/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #undef SECONDS #define SECONDS 3 #define RSA_SECONDS 10 #define DSA_SECONDS 10 #define ECDSA_SECONDS 10 #define ECDH_SECONDS 10 #define EdDSA_SECONDS 10 #define SM2_SECONDS 10 /* We need to use some deprecated APIs */ #define OPENSSL_SUPPRESS_DEPRECATED #include #include #include #include #include "apps.h" #include "progs.h" #include #include #include #include #include #include #if !defined(OPENSSL_SYS_MSDOS) # include #endif #if defined(_WIN32) # include #endif #include #ifndef OPENSSL_NO_DES # include #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 #include #endif #ifndef OPENSSL_NO_CAMELLIA # include #endif #ifndef OPENSSL_NO_MD2 # include #endif #ifndef OPENSSL_NO_MDC2 # include #endif #ifndef OPENSSL_NO_MD4 # include #endif #ifndef OPENSSL_NO_MD5 # include #endif #include #ifndef OPENSSL_NO_CMAC #include #endif #include #ifndef OPENSSL_NO_RMD160 # include #endif #ifndef OPENSSL_NO_WHIRLPOOL # include #endif #ifndef OPENSSL_NO_RC4 # include #endif #ifndef OPENSSL_NO_RC5 # include #endif #ifndef OPENSSL_NO_RC2 # include #endif #ifndef OPENSSL_NO_IDEA # include #endif #ifndef OPENSSL_NO_SEED # include #endif #ifndef OPENSSL_NO_BF # include #endif #ifndef OPENSSL_NO_CAST # include #endif #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) # include # include "./testrsa.h" #endif #include #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) # include # include "./testdsa.h" #endif #ifndef OPENSSL_NO_EC # include #endif #include #ifndef HAVE_FORK # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_VXWORKS) # define HAVE_FORK 0 # else # define HAVE_FORK 1 # endif #endif #if HAVE_FORK # undef NO_FORK #else # define NO_FORK #endif #define MAX_MISALIGNMENT 63 #define MAX_ECDH_SIZE 256 #define MISALIGN 64 typedef struct openssl_speed_sec_st { int sym; int rsa; int dsa; int ecdsa; int ecdh; int eddsa; int sm2; } openssl_speed_sec_t; static volatile int run = 0; static int mr = 0; /* machine-readeable output format to merge fork results */ static int usertime = 1; static double Time_F(int s); static void print_message(const char *s, long num, int length, int tm); static void pkey_print_message(const char *str, const char *str2, long num, unsigned int bits, int sec); static void print_result(int alg, int run_no, int count, double time_used); #ifndef NO_FORK static int do_multi(int multi, int size_num); #endif static const int lengths_list[] = { 16, 64, 256, 1024, 8 * 1024, 16 * 1024 }; #define SIZE_NUM OSSL_NELEM(lengths_list) static const int *lengths = lengths_list; static const int aead_lengths_list[] = { 2, 31, 136, 1024, 8 * 1024, 16 * 1024 }; #define START 0 #define STOP 1 #ifdef SIGALRM static void alarmed(int sig) { signal(SIGALRM, alarmed); run = 0; } static double Time_F(int s) { double ret = app_tminterval(s, usertime); if (s == STOP) alarm(0); return ret; } #elif defined(_WIN32) # define SIGALRM -1 static unsigned int lapse; static volatile unsigned int schlock; static void alarm_win32(unsigned int secs) { lapse = secs * 1000; } # define alarm alarm_win32 static DWORD WINAPI sleepy(VOID * arg) { schlock = 1; Sleep(lapse); run = 0; return 0; } static double Time_F(int s) { double ret; static HANDLE thr; if (s == START) { schlock = 0; thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); if (thr == NULL) { DWORD err = GetLastError(); BIO_printf(bio_err, "unable to CreateThread (%lu)", err); ExitProcess(err); } while (!schlock) Sleep(0); /* scheduler spinlock */ ret = app_tminterval(s, usertime); } else { ret = app_tminterval(s, usertime); if (run) TerminateThread(thr, 0); CloseHandle(thr); } return ret; } #else static double Time_F(int s) { return app_tminterval(s, usertime); } #endif static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, const openssl_speed_sec_t *seconds); static int opt_found(const char *name, unsigned int *result, const OPT_PAIR pairs[], unsigned int nbelem) { unsigned int idx; for (idx = 0; idx < nbelem; ++idx, pairs++) if (strcmp(name, pairs->name) == 0) { *result = pairs->retval; return 1; } return 0; } #define opt_found(value, pairs, result)\ opt_found(value, result, pairs, OSSL_NELEM(pairs)) typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_HELP, OPT_ELAPSED, OPT_EVP, OPT_HMAC, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI, OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS, OPT_R_ENUM, OPT_PRIMES, OPT_SECONDS, OPT_BYTES, OPT_AEAD, OPT_CMAC } OPTION_CHOICE; const OPTIONS speed_options[] = { {OPT_HELP_STR, 1, '-', "Usage: %s [options] [algorithm...]\n"}, OPT_SECTION("General"), {"help", OPT_HELP, '-', "Display this summary"}, {"mb", OPT_MB, '-', "Enable (tls1>=1) multi-block mode on EVP-named cipher"}, {"mr", OPT_MR, '-', "Produce machine readable output"}, #ifndef NO_FORK {"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"}, #endif #ifndef OPENSSL_NO_ASYNC {"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start specified number of jobs"}, #endif #ifndef OPENSSL_NO_ENGINE {"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"}, #endif {"primes", OPT_PRIMES, 'p', "Specify number of primes (for RSA only)"}, OPT_SECTION("Selection"), {"evp", OPT_EVP, 's', "Use EVP-named cipher or digest"}, #ifndef OPENSSL_NO_DEPRECATED_3_0 {"hmac", OPT_HMAC, 's', "HMAC using EVP-named digest"}, #endif #if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"cmac", OPT_CMAC, 's', "CMAC using EVP-named cipher"}, #endif {"decrypt", OPT_DECRYPT, '-', "Time decryption instead of encryption (only EVP)"}, {"aead", OPT_AEAD, '-', "Benchmark EVP-named AEAD cipher in TLS-like sequence"}, OPT_SECTION("Timing"), {"elapsed", OPT_ELAPSED, '-', "Use wall-clock time instead of CPU user time as divisor"}, {"seconds", OPT_SECONDS, 'p', "Run benchmarks for specified amount of seconds"}, {"bytes", OPT_BYTES, 'p', "Run [non-PKI] benchmarks on custom-sized buffer"}, {"misalign", OPT_MISALIGN, 'p', "Use specified offset to mis-align buffers"}, OPT_R_OPTIONS, OPT_PARAMETERS(), {"algorithm", 0, 0, "Algorithm(s) to test (optional; otherwise tests all)"}, {NULL} }; enum { D_MD2, D_MDC2, D_MD4, D_MD5 , D_HMAC, D_SHA1, D_RMD160, D_RC4, D_CBC_DES, D_EDE3_DES, D_CBC_IDEA, D_CBC_SEED, D_CBC_RC2, D_CBC_RC5, D_CBC_BF, D_CBC_CAST, D_CBC_128_AES, D_CBC_192_AES, D_CBC_256_AES, D_CBC_128_CML, D_CBC_192_CML, D_CBC_256_CML, D_EVP, D_SHA256, D_SHA512, D_WHIRLPOOL, D_IGE_128_AES, D_IGE_192_AES, D_IGE_256_AES, D_GHASH, D_RAND, D_EVP_HMAC, D_EVP_CMAC, ALGOR_NUM }; /* name of algorithms to test. MUST BE KEEP IN SYNC with above enum ! */ static const char *names[ALGOR_NUM] = { "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", "des cbc", "des ede3", "idea cbc", "seed cbc", "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", "evp", "sha256", "sha512", "whirlpool", "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash", "rand", "hmac", "cmac" }; /* list of configured algorithm (remaining), with some few alias */ static const OPT_PAIR doit_choices[] = { #if !defined(OPENSSL_NO_MD2) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"md2", D_MD2}, #endif #if !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"mdc2", D_MDC2}, #endif #if !defined(OPENSSL_NO_MD4) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"md4", D_MD4}, #endif #if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"md5", D_MD5}, # ifndef OPENSSL_NO_DEPRECATED_3_0 {"hmac", D_HMAC}, # endif #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 {"sha1", D_SHA1}, {"sha256", D_SHA256}, {"sha512", D_SHA512}, #endif #if !defined(OPENSSL_NO_WHIRLPOOL) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"whirlpool", D_WHIRLPOOL}, #endif #if !defined(OPENSSL_NO_RMD160) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"ripemd", D_RMD160}, {"rmd160", D_RMD160}, {"ripemd160", D_RMD160}, #endif #if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"rc4", D_RC4}, #endif #if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"des-cbc", D_CBC_DES}, {"des-ede3", D_EDE3_DES}, #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 {"aes-128-cbc", D_CBC_128_AES}, {"aes-192-cbc", D_CBC_192_AES}, {"aes-256-cbc", D_CBC_256_AES}, {"aes-128-ige", D_IGE_128_AES}, {"aes-192-ige", D_IGE_192_AES}, {"aes-256-ige", D_IGE_256_AES}, #endif #if !defined(OPENSSL_NO_RC2) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"rc2-cbc", D_CBC_RC2}, {"rc2", D_CBC_RC2}, #endif #if !defined(OPENSSL_NO_RC5) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"rc5-cbc", D_CBC_RC5}, {"rc5", D_CBC_RC5}, #endif #if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"idea-cbc", D_CBC_IDEA}, {"idea", D_CBC_IDEA}, #endif #if !defined(OPENSSL_NO_SEED) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"seed-cbc", D_CBC_SEED}, {"seed", D_CBC_SEED}, #endif #if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"bf-cbc", D_CBC_BF}, {"blowfish", D_CBC_BF}, {"bf", D_CBC_BF}, #endif #if !defined(OPENSSL_NO_CAST) && !defined(OPENSSL_NO_DEPRECATED_3_0) {"cast-cbc", D_CBC_CAST}, {"cast", D_CBC_CAST}, {"cast5", D_CBC_CAST}, #endif {"ghash", D_GHASH}, {"rand", D_RAND} }; static double results[ALGOR_NUM][SIZE_NUM]; #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) enum { R_DSA_512, R_DSA_1024, R_DSA_2048, DSA_NUM }; static const OPT_PAIR dsa_choices[DSA_NUM] = { {"dsa512", R_DSA_512}, {"dsa1024", R_DSA_1024}, {"dsa2048", R_DSA_2048} }; static double