSL_NO_DH OPENSSL_free(loopargs[i].secret_ff_a); OPENSSL_free(loopargs[i].secret_ff_b); for (k = 0; k < FFDH_NUM; k++) EVP_PKEY_CTX_free(loopargs[i].ffdh_ctx[k]); #endif for (k = 0; k < DSA_NUM; k++) { EVP_PKEY_CTX_free(loopargs[i].dsa_sign_ctx[k]); EVP_PKEY_CTX_free(loopargs[i].dsa_verify_ctx[k]); } for (k = 0; k < ECDSA_NUM; k++) { EVP_PKEY_CTX_free(loopargs[i].ecdsa_sign_ctx[k]); EVP_PKEY_CTX_free(loopargs[i].ecdsa_verify_ctx[k]); } for (k = 0; k < EC_NUM; k++) EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]); #ifndef OPENSSL_NO_ECX for (k = 0; k < EdDSA_NUM; k++) { EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]); EVP_MD_CTX_free(loopargs[i].eddsa_ctx2[k]); } #endif /* OPENSSL_NO_ECX */ #ifndef OPENSSL_NO_SM2 for (k = 0; k < SM2_NUM; k++) { EVP_PKEY_CTX *pctx = NULL; /* free signing ctx */ if (loopargs[i].sm2_ctx[k] != NULL && (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_ctx[k])) != NULL) EVP_PKEY_CTX_free(pctx); EVP_MD_CTX_free(loopargs[i].sm2_ctx[k]); /* free verification ctx */ if (loopargs[i].sm2_vfy_ctx[k] != NULL && (pctx = EVP_MD_CTX_get_pkey_ctx(loopargs[i].sm2_vfy_ctx[k])) != NULL) EVP_PKEY_CTX_free(pctx); EVP_MD_CTX_free(loopargs[i].sm2_vfy_ctx[k]); /* free pkey */ EVP_PKEY_free(loopargs[i].sm2_pkey[k]); } #endif for (k = 0; k < kems_algs_len; k++) { EVP_PKEY_CTX_free(loopargs[i].kem_gen_ctx[k]); EVP_PKEY_CTX_free(loopargs[i].kem_encaps_ctx[k]); EVP_PKEY_CTX_free(loopargs[i].kem_decaps_ctx[k]); OPENSSL_free(loopargs[i].kem_out[k]); OPENSSL_free(loopargs[i].kem_send_secret[k]); OPENSSL_free(loopargs[i].kem_rcv_secret[k]); } for (k = 0; k < sigs_algs_len; k++) { EVP_PKEY_CTX_free(loopargs[i].sig_gen_ctx[k]); EVP_PKEY_CTX_free(loopargs[i].sig_sign_ctx[k]); EVP_PKEY_CTX_free(loopargs[i].sig_verify_ctx[k]); OPENSSL_free(loopargs[i].sig_sig[k]); } OPENSSL_free(loopargs[i].secret_a); OPENSSL_free(loopargs[i].secret_b); } OPENSSL_free(evp_hmac_name); OPENSSL_free(evp_cmac_name); for (k = 0; k < kems_algs_len; k++) OPENSSL_free(kems_algname[k]); if (kem_stack != NULL) sk_EVP_KEM_pop_free(kem_stack, EVP_KEM_free); for (k = 0; k < sigs_algs_len; k++) OPENSSL_free(sigs_algname[k]); if (sig_stack != NULL) sk_EVP_SIGNATURE_pop_free(sig_stack, EVP_SIGNATURE_free); if (async_jobs > 0) { for (i = 0; i < loopargs_len; i++) ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx); } if (async_init) { ASYNC_cleanup_thread(); } OPENSSL_free(loopargs); release_engine(e); EVP_CIPHER_free(evp_cipher); EVP_MAC_free(mac); NCONF_free(conf); return ret; } static void print_message(const char *s, int length, int tm) { BIO_printf(bio_err, mr ? "+DT:%s:%d:%d\n" : "Doing %s ops for %ds on %d size blocks: ", s, tm, length); (void)BIO_flush(bio_err); run = 1; alarm(tm); } static void pkey_print_message(const char *str, const char *str2, unsigned int bits, int tm) { BIO_printf(bio_err, mr ? "+DTP:%d:%s:%s:%d\n" : "Doing %u bits %s %s ops for %ds: ", bits, str, str2, tm); (void)BIO_flush(bio_err); run = 1; alarm(tm); } static void kskey_print_message(const char *str, const char *str2, int tm) { BIO_printf(bio_err, mr ? "+DTP:%s:%s:%d\n" : "Doing %s %s ops for %ds: ", str, str2, tm); (void)BIO_flush(bio_err); run = 1; alarm(tm); } static void print_result(int alg, int run_no, int count, double time_used) { if (count == -1) { BIO_printf(bio_err, "%s error!\n", names[alg]); ERR_print_errors(bio_err); return; } BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" : "%d %s ops in %.2fs\n", count, names[alg], time_used); results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; } #ifndef NO_FORK static char *sstrsep(char **string, const char *delim) { char isdelim[256]; char *token = *string; memset(isdelim, 0, sizeof(isdelim)); isdelim[0] = 1; while (*delim) { isdelim[(unsigned char)(*delim)] = 1; delim++; } while (!isdelim[(unsigned char)(**string)]) (*string)++; if (**string) { **string = 0; (*string)++; } return token; } static int strtoint(const char *str, const int min_val, const int upper_val, int *res) { char *end = NULL; long int val = 0; errno = 0; val = strtol(str, &end, 10); if (errno == 0 && end != str && *end == 0 && min_val <= val && val < upper_val) { *res = (int)val; return 1; } else { return 0; } } static int do_multi(int multi, int size_num) { int n; int fd[2]; int *fds; int status; static char sep[] = ":"; fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi"); for (n = 0; n < multi; ++n) { if (pipe(fd) == -1) { BIO_printf(bio_err, "pipe failure\n"); exit(1); } fflush(stdout); (void)BIO_flush(bio_err); if (fork()) { close(fd[1]); fds[n] = fd[0]; } else { close(fd[0]); close(1); if (dup(fd[1]) == -1) { BIO_printf(bio_err, "dup failed\n"); exit(1); } close(fd[1]); mr = 1; usertime = 0; OPENSSL_free(fds); return 0; } printf("Forked child %d\n", n); } /* for now, assume the pipe is long enough to take all the output */ for (n = 0; n < multi; ++n) { FILE *f; char buf[1024]; char *p; char *tk; int k; double d; if ((f = fdopen(fds[n], "r")) == NULL) { BIO_printf(bio_err, "fdopen failure with 0x%x\n", errno); OPENSSL_free(fds); return 1; } while (fgets(buf, sizeof(buf), f)) { p = strchr(buf, '\n'); if (p) *p = '\0'; if (buf[0] != '+') { BIO_printf(bio_err, "Don't understand line '%s' from child %d\n", buf, n); continue; } printf("Got: %s from %d\n", buf, n); p = buf; if (CHECK_AND_SKIP_PREFIX(p, "+F:")) { int alg; int j; if (strtoint(sstrsep(&p, sep), 0, ALGOR_NUM, &alg)) { sstrsep(&p, sep); for (j = 0; j < size_num; ++j) results[alg][j] += atof(sstrsep(&p, sep)); } } else if (CHECK_AND_SKIP_PREFIX(p, "+F2:")) { tk = sstrsep(&p, sep); if (strtoint(tk, 0, OSSL_NELEM(rsa_results), &k)) { sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); rsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); rsa_results[k][1] += d; d = atof(sstrsep(&p, sep)); rsa_results[k][2] += d; d = atof(sstrsep(&p, sep)); rsa_results[k][3] += d; } } else if (CHECK_AND_SKIP_PREFIX(p, "+F3:")) { tk = sstrsep(&p, sep); if (strtoint(tk, 0, OSSL_NELEM(dsa_results), &k)) { sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); dsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); dsa_results[k][1] += d; } } else if (CHECK_AND_SKIP_PREFIX(p, "+F4:")) { tk = sstrsep(&p, sep); if (strtoint(tk, 0, OSSL_NELEM(ecdsa_results), &k)) { sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); ecdsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); ecdsa_results[k][1] += d; } } else if (CHECK_AND_SKIP_PREFIX(p, "+F5:")) { tk = sstrsep(&p, sep); if (strtoint(tk, 0, OSSL_NELEM(ecdh_results), &k)) { sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); ecdh_results[k][0] += d; } # ifndef OPENSSL_NO_ECX } else if (CHECK_AND_SKIP_PREFIX(p, "+F6:")) { tk = sstrsep(&p, sep); if (strtoint(tk, 0, OSSL_NELEM(eddsa_results), &k)) { sstrsep(&p, sep); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); eddsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); eddsa_results[k][1] += d; } # endif /* OPENSSL_NO_ECX */ # ifndef OPENSSL_NO_SM2 } else if (CHECK_AND_SKIP_PREFIX(p, "+F7:")) { tk = sstrsep(&p, sep); if (strtoint(tk, 0, OSSL_NELEM(sm2_results), &k)) { sstrsep(&p, sep); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); sm2_results[k][0] += d; d = atof(sstrsep(&p, sep)); sm2_results[k][1] += d; } # endif /* OPENSSL_NO_SM2 */ # ifndef OPENSSL_NO_DH } else if (CHECK_AND_SKIP_PREFIX(p, "+F8:")) { tk = sstrsep(&p, sep); if (strtoint(tk, 0, OSSL_NELEM(ffdh_results), &k)) { sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); ffdh_results[k][0] += d; } # endif /* OPENSSL_NO_DH */ } else if (CHECK_AND_SKIP_PREFIX(p, "+F9:")) { tk = sstrsep(&p, sep); if (strtoint(tk, 0, OSSL_NELEM(kems_results), &k)) { d = atof(sstrsep(&p, sep)); kems_results[k][0] += d; d = atof(sstrsep(&p, sep)); kems_results[k][1] += d; d = atof(sstrsep(&p, sep)); kems_results[k][2] += d; } } else if (CHECK_AND_SKIP_PREFIX(p, "+F10:")) { tk = sstrsep(&p, sep); if (strtoint(tk, 0, OSSL_NELEM(sigs_results), &k)) { d = atof(sstrsep(&p, sep)); sigs_results[k][0] += d; d = atof(sstrsep(&p, sep)); sigs_results[k][1] += d; d = atof(sstrsep(&p, sep)); sigs_results[k][2] += d; } } else if (!HAS_PREFIX(buf, "+H:")) { BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n); } } fclose(f); } OPENSSL_free(fds); for (n = 0; n < multi; ++n) { while (wait(&status) == -1) if (errno != EINTR) { BIO_printf(bio_err, "Waitng for child failed with 0x%x\n", errno); return 1; } if (WIFEXITED(status) && WEXITSTATUS(status)) { BIO_printf(bio_err, "Child exited with %d\n", WEXITSTATUS(status)); } else if (WIFSIGNALED(status)) { BIO_printf(bio_err, "Child terminated by signal %d\n", WTERMSIG(status)); } } return 1; } #endif static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, const openssl_speed_sec_t *seconds) { static const int mblengths_list[] = { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 }; const int *mblengths = mblengths_list; int j, count, keylen, num = OSSL_NELEM(mblengths_list), ciph_success = 1; const char *alg_name; unsigned char *inp = NULL, *out = NULL, *key, no_key[32], no_iv[16]; EVP_CIPHER_CTX *ctx = NULL; double d = 0.0; if (lengths_single) { mblengths = &lengths_single; num = 1; } inp = app_malloc(mblengths[num - 1], "multiblock input buffer"); out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); if ((ctx = EVP_CIPHER_CTX_new()) == NULL) app_bail_out("failed to allocate cipher context\n"); if (!EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv)) app_bail_out("failed to initialise cipher context\n"); if ((keylen = EVP_CIPHER_CTX_get_key_length(ctx)) < 0) { BIO_printf(bio_err, "Impossible negative key length: %d\n", keylen); goto err; } key = app_malloc(keylen, "evp_cipher key"); if (EVP_CIPHER_CTX_rand_key(ctx, key) <= 0) app_bail_out("failed to generate random cipher key\n"); if (!EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL)) app_bail_out("failed to set cipher key\n"); OPENSSL_clear_free(key, keylen); if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key) <= 0) app_bail_out("failed to set AEAD key\n"); if ((alg_name = EVP_CIPHER_get0_name(evp_cipher)) == NULL) app_bail_out("failed to get cipher name\n"); for (j = 0; j < num; j++) { print_message(alg_name, mblengths[j], seconds->sym); Time_F(START); for (count = 0; run && count < INT_MAX; count++) { unsigned char aad[EVP_AEAD_TLS1_AAD_LEN]; EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; size_t len = mblengths[j]; int packlen; memset(aad, 0, 8); /* avoid uninitialized values */ aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */ aad[9] = 3; /* version */ aad[10] = 2; aad[11] = 0; /* length */ aad[12] = 0; mb_param.out = NULL; mb_param.inp = aad; mb_param.len = len; mb_param.interleave = 8; packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, sizeof(mb_param), &mb_param); if (packlen > 0) { mb_param.out = out; mb_param.inp = inp; mb_param.len = len; (void)EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, sizeof(mb_param), &mb_param); } else { int pad; if (RAND_bytes(inp, 16) <= 0) app_bail_out("error setting random bytes\n"); len += 16; aad[11] = (unsigned char)(len >> 8); aad[12] = (unsigned char)(len); pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD, EVP_AEAD_TLS1_AAD_LEN, aad); ciph_success = EVP_Cipher(ctx, out, inp, len + pad); } } d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" : "%d %s ops in %.2fs\n", count, "evp", d); if ((ciph_success <= 0) && (mr == 0)) BIO_printf(bio_err, "Error performing cipher op\n"); results[D_EVP][j] = ((double)count) / d * mblengths[j]; } if (mr) { fprintf(stdout, "+H"); for (j = 0; j < num; j++) fprintf(stdout, ":%d", mblengths[j]); fprintf(stdout, "\n"); fprintf(stdout, "+F:%d:%s", D_EVP, alg_name); for (j = 0; j < num; j++) fprintf(stdout, ":%.2f", results[D_EVP][j]); fprintf(stdout, "\n"); } else { fprintf(stdout, "The 'numbers' are in 1000s of bytes per second processed.\n"); fprintf(stdout, "type "); for (j = 0; j < num; j++) fprintf(stdout, "%7d bytes", mblengths[j]); fprintf(stdout, "\n"); fprintf(stdout, "%-24s", alg_name); for (j = 0; j < num; j++) { if (results[D_EVP][j] > 10000) fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3); else fprintf(stdout, " %11.2f ", results[D_EVP][j]); } fprintf(stdout, "\n"); } err: OPENSSL_free(inp); OPENSSL_free(out); EVP_CIPHER_CTX_free(ctx); }