dsa_results[DSA_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_DSA */ #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) enum { R_RSA_512, R_RSA_1024, R_RSA_2048, R_RSA_3072, R_RSA_4096, R_RSA_7680, R_RSA_15360, RSA_NUM }; static const OPT_PAIR rsa_choices[RSA_NUM] = { {"rsa512", R_RSA_512}, {"rsa1024", R_RSA_1024}, {"rsa2048", R_RSA_2048}, {"rsa3072", R_RSA_3072}, {"rsa4096", R_RSA_4096}, {"rsa7680", R_RSA_7680}, {"rsa15360", R_RSA_15360} }; static double rsa_results[RSA_NUM][2]; /* 2 ops: sign then verify */ #endif /* OPENSSL_NO_RSA */ #ifndef OPENSSL_NO_EC enum ec_curves_t { R_EC_P160, R_EC_P192, R_EC_P224, R_EC_P256, R_EC_P384, R_EC_P521, # ifndef OPENSSL_NO_EC2M R_EC_K163, R_EC_K233, R_EC_K283, R_EC_K409, R_EC_K571, R_EC_B163, R_EC_B233, R_EC_B283, R_EC_B409, R_EC_B571, # endif R_EC_BRP256R1, R_EC_BRP256T1, R_EC_BRP384R1, R_EC_BRP384T1, R_EC_BRP512R1, R_EC_BRP512T1, ECDSA_NUM }; /* list of ecdsa curves */ static const OPT_PAIR ecdsa_choices[ECDSA_NUM] = { {"ecdsap160", R_EC_P160}, {"ecdsap192", R_EC_P192}, {"ecdsap224", R_EC_P224}, {"ecdsap256", R_EC_P256}, {"ecdsap384", R_EC_P384}, {"ecdsap521", R_EC_P521}, # ifndef OPENSSL_NO_EC2M {"ecdsak163", R_EC_K163}, {"ecdsak233", R_EC_K233}, {"ecdsak283", R_EC_K283}, {"ecdsak409", R_EC_K409}, {"ecdsak571", R_EC_K571}, {"ecdsab163", R_EC_B163}, {"ecdsab233", R_EC_B233}, {"ecdsab283", R_EC_B283}, {"ecdsab409", R_EC_B409}, {"ecdsab571", R_EC_B571}, # endif {"ecdsabrp256r1", R_EC_BRP256R1}, {"ecdsabrp256t1", R_EC_BRP256T1}, {"ecdsabrp384r1", R_EC_BRP384R1}, {"ecdsabrp384t1", R_EC_BRP384T1}, {"ecdsabrp512r1", R_EC_BRP512R1}, {"ecdsabrp512t1", R_EC_BRP512T1} }; enum { R_EC_X25519 = ECDSA_NUM, R_EC_X448, EC_NUM }; /* list of ecdh curves, extension of |ecdsa_choices| list above */ static const OPT_PAIR ecdh_choices[EC_NUM] = { {"ecdhp160", R_EC_P160}, {"ecdhp192", R_EC_P192}, {"ecdhp224", R_EC_P224}, {"ecdhp256", R_EC_P256}, {"ecdhp384", R_EC_P384}, {"ecdhp521", R_EC_P521}, # ifndef OPENSSL_NO_EC2M {"ecdhk163", R_EC_K163}, {"ecdhk233", R_EC_K233}, {"ecdhk283", R_EC_K283}, {"ecdhk409", R_EC_K409}, {"ecdhk571", R_EC_K571}, {"ecdhb163", R_EC_B163}, {"ecdhb233", R_EC_B233}, {"ecdhb283", R_EC_B283}, {"ecdhb409", R_EC_B409}, {"ecdhb571", R_EC_B571}, # endif {"ecdhbrp256r1", R_EC_BRP256R1}, {"ecdhbrp256t1", R_EC_BRP256T1}, {"ecdhbrp384r1", R_EC_BRP384R1}, {"ecdhbrp384t1", R_EC_BRP384T1}, {"ecdhbrp512r1", R_EC_BRP512R1}, {"ecdhbrp512t1", R_EC_BRP512T1}, {"ecdhx25519", R_EC_X25519}, {"ecdhx448", R_EC_X448} }; static double ecdh_results[EC_NUM][1]; /* 1 op: derivation */ static double ecdsa_results[ECDSA_NUM][2]; /* 2 ops: sign then verify */ enum { R_EC_Ed25519, R_EC_Ed448, EdDSA_NUM }; static const OPT_PAIR eddsa_choices[EdDSA_NUM] = { {"ed25519", R_EC_Ed25519}, {"ed448", R_EC_Ed448} }; static double eddsa_results[EdDSA_NUM][2]; /* 2 ops: sign then verify */ # ifndef OPENSSL_NO_SM2 enum { R_EC_CURVESM2, SM2_NUM }; static const OPT_PAIR sm2_choices[SM2_NUM] = { {"curveSM2", R_EC_CURVESM2} }; # define SM2_ID "TLSv1.3+GM+Cipher+Suite" # define SM2_ID_LEN sizeof("TLSv1.3+GM+Cipher+Suite") - 1 static double sm2_results[SM2_NUM][2]; /* 2 ops: sign then verify */ # endif /* OPENSSL_NO_SM2 */ #endif /* OPENSSL_NO_EC */ #ifndef SIGALRM # define COND(d) (count < (d)) # define COUNT(d) (d) #else # define COND(unused_cond) (run && count<0x7fffffff) # define COUNT(d) (count) #endif /* SIGALRM */ typedef struct loopargs_st { ASYNC_JOB *inprogress_job; ASYNC_WAIT_CTX *wait_ctx; unsigned char *buf; unsigned char *buf2; unsigned char *buf_malloc; unsigned char *buf2_malloc; unsigned char *key; unsigned int siglen; size_t sigsize; #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) RSA *rsa_key[RSA_NUM]; #endif #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) DSA *dsa_key[DSA_NUM]; #endif #ifndef OPENSSL_NO_EC EC_KEY *ecdsa[ECDSA_NUM]; EVP_PKEY_CTX *ecdh_ctx[EC_NUM]; EVP_MD_CTX *eddsa_ctx[EdDSA_NUM]; # ifndef OPENSSL_NO_SM2 EVP_MD_CTX *sm2_ctx[SM2_NUM]; EVP_MD_CTX *sm2_vfy_ctx[SM2_NUM]; EVP_PKEY *sm2_pkey[SM2_NUM]; # endif unsigned char *secret_a; unsigned char *secret_b; size_t outlen[EC_NUM]; #endif EVP_CIPHER_CTX *ctx; #ifndef OPENSSL_NO_DEPRECATED_3_0 HMAC_CTX *hctx; #endif #if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0) CMAC_CTX *cmac_ctx; #endif GCM128_CONTEXT *gcm_ctx; } loopargs_t; static int run_benchmark(int async_jobs, int (*loop_function) (void *), loopargs_t * loopargs); static unsigned int testnum; /* Nb of iterations to do per algorithm and key-size */ static long c[ALGOR_NUM][SIZE_NUM]; #if !defined(OPENSSL_NO_MD2) && !defined(OPENSSL_NO_DEPRECATED_3_0) static int EVP_Digest_MD2_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md2[MD2_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD2][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], md2, NULL, EVP_md2(), NULL)) return -1; } return count; } #endif #if !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DEPRECATED_3_0) static int EVP_Digest_MDC2_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char mdc2[MDC2_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MDC2][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], mdc2, NULL, EVP_mdc2(), NULL)) return -1; } return count; } #endif #if !defined(OPENSSL_NO_MD4) && !defined(OPENSSL_NO_DEPRECATED_3_0) static int EVP_Digest_MD4_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md4[MD4_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD4][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], md4, NULL, EVP_md4(), NULL)) return -1; } return count; } #endif #if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_DEPRECATED_3_0) static int MD5_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md5[MD5_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_MD5][testnum]); count++) MD5(buf, lengths[testnum], md5); return count; } # ifndef OPENSSL_NO_DEPRECATED_3_0 static int HMAC_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; HMAC_CTX *hctx = tempargs->hctx; unsigned char hmac[MD5_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_HMAC][testnum]); count++) { HMAC_Init_ex(hctx, NULL, 0, NULL, NULL); HMAC_Update(hctx, buf, lengths[testnum]); HMAC_Final(hctx, hmac, NULL); } return count; } # endif #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 static int SHA1_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha[SHA_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_SHA1][testnum]); count++) SHA1(buf, lengths[testnum], sha); return count; } static int SHA256_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha256[SHA256_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_SHA256][testnum]); count++) SHA256(buf, lengths[testnum], sha256); return count; } static int SHA512_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char sha512[SHA512_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_SHA512][testnum]); count++) SHA512(buf, lengths[testnum], sha512); return count; } #endif #if !defined(OPENSSL_NO_WHIRLPOOL) && !defined(OPENSSL_NO_DEPRECATED_3_0) static int WHIRLPOOL_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++) WHIRLPOOL(buf, lengths[testnum], whirlpool); return count; } #endif #if !defined(OPENSSL_NO_RMD160) && !defined(OPENSSL_NO_DEPRECATED_3_0) static int EVP_Digest_RMD160_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; int count; for (count = 0; COND(c[D_RMD160][testnum]); count++) { if (!EVP_Digest(buf, (size_t)lengths[testnum], &(rmd160[0]), NULL, EVP_ripemd160(), NULL)) return -1; } return count; } #endif #if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0) static RC4_KEY rc4_ks; static int RC4_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_RC4][testnum]); count++) RC4(&rc4_ks, (size_t)lengths[testnum], buf, buf); return count; } #endif #if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0) static unsigned char DES_iv[8]; static DES_key_schedule sch[3]; static int DES_ncbc_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_DES][testnum]); count++) DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch[0], &DES_iv, DES_ENCRYPT); return count; } static int DES_ede3_cbc_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_EDE3_DES][testnum]); count++) DES_ede3_cbc_encrypt(buf, buf, lengths[testnum], &sch[0], &sch[1], &sch[2], &DES_iv, DES_ENCRYPT); return count; } #endif #define MAX_BLOCK_SIZE 128 static unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; #ifndef OPENSSL_NO_DEPRECATED_3_0 static AES_KEY aes_ks1, aes_ks2, aes_ks3; static int AES_cbc_128_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); return count; } static int AES_cbc_192_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); return count; } static int AES_cbc_256_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++) AES_cbc_encrypt(buf, buf, (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); return count; } static int AES_ige_128_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, (size_t)lengths[testnum], &aes_ks1, iv, AES_ENCRYPT); return count; } static int AES_ige_192_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, (size_t)lengths[testnum], &aes_ks2, iv, AES_ENCRYPT); return count; } static int AES_ige_256_encrypt_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; int count; for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++) AES_ige_encrypt(buf, buf2, (size_t)lengths[testnum], &aes_ks3, iv, AES_ENCRYPT); return count; } static int CRYPTO_gcm128_aad_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx; int count; for (count = 0; COND(c[D_GHASH][testnum]); count++) CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]); return count; } #endif static int RAND_bytes_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; int count; for (count = 0; COND(c[D_RAND][testnum]); count++) RAND_bytes(buf, lengths[testnum]); return count; } static int decrypt = 0; static int EVP_Update_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count, rc; if (decrypt) { for (count = 0; COND(c[D_EVP][testnum]); count++) { rc = EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); if (rc != 1) { /* reset iv in case of counter overflow */ EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); } } } else { for (count = 0; COND(c[D_EVP][testnum]); count++) { rc = EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); if (rc != 1) { /* reset iv in case of counter overflow */ EVP_CipherInit_ex(ctx, NULL, NULL, NULL, iv, -1); } } } if (decrypt) EVP_DecryptFinal_ex(ctx, buf, &outl); else EVP_EncryptFinal_ex(ctx, buf, &outl); return count; } /* * CCM does not support streaming. For the purpose of performance measurement, * each message is encrypted using the same (key,iv)-pair. Do not use this * code in your application. */ static int EVP_Update_loop_ccm(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count; unsigned char tag[12]; if (decrypt) { for (count = 0; COND(c[D_EVP][testnum]); count++) { EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(tag), tag); /* reset iv */ EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); /* counter is reset on every update */ EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); } } else { for (count = 0; COND(c[D_EVP][testnum]); count++) { /* restore iv length field */ EVP_EncryptUpdate(ctx, NULL, &outl, NULL, lengths[testnum]); /* counter is reset on every update */ EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); } } if (decrypt) EVP_DecryptFinal_ex(ctx, buf, &outl); else EVP_EncryptFinal_ex(ctx, buf, &outl); return count; } /* * To make AEAD benchmarking more relevant perform TLS-like operations, * 13-byte AAD followed by payload. But don't use TLS-formatted AAD, as * payload length is not actually limited by 16KB... */ static int EVP_Update_loop_aead(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_CIPHER_CTX *ctx = tempargs->ctx; int outl, count; unsigned char aad[13] = { 0xcc }; unsigned char faketag[16] = { 0xcc }; if (decrypt) { for (count = 0; COND(c[D_EVP][testnum]); count++) { EVP_DecryptInit_ex(ctx, NULL, NULL, NULL, iv); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, sizeof(faketag), faketag); EVP_DecryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); EVP_DecryptFinal_ex(ctx, buf + outl, &outl); } } else { for (count = 0; COND(c[D_EVP][testnum]); count++) { EVP_EncryptInit_ex(ctx, NULL, NULL, NULL, iv); EVP_EncryptUpdate(ctx, NULL, &outl, aad, sizeof(aad)); EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]); EVP_EncryptFinal_ex(ctx, buf + outl, &outl); } } return count; } static const EVP_MD *evp_md = NULL; static int EVP_Digest_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char md[EVP_MAX_MD_SIZE]; int count; for (count = 0; COND(c[D_EVP][testnum]); count++) { if (!EVP_Digest(buf, lengths[testnum], md, NULL, evp_md, NULL)) return -1; } return count; } #ifndef OPENSSL_NO_DEPRECATED_3_0 static const EVP_MD *evp_hmac_md = NULL; static char *evp_hmac_name = NULL; static int EVP_HMAC_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char no_key[32]; int count; for (count = 0; COND(c[D_EVP_HMAC][testnum]); count++) { if (HMAC(evp_hmac_md, no_key, sizeof(no_key), buf, lengths[testnum], NULL, NULL) == NULL) return -1; } return count; } #endif #if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0) static const EVP_CIPHER *evp_cmac_cipher = NULL; static char *evp_cmac_name = NULL; static int EVP_CMAC_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; CMAC_CTX *cmac_ctx = tempargs->cmac_ctx; static const char key[16] = "This is a key..."; unsigned char mac[16]; size_t len = sizeof(mac); int count; for (count = 0; COND(c[D_EVP_CMAC][testnum]); count++) { if (!CMAC_Init(cmac_ctx, key, sizeof(key), evp_cmac_cipher, NULL) || !CMAC_Update(cmac_ctx, buf, lengths[testnum]) || !CMAC_Final(cmac_ctx, mac, &len)) return -1; } return count; } #endif #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) static long rsa_c[RSA_NUM][2]; /* # RSA iteration test */ static int RSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; unsigned int *rsa_num = &tempargs->siglen; RSA **rsa_key = tempargs->rsa_key; int ret, count; for (count = 0; COND(rsa_c[testnum][0]); count++) { ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); if (ret == 0) { BIO_printf(bio_err, "RSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int RSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; unsigned int rsa_num = tempargs->siglen; RSA **rsa_key = tempargs->rsa_key; int ret, count; for (count = 0; COND(rsa_c[testnum][1]); count++) { ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]); if (ret <= 0) { BIO_printf(bio_err, "RSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) static long dsa_c[DSA_NUM][2]; static int DSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; DSA **dsa_key = tempargs->dsa_key; unsigned int *siglen = &tempargs->siglen; int ret, count; for (count = 0; COND(dsa_c[testnum][0]); count++) { ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]); if (ret == 0) { BIO_printf(bio_err, "DSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int DSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; unsigned char *buf2 = tempargs->buf2; DSA **dsa_key = tempargs->dsa_key; unsigned int siglen = tempargs->siglen; int ret, count; for (count = 0; COND(dsa_c[testnum][1]); count++) { ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]); if (ret <= 0) { BIO_printf(bio_err, "DSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } #endif #ifndef OPENSSL_NO_EC # ifndef OPENSSL_NO_DEPRECATED_3_0 static long ecdsa_c[ECDSA_NUM][2]; static int ECDSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EC_KEY **ecdsa = tempargs->ecdsa; unsigned char *ecdsasig = tempargs->buf2; unsigned int *ecdsasiglen = &tempargs->siglen; int ret, count; for (count = 0; COND(ecdsa_c[testnum][0]); count++) { ret = ECDSA_sign(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); if (ret == 0) { BIO_printf(bio_err, "ECDSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int ECDSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EC_KEY **ecdsa = tempargs->ecdsa; unsigned char *ecdsasig = tempargs->buf2; unsigned int ecdsasiglen = tempargs->siglen; int ret, count; for (count = 0; COND(ecdsa_c[testnum][1]); count++) { ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[testnum]); if (ret != 1) { BIO_printf(bio_err, "ECDSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } # endif /* ******************************************************************** */ static long ecdh_c[EC_NUM][1]; static int ECDH_EVP_derive_key_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; EVP_PKEY_CTX *ctx = tempargs->ecdh_ctx[testnum]; unsigned char *derived_secret = tempargs->secret_a; int count; size_t *outlen = &(tempargs->outlen[testnum]); for (count = 0; COND(ecdh_c[testnum][0]); count++) EVP_PKEY_derive(ctx, derived_secret, outlen); return count; } static long eddsa_c[EdDSA_NUM][2]; static int EdDSA_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **edctx = tempargs->eddsa_ctx; unsigned char *eddsasig = tempargs->buf2; size_t *eddsasigsize = &tempargs->sigsize; int ret, count; for (count = 0; COND(eddsa_c[testnum][0]); count++) { ret = EVP_DigestSign(edctx[testnum], eddsasig, eddsasigsize, buf, 20); if (ret == 0) { BIO_printf(bio_err, "EdDSA sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } static int EdDSA_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **edctx = tempargs->eddsa_ctx; unsigned char *eddsasig = tempargs->buf2; size_t eddsasigsize = tempargs->sigsize; int ret, count; for (count = 0; COND(eddsa_c[testnum][1]); count++) { ret = EVP_DigestVerify(edctx[testnum], eddsasig, eddsasigsize, buf, 20); if (ret != 1) { BIO_printf(bio_err, "EdDSA verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } # ifndef OPENSSL_NO_SM2 static long sm2_c[SM2_NUM][2]; static int SM2_sign_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **sm2ctx = tempargs->sm2_ctx; unsigned char *sm2sig = tempargs->buf2; size_t sm2sigsize = tempargs->sigsize; const size_t max_size = tempargs->sigsize; int ret, count; EVP_PKEY **sm2_pkey = tempargs->sm2_pkey; for (count = 0; COND(sm2_c[testnum][0]); count++) { if (!EVP_DigestSignInit(sm2ctx[testnum], NULL, EVP_sm3(), NULL, sm2_pkey[testnum])) { BIO_printf(bio_err, "SM2 init sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } ret = EVP_DigestSign(sm2ctx[testnum], sm2sig, &sm2sigsize, buf, 20); if (ret == 0) { BIO_printf(bio_err, "SM2 sign failure\n"); ERR_print_errors(bio_err); count = -1; break; } /* update the latest returned size and always use the fixed buffer size */ tempargs->sigsize = sm2sigsize; sm2sigsize = max_size; } return count; } static int SM2_verify_loop(void *args) { loopargs_t *tempargs = *(loopargs_t **) args; unsigned char *buf = tempargs->buf; EVP_MD_CTX **sm2ctx = tempargs->sm2_vfy_ctx; unsigned char *sm2sig = tempargs->buf2; size_t sm2sigsize = tempargs->sigsize; int ret, count; EVP_PKEY **sm2_pkey = tempargs->sm2_pkey; for (count = 0; COND(sm2_c[testnum][1]); count++) { if (!EVP_DigestVerifyInit(sm2ctx[testnum], NULL, EVP_sm3(), NULL, sm2_pkey[testnum])) { BIO_printf(bio_err, "SM2 verify init failure\n"); ERR_print_errors(bio_err); count = -1; break; } ret = EVP_DigestVerify(sm2ctx[testnum], sm2sig, sm2sigsize, buf, 20); if (ret != 1) { BIO_printf(bio_err, "SM2 verify failure\n"); ERR_print_errors(bio_err); count = -1; break; } } return count; } # endif /* OPENSSL_NO_SM2 */ #endif /* OPENSSL_NO_EC */ static int run_benchmark(int async_jobs, int (*loop_function) (void *), loopargs_t * loopargs) { int job_op_count = 0; int total_op_count = 0; int num_inprogress = 0; int error = 0, i = 0, ret = 0; OSSL_ASYNC_FD job_fd = 0; size_t num_job_fds = 0; if (async_jobs == 0) { return loop_function((void *)&loopargs); } for (i = 0; i < async_jobs && !error; i++) { loopargs_t *looparg_item = loopargs + i; /* Copy pointer content (looparg_t item address) into async context */ ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, &job_op_count, loop_function, (void *)&looparg_item, sizeof(looparg_item)); switch (ret) { case ASYNC_PAUSE: ++num_inprogress; break; case ASYNC_FINISH: if (job_op_count == -1) { error = 1; } else { total_op_count += job_op_count; } break; case ASYNC_NO_JOBS: case ASYNC_ERR: BIO_printf(bio_err, "Failure in the job\n"); ERR_print_errors(bio_err); error = 1; break; } } while (num_inprogress > 0) { #if defined(OPENSSL_SYS_WINDOWS) DWORD avail = 0; #elif defined(OPENSSL_SYS_UNIX) int select_result = 0; OSSL_ASYNC_FD max_fd = 0; fd_set waitfdset; FD_ZERO(&waitfdset); for (i = 0; i < async_jobs && num_inprogress > 0; i++) { if (loopargs[i].inprogress_job == NULL) continue; if (!ASYNC_WAIT_CTX_get_all_fds (loopargs[i].wait_ctx, NULL, &num_job_fds) || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); FD_SET(job_fd, &waitfdset); if (job_fd > max_fd) max_fd = job_fd; } if (max_fd >= (OSSL_ASYNC_FD)FD_SETSIZE) { BIO_printf(bio_err, "Error: max_fd (%d) must be smaller than FD_SETSIZE (%d). " "Decrease the value of async_jobs\n", max_fd, FD_SETSIZE); ERR_print_errors(bio_err); error = 1; break; } select_result = select(max_fd + 1, &waitfdset, NULL, NULL, NULL); if (select_result == -1 && errno == EINTR) continue; if (select_result == -1) { BIO_printf(bio_err, "Failure in the select\n"); ERR_print_errors(bio_err); error = 1; break; } if (select_result == 0) continue; #endif for (i = 0; i < async_jobs; i++) { if (loopargs[i].inprogress_job == NULL) continue; if (!ASYNC_WAIT_CTX_get_all_fds (loopargs[i].wait_ctx, NULL, &num_job_fds) || num_job_fds > 1) { BIO_printf(bio_err, "Too many fds in ASYNC_WAIT_CTX\n"); ERR_print_errors(bio_err); error = 1; break; } ASYNC_WAIT_CTX_get_all_fds(loopargs[i].wait_ctx, &job_fd, &num_job_fds); #if defined(OPENSSL_SYS_UNIX) if (num_job_fds == 1 && !FD_ISSET(job_fd, &waitfdset)) continue; #elif defined(OPENSSL_SYS_WINDOWS) if (num_job_fds == 1 && !PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0) continue; #endif ret = ASYNC_start_job(&loopargs[i].inprogress_job, loopargs[i].wait_ctx, &job_op_count, loop_function, (void *)(loopargs + i), sizeof(loopargs_t)); switch (ret) { case ASYNC_PAUSE: break; case ASYNC_FINISH: if (job_op_count == -1) { error = 1; } else { total_op_count += job_op_count; } --num_inprogress; loopargs[i].inprogress_job = NULL; break; case ASYNC_NO_JOBS: case ASYNC_ERR: --num_inprogress; loopargs[i].inprogress_job = NULL; BIO_printf(bio_err, "Failure in the job\n"); ERR_print_errors(bio_err); error = 1; break; } } } return error ? -1 : total_op_count; } #define stop_it(do_it, test_num)\ memset(do_it + test_num, 0, OSSL_NELEM(do_it) - test_num); int speed_main(int argc, char **argv) { ENGINE *e = NULL; loopargs_t *loopargs = NULL; const char *prog; const char *engine_id = NULL; const EVP_CIPHER *evp_cipher = NULL; double d = 0.0; OPTION_CHOICE o; int async_init = 0, multiblock = 0, pr_header = 0; uint8_t doit[ALGOR_NUM] = { 0 }; int ret = 1, misalign = 0, lengths_single = 0, aead = 0; long count = 0; unsigned int size_num = SIZE_NUM; unsigned int i, k, loopargs_len = 0, async_jobs = 0; int keylen; int buflen; #ifndef NO_FORK int multi = 0; #endif #if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) \ || !defined(OPENSSL_NO_EC) long rsa_count = 1; #endif openssl_speed_sec_t seconds = { SECONDS, RSA_SECONDS, DSA_SECONDS, ECDSA_SECONDS, ECDH_SECONDS, EdDSA_SECONDS, SM2_SECONDS }; /* What follows are the buffers and key material. */ #if !defined(OPENSSL_NO_RC5) && !defined(OPENSSL_NO_DEPRECATED_3_0) RC5_32_KEY rc5_ks; #endif #if !defined(OPENSSL_NO_RC2) && !defined(OPENSSL_NO_DEPRECATED_3_0) RC2_KEY rc2_ks; #endif #if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0) IDEA_KEY_SCHEDULE idea_ks; #endif #if !defined(OPENSSL_NO_SEED) && !defined(OPENSSL_NO_DEPRECATED_3_0) SEED_KEY_SCHEDULE seed_ks; #endif #if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0) BF_KEY bf_ks; #endif #if !defined(OPENSSL_NO_CAST) && !defined(OPENSSL_NO_DEPRECATED_3_0) CAST_KEY cast_ks; #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 static const unsigned char key16[16] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 }; static const unsigned char key24[24] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 }; static const unsigned char key32[32] = { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 }; #endif #if !defined(OPENSSL_NO_CAMELLIA) && !defined(OPENSSL_NO_DEPRECATED_3_0) CAMELLIA_KEY camellia_ks[3]; #endif #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) static const struct { const unsigned char *data; unsigned int length; unsigned int bits; } rsa_keys[] = { { test512, sizeof(test512), 512 }, { test1024, sizeof(test1024), 1024 }, { test2048, sizeof(test2048), 2048 }, { test3072, sizeof(test3072), 3072 }, { test4096, sizeof(test4096), 4092 }, { test7680, sizeof(test7680), 7680 }, { test15360, sizeof(test15360), 15360 } }; uint8_t rsa_doit[RSA_NUM] = { 0 }; int primes = RSA_DEFAULT_PRIME_NUM; #endif #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) static const unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; uint8_t dsa_doit[DSA_NUM] = { 0 }; #endif #ifndef OPENSSL_NO_EC typedef struct ec_curve_st { const char *name; unsigned int nid; unsigned int bits; size_t sigsize; /* only used for EdDSA curves */ } EC_CURVE; /* * We only test over the following curves as they are representative, To * add tests over more curves, simply add the curve NID and curve name to * the following arrays and increase the |ecdh_choices| and |ecdsa_choices| * lists accordingly. */ static const EC_CURVE ec_curves[EC_NUM] = { /* Prime Curves */ {"secp160r1", NID_secp160r1, 160}, {"nistp192", NID_X9_62_prime192v1, 192}, {"nistp224", NID_secp224r1, 224}, {"nistp256", NID_X9_62_prime256v1, 256}, {"nistp384", NID_secp384r1, 384}, {"nistp521", NID_secp521r1, 521}, # ifndef OPENSSL_NO_EC2M /* Binary Curves */ {"nistk163", NID_sect163k1, 163}, {"nistk233", NID_sect233k1, 233}, {"nistk283", NID_sect283k1, 283}, {"nistk409", NID_sect409k1, 409}, {"nistk571", NID_sect571k1, 571}, {"nistb163", NID_sect163r2, 163}, {"nistb233", NID_sect233r1, 233}, {"nistb283", NID_sect283r1, 283}, {"nistb409", NID_sect409r1, 409}, {"nistb571", NID_sect571r1, 571}, # endif {"brainpoolP256r1", NID_brainpoolP256r1, 256}, {"brainpoolP256t1", NID_brainpoolP256t1, 256}, {"brainpoolP384r1", NID_brainpoolP384r1, 384}, {"brainpoolP384t1", NID_brainpoolP384t1, 384}, {"brainpoolP512r1", NID_brainpoolP512r1, 512}, {"brainpoolP512t1", NID_brainpoolP512t1, 512}, /* Other and ECDH only ones */ {"X25519", NID_X25519, 253}, {"X448", NID_X448, 448} }; static const EC_CURVE ed_curves[EdDSA_NUM] = { /* EdDSA */ {"Ed25519", NID_ED25519, 253, 64}, {"Ed448", NID_ED448, 456, 114} }; # ifndef OPENSSL_NO_SM2 static const EC_CURVE sm2_curves[SM2_NUM] = { /* SM2 */ {"CurveSM2", NID_sm2, 256} }; uint8_t sm2_doit[SM2_NUM] = { 0 }; # endif uint8_t ecdsa_doit[ECDSA_NUM] = { 0 }; uint8_t ecdh_doit[EC_NUM] = { 0 }; uint8_t eddsa_doit[EdDSA_NUM] = { 0 }; /* checks declarated curves against choices list. */ OPENSSL_assert(ed_curves[EdDSA_NUM - 1].nid == NID_ED448); OPENSSL_assert(strcmp(eddsa_choices[EdDSA_NUM - 1].name, "ed448") == 0); OPENSSL_assert(ec_curves[EC_NUM - 1].nid == NID_X448); OPENSSL_assert(strcmp(ecdh_choices[EC_NUM - 1].name, "ecdhx448") == 0); OPENSSL_assert(ec_curves[ECDSA_NUM - 1].nid == NID_brainpoolP512t1); OPENSSL_assert(strcmp(ecdsa_choices[ECDSA_NUM - 1].name, "ecdsabrp512t1") == 0); # ifndef OPENSSL_NO_SM2 OPENSSL_assert(sm2_curves[SM2_NUM - 1].nid == NID_sm2); OPENSSL_assert(strcmp(sm2_choices[SM2_NUM - 1].name, "curveSM2") == 0); # endif #endif /* ndef OPENSSL_NO_EC */ prog = opt_init(argc, argv, speed_options); while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_EOF: case OPT_ERR: opterr: BIO_printf(bio_err, "%s: Use -help for summary.\n", prog); goto end; case OPT_HELP: opt_help(speed_options); ret = 0; goto end; case OPT_ELAPSED: usertime = 0; break; case OPT_EVP: evp_md = NULL; evp_cipher = EVP_get_cipherbyname(opt_arg()); if (evp_cipher == NULL) evp_md = EVP_get_digestbyname(opt_arg()); if (evp_cipher == NULL && evp_md == NULL) { BIO_printf(bio_err, "%s: %s is an unknown cipher or digest\n", prog, opt_arg()); goto end; } doit[D_EVP] = 1; break; case OPT_HMAC: #ifndef OPENSSL_NO_DEPRECATED_3_0 evp_hmac_md = EVP_get_digestbyname(opt_arg()); if (evp_hmac_md == NULL) { BIO_printf(bio_err, "%s: %s is an unknown digest\n", prog, opt_arg()); goto end; } doit[D_EVP_HMAC] = 1; break; #endif case OPT_CMAC: #if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0) evp_cmac_cipher = EVP_get_cipherbyname(opt_arg()); if (evp_cmac_cipher == NULL) { BIO_printf(bio_err, "%s: %s is an unknown cipher\n", prog, opt_arg()); goto end; } doit[D_EVP_CMAC] = 1; #endif break; case OPT_DECRYPT: decrypt = 1; break; case OPT_ENGINE: /* * In a forked execution, an engine might need to be * initialised by each child process, not by the parent. * So store the name here and run setup_engine() later on. */ engine_id = opt_arg(); break; case OPT_MULTI: #ifndef NO_FORK multi = atoi(opt_arg()); #endif break; case OPT_ASYNCJOBS: #ifndef OPENSSL_NO_ASYNC async_jobs = atoi(opt_arg()); if (!ASYNC_is_capable()) { BIO_printf(bio_err, "%s: async_jobs specified but async not supported\n", prog); goto opterr; } if (async_jobs > 99999) { BIO_printf(bio_err, "%s: too many async_jobs\n", prog); goto opterr; } #endif break; case OPT_MISALIGN: if (!opt_int(opt_arg(), &misalign)) goto end; if (misalign > MISALIGN) { BIO_printf(bio_err, "%s: Maximum offset is %d\n", prog, MISALIGN); goto opterr; } break; case OPT_MR: mr = 1; break; case OPT_MB: multiblock = 1; #ifdef OPENSSL_NO_MULTIBLOCK BIO_printf(bio_err, "%s: -mb specified but multi-block support is disabled\n", prog); goto end; #endif break; case OPT_R_CASES: if (!opt_rand(o)) goto end; break; case OPT_PRIMES: #ifndef OPENSSL_NO_DEPRECATED_3_0 if (!opt_int(opt_arg(), &primes)) goto end; #endif break; case OPT_SECONDS: seconds.sym = seconds.rsa = seconds.dsa = seconds.ecdsa = seconds.ecdh = seconds.eddsa = seconds.sm2 = atoi(opt_arg()); break; case OPT_BYTES: lengths_single = atoi(opt_arg()); lengths = &lengths_single; size_num = 1; break; case OPT_AEAD: aead = 1; break; } } argc = opt_num_rest(); argv = opt_rest(); /* Remaining arguments are algorithms. */ for (; *argv; argv++) { const char *algo = *argv; if (opt_found(algo, doit_choices, &i)) { doit[i] = 1; continue; } #if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (strcmp(algo, "des") == 0) { doit[D_CBC_DES] = doit[D_EDE3_DES] = 1; continue; } #endif if (strcmp(algo, "sha") == 0) { doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1; continue; } #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (strcmp(algo, "openssl") == 0) /* just for compatibility */ continue; if (strncmp(algo, "rsa", 3) == 0) { if (algo[3] == '\0') { memset(rsa_doit, 1, sizeof(rsa_doit)); continue; } if (opt_found(algo, rsa_choices, &i)) { rsa_doit[i] = 1; continue; } } #endif #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (strncmp(algo, "dsa", 3) == 0) { if (algo[3] == '\0') { memset(dsa_doit, 1, sizeof(dsa_doit)); continue; } if (opt_found(algo, dsa_choices, &i)) { dsa_doit[i] = 2; continue; } } #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 if (strcmp(algo, "aes") == 0) { doit[D_CBC_128_AES] = doit[D_CBC_192_AES] = doit[D_CBC_256_AES] = 1; continue; } #endif #if !defined(OPENSSL_NO_CAMELLIA) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (strcmp(algo, "camellia") == 0) { doit[D_CBC_128_CML] = doit[D_CBC_192_CML] = doit[D_CBC_256_CML] = 1; continue; } #endif #ifndef OPENSSL_NO_EC if (strncmp(algo, "ecdsa", 5) == 0) { if (algo[5] == '\0') { memset(ecdsa_doit, 1, sizeof(ecdsa_doit)); continue; } if (opt_found(algo, ecdsa_choices, &i)) { ecdsa_doit[i] = 2; continue; } } if (strncmp(algo, "ecdh", 4) == 0) { if (algo[4] == '\0') { memset(ecdh_doit, 1, sizeof(ecdh_doit)); continue; } if (opt_found(algo, ecdh_choices, &i)) { ecdh_doit[i] = 2; continue; } } if (strcmp(algo, "eddsa") == 0) { memset(eddsa_doit, 1, sizeof(eddsa_doit)); continue; } if (opt_found(algo, eddsa_choices, &i)) { eddsa_doit[i] = 2; continue; } # ifndef OPENSSL_NO_SM2 if (strcmp(algo, "sm2") == 0) { memset(sm2_doit, 1, sizeof(sm2_doit)); continue; } if (opt_found(algo, sm2_choices, &i)) { sm2_doit[i] = 2; continue; } # endif #endif /* OPENSSL_NO_EC */ BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, algo); goto end; } /* Sanity checks */ if (aead) { if (evp_cipher == NULL) { BIO_printf(bio_err, "-aead can be used only with an AEAD cipher\n"); goto end; } else if (!(EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { BIO_printf(bio_err, "%s is not an AEAD cipher\n", OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); goto end; } } if (multiblock) { if (evp_cipher == NULL) { BIO_printf(bio_err,"-mb can be used only with a multi-block" " capable cipher\n"); goto end; } else if (!(EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { BIO_printf(bio_err, "%s is not a multi-block capable\n", OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher))); goto end; } else if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with -mb"); goto end; } } /* Initialize the job pool if async mode is enabled */ if (async_jobs > 0) { async_init = ASYNC_init_thread(async_jobs, async_jobs); if (!async_init) { BIO_printf(bio_err, "Error creating the ASYNC job pool\n"); goto end; } } loopargs_len = (async_jobs == 0 ? 1 : async_jobs); loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs"); memset(loopargs, 0, loopargs_len * sizeof(loopargs_t)); for (i = 0; i < loopargs_len; i++) { if (async_jobs > 0) { loopargs[i].wait_ctx = ASYNC_WAIT_CTX_new(); if (loopargs[i].wait_ctx == NULL) { BIO_printf(bio_err, "Error creating the ASYNC_WAIT_CTX\n"); goto end; } } buflen = lengths[size_num - 1]; if (buflen < 36) /* size of random vector in RSA benchmark */ buflen = 36; buflen += MAX_MISALIGNMENT + 1; loopargs[i].buf_malloc = app_malloc(buflen, "input buffer"); loopargs[i].buf2_malloc = app_malloc(buflen, "input buffer"); memset(loopargs[i].buf_malloc, 0, buflen); memset(loopargs[i].buf2_malloc, 0, buflen); /* Align the start of buffers on a 64 byte boundary */ loopargs[i].buf = loopargs[i].buf_malloc + misalign; loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign; #ifndef OPENSSL_NO_EC loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a"); loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b"); #endif } #ifndef NO_FORK if (multi && do_multi(multi, size_num)) goto show_res; #endif /* Initialize the engine after the fork */ e = setup_engine(engine_id, 0); /* No parameters; turn on everything. */ if (argc == 0 && !doit[D_EVP] && !doit[D_EVP_HMAC] && !doit[D_EVP_CMAC]) { memset(doit, 1, sizeof(doit)); doit[D_EVP] = doit[D_EVP_HMAC] = doit[D_EVP_CMAC] = 0; #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) memset(rsa_doit, 1, sizeof(rsa_doit)); #endif #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) memset(dsa_doit, 1, sizeof(dsa_doit)); #endif #ifndef OPENSSL_NO_EC memset(ecdsa_doit, 1, sizeof(ecdsa_doit)); memset(ecdh_doit, 1, sizeof(ecdh_doit)); memset(eddsa_doit, 1, sizeof(eddsa_doit)); # ifndef OPENSSL_NO_SM2 memset(sm2_doit, 1, sizeof(sm2_doit)); # endif #endif } for (i = 0; i < ALGOR_NUM; i++) if (doit[i]) pr_header++; if (usertime == 0 && !mr) BIO_printf(bio_err, "You have chosen to measure elapsed time " "instead of user CPU time.\n"); #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) for (i = 0; i < loopargs_len; i++) { if (primes > RSA_DEFAULT_PRIME_NUM) { /* for multi-prime RSA, skip this */ break; } for (k = 0; k < RSA_NUM; k++) { const unsigned char *p = rsa_keys[k].data; loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_keys[k].length); if (loopargs[i].rsa_key[k] == NULL) { BIO_printf(bio_err, "internal error loading RSA key number %d\n", k); goto end; } } } #endif #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) for (i = 0; i < loopargs_len; i++) { loopargs[i].dsa_key[0] = get_dsa(512); loopargs[i].dsa_key[1] = get_dsa(1024); loopargs[i].dsa_key[2] = get_dsa(2048); } #endif #if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_DES] || doit[D_EDE3_DES]) { static DES_cblock keys[] = { { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 }, /* keys[0] */ { 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 }, /* keys[1] */ { 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 } /* keys[3] */ }; DES_set_key_unchecked(&keys[0], &sch[0]); DES_set_key_unchecked(&keys[1], &sch[1]); DES_set_key_unchecked(&keys[2], &sch[2]); } #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 AES_set_encrypt_key(key16, 128, &aes_ks1); AES_set_encrypt_key(key24, 192, &aes_ks2); AES_set_encrypt_key(key32, 256, &aes_ks3); #endif #if !defined(OPENSSL_NO_CAMELLIA) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_128_CML] || doit[D_CBC_192_CML] || doit[D_CBC_256_CML]) { Camellia_set_key(key16, 128, &camellia_ks[0]); Camellia_set_key(key24, 192, &camellia_ks[1]); Camellia_set_key(key32, 256, &camellia_ks[2]); } #endif #if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_IDEA]) IDEA_set_encrypt_key(key16, &idea_ks); #endif #if !defined(OPENSSL_NO_SEED) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_SEED]) SEED_set_key(key16, &seed_ks); #endif #if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_RC4]) RC4_set_key(&rc4_ks, 16, key16); #endif #if !defined(OPENSSL_NO_RC2) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_RC2]) RC2_set_key(&rc2_ks, 16, key16, 128); #endif #if !defined(OPENSSL_NO_RC5) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_RC5]) if (!RC5_32_set_key(&rc5_ks, 16, key16, 12)) { BIO_printf(bio_err, "Failed setting RC5 key\n"); goto end; } #endif #if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_BF]) BF_set_key(&bf_ks, 16, key16); #endif #if !defined(OPENSSL_NO_CAST) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_CAST]) CAST_set_key(&cast_ks, 16, key16); #endif #ifndef SIGALRM #if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0) BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); count = 10; do { long it; count *= 2; Time_F(START); for (it = count; it; it--) DES_ecb_encrypt((DES_cblock *)loopargs[0].buf, (DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT); d = Time_F(STOP); } while (d < 3); c[D_MD2][0] = count / 10; c[D_MDC2][0] = count / 10; c[D_MD4][0] = count; c[D_MD5][0] = count; c[D_HMAC][0] = count; c[D_SHA1][0] = count; c[D_RMD160][0] = count; c[D_RC4][0] = count * 5; c[D_CBC_DES][0] = count; c[D_EDE3_DES][0] = count / 3; c[D_CBC_IDEA][0] = count; c[D_CBC_SEED][0] = count; c[D_CBC_RC2][0] = count; c[D_CBC_RC5][0] = count; c[D_CBC_BF][0] = count; c[D_CBC_CAST][0] = count; c[D_CBC_128_AES][0] = count; c[D_CBC_192_AES][0] = count; c[D_CBC_256_AES][0] = count; c[D_CBC_128_CML][0] = count; c[D_CBC_192_CML][0] = count; c[D_CBC_256_CML][0] = count; c[D_EVP][0] = count; c[D_SHA256][0] = count; c[D_SHA512][0] = count; c[D_WHIRLPOOL][0] = count; c[D_IGE_128_AES][0] = count; c[D_IGE_192_AES][0] = count; c[D_IGE_256_AES][0] = count; c[D_GHASH][0] = count; c[D_RAND][0] = count; c[D_EVP_HMAC][0] = count; c[D_EVP_CMAC][0] = count; for (i = 1; i < size_num; i++) { long l0 = (long)lengths[0]; long l1 = (long)lengths[i]; c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1; c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1; c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1; c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1; c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1; c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1; c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1; c[D_EVP][i] = = c[D_EVP][0] * 4 * l0 / l1; c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1; c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1; c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1; c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1; c[D_RAND][i] = c[D_RAND][0] * 4 * l0 / l1; c[D_EVP_HMAC][i] = = c[D_EVP_HMAC][0] * 4 * l0 / l1; c[D_EVP_CMAC][i] = = c[D_EVP_CMAC][0] * 4 * l0 / l1; l0 = (long)lengths[i - 1]; c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; } #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) rsa_c[R_RSA_512][0] = count / 2000; rsa_c[R_RSA_512][1] = count / 400; for (i = 1; i < RSA_NUM; i++) { rsa_c[i][0] = rsa_c[i - 1][0] / 8; rsa_c[i][1] = rsa_c[i - 1][1] / 4; if (rsa_doit[i] <= 1 && rsa_c[i][0] == 0) rsa_doit[i] = 0; else { if (rsa_c[i][0] == 0) { rsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ rsa_c[i][1] = 20; } } } # endif # if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) dsa_c[R_DSA_512][0] = count / 1000; dsa_c[R_DSA_512][1] = count / 1000 / 2; for (i = 1; i < DSA_NUM; i++) { dsa_c[i][0] = dsa_c[i - 1][0] / 4; dsa_c[i][1] = dsa_c[i - 1][1] / 4; if (dsa_doit[i] <= 1 && dsa_c[i][0] == 0) dsa_doit[i] = 0; else { if (dsa_c[i][0] == 0) { dsa_c[i][0] = 1; /* Set minimum iteration Nb to 1. */ dsa_c[i][1] = 1; } } } # endif # ifndef OPENSSL_NO_EC ecdsa_c[R_EC_P160][0] = count / 1000; ecdsa_c[R_EC_P160][1] = count / 1000 / 2; for (i = R_EC_P192; i <= R_EC_P521; i++) { ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) ecdsa_doit[i] = 0; else { if (ecdsa_c[i][0] == 0) { ecdsa_c[i][0] = 1; ecdsa_c[i][1] = 1; } } } # ifndef OPENSSL_NO_EC2M ecdsa_c[R_EC_K163][0] = count / 1000; ecdsa_c[R_EC_K163][1] = count / 1000 / 2; for (i = R_EC_K233; i <= R_EC_K571; i++) { ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) ecdsa_doit[i] = 0; else { if (ecdsa_c[i][0] == 0) { ecdsa_c[i][0] = 1; ecdsa_c[i][1] = 1; } } } ecdsa_c[R_EC_B163][0] = count / 1000; ecdsa_c[R_EC_B163][1] = count / 1000 / 2; for (i = R_EC_B233; i <= R_EC_B571; i++) { ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; if (ecdsa_doit[i] <= 1 && ecdsa_c[i][0] == 0) ecdsa_doit[i] = 0; else { if (ecdsa_c[i][0] == 0) { ecdsa_c[i][0] = 1; ecdsa_c[i][1] = 1; } } } # endif ecdh_c[R_EC_P160][0] = count / 1000; for (i = R_EC_P192; i <= R_EC_P521; i++) { ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } # ifndef OPENSSL_NO_EC2M ecdh_c[R_EC_K163][0] = count / 1000; for (i = R_EC_K233; i <= R_EC_K571; i++) { ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } ecdh_c[R_EC_B163][0] = count / 1000; for (i = R_EC_B233; i <= R_EC_B571; i++) { ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } # endif /* repeated code good to factorize */ ecdh_c[R_EC_BRP256R1][0] = count / 1000; for (i = R_EC_BRP384R1; i <= R_EC_BRP512R1; i += 2) { ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } ecdh_c[R_EC_BRP256T1][0] = count / 1000; for (i = R_EC_BRP384T1; i <= R_EC_BRP512T1; i += 2) { ecdh_c[i][0] = ecdh_c[i - 2][0] / 2; if (ecdh_doit[i] <= 1 && ecdh_c[i][0] == 0) ecdh_doit[i] = 0; else { if (ecdh_c[i][0] == 0) { ecdh_c[i][0] = 1; } } } /* default iteration count for the last two EC Curves */ ecdh_c[R_EC_X25519][0] = count / 1800; ecdh_c[R_EC_X448][0] = count / 7200; eddsa_c[R_EC_Ed25519][0] = count / 1800; eddsa_c[R_EC_Ed448][0] = count / 7200; # ifndef OPENSSL_NO_SM2 sm2_c[R_EC_SM2P256][0] = count / 1800; # endif # endif /* OPENSSL_NO_EC */ # else /* not worth fixing */ # error "You cannot disable DES on systems without SIGALRM." # endif /* OPENSSL_NO_DES */ #elif SIGALRM > 0 signal(SIGALRM, alarmed); #endif /* SIGALRM */ #if !defined(OPENSSL_NO_MD2) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_MD2]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs); d = Time_F(STOP); print_result(D_MD2, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_MDC2) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_MDC2]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs); d = Time_F(STOP); print_result(D_MDC2, testnum, count, d); if (count < 0) break; } } #endif #if !defined(OPENSSL_NO_MD4) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_MD4]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs); d = Time_F(STOP); print_result(D_MD4, testnum, count, d); if (count < 0) break; } } #endif #if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_MD5]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, MD5_loop, loopargs); d = Time_F(STOP); print_result(D_MD5, testnum, count, d); } } # ifndef OPENSSL_NO_DEPRECATED_3_0 if (doit[D_HMAC]) { static const char hmac_key[] = "This is a key..."; int len = strlen(hmac_key); for (i = 0; i < loopargs_len; i++) { loopargs[i].hctx = HMAC_CTX_new(); if (loopargs[i].hctx == NULL) { BIO_printf(bio_err, "HMAC malloc failure, exiting..."); exit(1); } HMAC_Init_ex(loopargs[i].hctx, hmac_key, len, EVP_md5(), NULL); } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, HMAC_loop, loopargs); d = Time_F(STOP); print_result(D_HMAC, testnum, count, d); } for (i = 0; i < loopargs_len; i++) HMAC_CTX_free(loopargs[i].hctx); } # endif #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 if (doit[D_SHA1]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA1_loop, loopargs); d = Time_F(STOP); print_result(D_SHA1, testnum, count, d); } } if (doit[D_SHA256]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA256_loop, loopargs); d = Time_F(STOP); print_result(D_SHA256, testnum, count, d); } } if (doit[D_SHA512]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, SHA512_loop, loopargs); d = Time_F(STOP); print_result(D_SHA512, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_WHIRLPOOL) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_WHIRLPOOL]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs); d = Time_F(STOP); print_result(D_WHIRLPOOL, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_RMD160) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_RMD160]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs); d = Time_F(STOP); print_result(D_RMD160, testnum, count, d); if (count < 0) break; } } #endif #if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_RC4]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, RC4_loop, loopargs); d = Time_F(STOP); print_result(D_RC4, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_DES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_DES, testnum, count, d); } } if (doit[D_EDE3_DES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_EDE3_DES, testnum, count, d); } } #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 if (doit[D_CBC_128_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_128_AES, testnum, count, d); } } if (doit[D_CBC_192_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_192_AES, testnum, count, d); } } if (doit[D_CBC_256_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_CBC_256_AES, testnum, count, d); } } if (doit[D_IGE_128_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_128_AES, testnum, count, d); } } if (doit[D_IGE_192_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_192_AES, testnum, count, d); } } if (doit[D_IGE_256_AES]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs); d = Time_F(STOP); print_result(D_IGE_256_AES, testnum, count, d); } } if (doit[D_GHASH]) { for (i = 0; i < loopargs_len; i++) { loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12); } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs); d = Time_F(STOP); print_result(D_GHASH, testnum, count, d); } for (i = 0; i < loopargs_len; i++) CRYPTO_gcm128_release(loopargs[i].gcm_ctx); } #endif /* OPENSSL_NO_DEPRECATED_3_0 */ #if !defined(OPENSSL_NO_CAMELLIA) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_128_CML]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_128_CML]); doit[D_CBC_128_CML] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_128_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &camellia_ks[0], iv, CAMELLIA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_128_CML, testnum, count, d); } } if (doit[D_CBC_192_CML]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_192_CML]); doit[D_CBC_192_CML] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum], lengths[testnum], seconds.sym); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); } Time_F(START); for (count = 0; COND(c[D_CBC_192_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &camellia_ks[1], iv, CAMELLIA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_192_CML, testnum, count, d); } } if (doit[D_CBC_256_CML]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_256_CML]); doit[D_CBC_256_CML] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_256_CML][testnum]); count++) Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &camellia_ks[2], iv, CAMELLIA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_256_CML, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_IDEA]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_IDEA]); doit[D_CBC_IDEA] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_IDEA][testnum]); count++) IDEA_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &idea_ks, iv, IDEA_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_IDEA, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_SEED) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_SEED]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_SEED]); doit[D_CBC_SEED] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_SEED][testnum]); count++) SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &seed_ks, iv, 1); d = Time_F(STOP); print_result(D_CBC_SEED, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_RC2) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_RC2]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_RC2]); doit[D_CBC_RC2] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum], seconds.sym); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); } Time_F(START); for (count = 0; COND(c[D_CBC_RC2][testnum]); count++) RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &rc2_ks, iv, RC2_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_RC2, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_RC5) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_RC5]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_RC5]); doit[D_CBC_RC5] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum], seconds.sym); if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported, exiting..."); exit(1); } Time_F(START); for (count = 0; COND(c[D_CBC_RC5][testnum]); count++) RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &rc5_ks, iv, RC5_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_RC5, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_BF]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_BF]); doit[D_CBC_BF] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_BF][testnum]); count++) BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &bf_ks, iv, BF_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_BF, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_CAST) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_CBC_CAST]) { if (async_jobs > 0) { BIO_printf(bio_err, "Async mode is not supported with %s\n", names[D_CBC_CAST]); doit[D_CBC_CAST] = 0; } for (testnum = 0; testnum < size_num && async_init == 0; testnum++) { print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum], seconds.sym); Time_F(START); for (count = 0; COND(c[D_CBC_CAST][testnum]); count++) CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf, (size_t)lengths[testnum], &cast_ks, iv, CAST_ENCRYPT); d = Time_F(STOP); print_result(D_CBC_CAST, testnum, count, d); } } #endif if (doit[D_RAND]) { for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_RAND], c[D_RAND][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, RAND_bytes_loop, loopargs); d = Time_F(STOP); print_result(D_RAND, testnum, count, d); } } if (doit[D_EVP]) { if (evp_cipher != NULL) { int (*loopfunc) (void *) = EVP_Update_loop; if (multiblock && (EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) { multiblock_speed(evp_cipher, lengths_single, &seconds); ret = 0; goto end; } names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_CCM_MODE) { loopfunc = EVP_Update_loop_ccm; } else if (aead && (EVP_CIPHER_flags(evp_cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)) { loopfunc = EVP_Update_loop_aead; if (lengths == lengths_list) { lengths = aead_lengths_list; size_num = OSSL_NELEM(aead_lengths_list); } } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP], c[D_EVP][testnum], lengths[testnum], seconds.sym); for (k = 0; k < loopargs_len; k++) { loopargs[k].ctx = EVP_CIPHER_CTX_new(); if (loopargs[k].ctx == NULL) { BIO_printf(bio_err, "\nEVP_CIPHER_CTX_new failure\n"); exit(1); } if (!EVP_CipherInit_ex(loopargs[k].ctx, evp_cipher, NULL, NULL, iv, decrypt ? 0 : 1)) { BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); ERR_print_errors(bio_err); exit(1); } EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0); keylen = EVP_CIPHER_CTX_key_length(loopargs[k].ctx); loopargs[k].key = app_malloc(keylen, "evp_cipher key"); EVP_CIPHER_CTX_rand_key(loopargs[k].ctx, loopargs[k].key); if (!EVP_CipherInit_ex(loopargs[k].ctx, NULL, NULL, loopargs[k].key, NULL, -1)) { BIO_printf(bio_err, "\nEVP_CipherInit_ex failure\n"); ERR_print_errors(bio_err); exit(1); } OPENSSL_clear_free(loopargs[k].key, keylen); /* SIV mode only allows for a single Update operation */ if (EVP_CIPHER_mode(evp_cipher) == EVP_CIPH_SIV_MODE) EVP_CIPHER_CTX_ctrl(loopargs[k].ctx, EVP_CTRL_SET_SPEED, 1, NULL); } Time_F(START); count = run_benchmark(async_jobs, loopfunc, loopargs); d = Time_F(STOP); for (k = 0; k < loopargs_len; k++) { EVP_CIPHER_CTX_free(loopargs[k].ctx); } print_result(D_EVP, testnum, count, d); } } else if (evp_md != NULL) { names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md)); for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP], c[D_EVP][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs); d = Time_F(STOP); print_result(D_EVP, testnum, count, d); } } } #ifndef OPENSSL_NO_DEPRECATED_3_0 if (doit[D_EVP_HMAC] && evp_hmac_md != NULL) { const char *md_name = OBJ_nid2ln(EVP_MD_type(evp_hmac_md)); evp_hmac_name = app_malloc(sizeof("HMAC()") + strlen(md_name), "HMAC name"); sprintf(evp_hmac_name, "HMAC(%s)", md_name); names[D_EVP_HMAC] = evp_hmac_name; for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP_HMAC], c[D_EVP_HMAC][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_HMAC_loop, loopargs); d = Time_F(STOP); print_result(D_EVP_HMAC, testnum, count, d); } } #endif #if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0) if (doit[D_EVP_CMAC] && evp_cmac_cipher != NULL) { const char *cipher_name = OBJ_nid2ln(EVP_CIPHER_type(evp_cmac_cipher)); evp_cmac_name = app_malloc(sizeof("CMAC()") + strlen(cipher_name), "CMAC name"); sprintf(evp_cmac_name, "CMAC(%s)", cipher_name); names[D_EVP_CMAC] = evp_cmac_name; for (i = 0; i < loopargs_len; i++) { loopargs[i].cmac_ctx = CMAC_CTX_new(); if (loopargs[i].cmac_ctx == NULL) { BIO_printf(bio_err, "CMAC malloc failure, exiting..."); exit(1); } } for (testnum = 0; testnum < size_num; testnum++) { print_message(names[D_EVP_CMAC], c[D_EVP_CMAC][testnum], lengths[testnum], seconds.sym); Time_F(START); count = run_benchmark(async_jobs, EVP_CMAC_loop, loopargs); d = Time_F(STOP); print_result(D_EVP_CMAC, testnum, count, d); } for (i = 0; i < loopargs_len; i++) CMAC_CTX_free(loopargs[i].cmac_ctx); } #endif for (i = 0; i < loopargs_len; i++) if (RAND_bytes(loopargs[i].buf, 36) <= 0) goto end; #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) for (testnum = 0; testnum < RSA_NUM; testnum++) { int st = 0; if (!rsa_doit[testnum]) continue; for (i = 0; i < loopargs_len; i++) { if (primes > RSA_DEFAULT_PRIME_NUM) { /* we haven't set keys yet, generate multi-prime RSA keys */ BIGNUM *bn = BN_new(); if (bn == NULL) goto end; if (!BN_set_word(bn, RSA_F4)) { BN_free(bn); goto end; } BIO_printf(bio_err, "Generate multi-prime RSA key for %s\n", rsa_choices[testnum].name); loopargs[i].rsa_key[testnum] = RSA_new(); if (loopargs[i].rsa_key[testnum] == NULL) { BN_free(bn); goto end; } if (!RSA_generate_multi_prime_key(loopargs[i].rsa_key[testnum], rsa_keys[testnum].bits, primes, bn, NULL)) { BN_free(bn); goto end; } BN_free(bn); } st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, &loopargs[i].siglen, loopargs[i].rsa_key[testnum]); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "RSA sign failure. No RSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("private", "rsa", rsa_c[testnum][0], rsa_keys[testnum].bits, seconds.rsa); /* RSA_blinding_on(rsa_key[testnum],NULL); */ Time_F(START); count = run_benchmark(async_jobs, RSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R1:%ld:%d:%.2f\n" : "%ld %u bits private RSA's in %.2fs\n", count, rsa_keys[testnum].bits, d); rsa_results[testnum][0] = (double)count / d; rsa_count = count; } for (i = 0; i < loopargs_len; i++) { st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2, loopargs[i].siglen, loopargs[i].rsa_key[testnum]); if (st <= 0) break; } if (st <= 0) { BIO_printf(bio_err, "RSA verify failure. No RSA verify will be done.\n"); ERR_print_errors(bio_err); rsa_doit[testnum] = 0; } else { pkey_print_message("public", "rsa", rsa_c[testnum][1], rsa_keys[testnum].bits, seconds.rsa); Time_F(START); count = run_benchmark(async_jobs, RSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R2:%ld:%d:%.2f\n" : "%ld %u bits public RSA's in %.2fs\n", count, rsa_keys[testnum].bits, d); rsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(rsa_doit, testnum); } } #endif /* OPENSSL_NO_RSA */ for (i = 0; i < loopargs_len; i++) if (RAND_bytes(loopargs[i].buf, 36) <= 0) goto end; #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) for (testnum = 0; testnum < DSA_NUM; testnum++) { int st = 0; if (!dsa_doit[testnum]) continue; /* DSA_generate_key(dsa_key[testnum]); */ /* DSA_sign_setup(dsa_key[testnum],NULL); */ for (i = 0; i < loopargs_len; i++) { st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, &loopargs[i].siglen, loopargs[i].dsa_key[testnum]); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "DSA sign failure. No DSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", "dsa", dsa_c[testnum][0], dsa_bits[testnum], seconds.dsa); Time_F(START); count = run_benchmark(async_jobs, DSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R3:%ld:%u:%.2f\n" : "%ld %u bits DSA signs in %.2fs\n", count, dsa_bits[testnum], d); dsa_results[testnum][0] = (double)count / d; rsa_count = count; } for (i = 0; i < loopargs_len; i++) { st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, loopargs[i].siglen, loopargs[i].dsa_key[testnum]); if (st <= 0) break; } if (st <= 0) { BIO_printf(bio_err, "DSA verify failure. No DSA verify will be done.\n"); ERR_print_errors(bio_err); dsa_doit[testnum] = 0; } else { pkey_print_message("verify", "dsa", dsa_c[testnum][1], dsa_bits[testnum], seconds.dsa); Time_F(START); count = run_benchmark(async_jobs, DSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R4:%ld:%u:%.2f\n" : "%ld %u bits DSA verify in %.2fs\n", count, dsa_bits[testnum], d); dsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(dsa_doit, testnum); } } #endif /* OPENSSL_NO_DSA */ #ifndef OPENSSL_NO_EC # ifndef OPENSSL_NO_DEPRECATED_3_0 for (testnum = 0; testnum < ECDSA_NUM; testnum++) { int st = 1; if (!ecdsa_doit[testnum]) continue; /* Ignore Curve */ for (i = 0; i < loopargs_len; i++) { loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(ec_curves[testnum].nid); if (loopargs[i].ecdsa[testnum] == NULL) { st = 0; break; } } if (st == 0) { BIO_printf(bio_err, "ECDSA failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { for (i = 0; i < loopargs_len; i++) { EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL); /* Perform ECDSA signature test */ EC_KEY_generate_key(loopargs[i].ecdsa[testnum]); st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2, &loopargs[i].siglen, loopargs[i].ecdsa[testnum]); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "ECDSA sign failure. No ECDSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", "ecdsa", ecdsa_c[testnum][0], ec_curves[testnum].bits, seconds.ecdsa); Time_F(START); count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R5:%ld:%u:%.2f\n" : "%ld %u bits ECDSA signs in %.2fs \n", count, ec_curves[testnum].bits, d); ecdsa_results[testnum][0] = (double)count / d; rsa_count = count; } /* Perform ECDSA verification test */ for (i = 0; i < loopargs_len; i++) { st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2, loopargs[i].siglen, loopargs[i].ecdsa[testnum]); if (st != 1) break; } if (st != 1) { BIO_printf(bio_err, "ECDSA verify failure. No ECDSA verify will be done.\n"); ERR_print_errors(bio_err); ecdsa_doit[testnum] = 0; } else { pkey_print_message("verify", "ecdsa", ecdsa_c[testnum][1], ec_curves[testnum].bits, seconds.ecdsa); Time_F(START); count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R6:%ld:%u:%.2f\n" : "%ld %u bits ECDSA verify in %.2fs\n", count, ec_curves[testnum].bits, d); ecdsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(ecdsa_doit, testnum); } } } # endif for (testnum = 0; testnum < EC_NUM; testnum++) { int ecdh_checks = 1; if (!ecdh_doit[testnum]) continue; for (i = 0; i < loopargs_len; i++) { EVP_PKEY_CTX *kctx = NULL; EVP_PKEY_CTX *test_ctx = NULL; EVP_PKEY_CTX *ctx = NULL; EVP_PKEY *key_A = NULL; EVP_PKEY *key_B = NULL; size_t outlen; size_t test_outlen; /* Ensure that the error queue is empty */ if (ERR_peek_error()) { BIO_printf(bio_err, "WARNING: the error queue contains previous unhandled errors.\n"); ERR_print_errors(bio_err); } /* Let's try to create a ctx directly from the NID: this works for * curves like Curve25519 that are not implemented through the low * level EC interface. * If this fails we try creating a EVP_PKEY_EC generic param ctx, * then we set the curve by NID before deriving the actual keygen * ctx for that specific curve. */ kctx = EVP_PKEY_CTX_new_id(ec_curves[testnum].nid, NULL); /* keygen ctx from NID */ if (!kctx) { EVP_PKEY_CTX *pctx = NULL; EVP_PKEY *params = NULL; /* If we reach this code EVP_PKEY_CTX_new_id() failed and a * "int_ctx_new:unsupported algorithm" error was added to the * error queue. * We remove it from the error queue as we are handling it. */ unsigned long error = ERR_peek_error(); /* peek the latest error in the queue */ if (error == ERR_peek_last_error() && /* oldest and latest errors match */ /* check that the error origin matches */ ERR_GET_LIB(error) == ERR_LIB_EVP && ERR_GET_REASON(error) == EVP_R_UNSUPPORTED_ALGORITHM) ERR_get_error(); /* pop error from queue */ if (ERR_peek_error()) { BIO_printf(bio_err, "Unhandled error in the error queue during ECDH init.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Create the context for parameter generation */ if (!(pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) || /* Initialise the parameter generation */ !EVP_PKEY_paramgen_init(pctx) || /* Set the curve by NID */ !EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, ec_curves [testnum].nid) || /* Create the parameter object params */ !EVP_PKEY_paramgen(pctx, ¶ms)) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH EC params init failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Create the context for the key generation */ kctx = EVP_PKEY_CTX_new(params, NULL); EVP_PKEY_free(params); params = NULL; EVP_PKEY_CTX_free(pctx); pctx = NULL; } if (kctx == NULL || /* keygen ctx is not null */ EVP_PKEY_keygen_init(kctx) <= 0/* init keygen ctx */ ) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH keygen failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } if (EVP_PKEY_keygen(kctx, &key_A) <= 0 || /* generate secret key A */ EVP_PKEY_keygen(kctx, &key_B) <= 0 || /* generate secret key B */ !(ctx = EVP_PKEY_CTX_new(key_A, NULL)) || /* derivation ctx from skeyA */ EVP_PKEY_derive_init(ctx) <= 0 || /* init derivation ctx */ EVP_PKEY_derive_set_peer(ctx, key_B) <= 0 || /* set peer pubkey in ctx */ EVP_PKEY_derive(ctx, NULL, &outlen) <= 0 || /* determine max length */ outlen == 0 || /* ensure outlen is a valid size */ outlen > MAX_ECDH_SIZE /* avoid buffer overflow */ ) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH key generation failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Here we perform a test run, comparing the output of a*B and b*A; * we try this here and assume that further EVP_PKEY_derive calls * never fail, so we can skip checks in the actually benchmarked * code, for maximum performance. */ if (!(test_ctx = EVP_PKEY_CTX_new(key_B, NULL)) || /* test ctx from skeyB */ !EVP_PKEY_derive_init(test_ctx) || /* init derivation test_ctx */ !EVP_PKEY_derive_set_peer(test_ctx, key_A) || /* set peer pubkey in test_ctx */ !EVP_PKEY_derive(test_ctx, NULL, &test_outlen) || /* determine max length */ !EVP_PKEY_derive(ctx, loopargs[i].secret_a, &outlen) || /* compute a*B */ !EVP_PKEY_derive(test_ctx, loopargs[i].secret_b, &test_outlen) || /* compute b*A */ test_outlen != outlen /* compare output length */ ) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH computation failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } /* Compare the computation results: CRYPTO_memcmp() returns 0 if equal */ if (CRYPTO_memcmp(loopargs[i].secret_a, loopargs[i].secret_b, outlen)) { ecdh_checks = 0; BIO_printf(bio_err, "ECDH computations don't match.\n"); ERR_print_errors(bio_err); rsa_count = 1; break; } loopargs[i].ecdh_ctx[testnum] = ctx; loopargs[i].outlen[testnum] = outlen; EVP_PKEY_free(key_A); EVP_PKEY_free(key_B); EVP_PKEY_CTX_free(kctx); kctx = NULL; EVP_PKEY_CTX_free(test_ctx); test_ctx = NULL; } if (ecdh_checks != 0) { pkey_print_message("", "ecdh", ecdh_c[testnum][0], ec_curves[testnum].bits, seconds.ecdh); Time_F(START); count = run_benchmark(async_jobs, ECDH_EVP_derive_key_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R7:%ld:%d:%.2f\n" : "%ld %u-bits ECDH ops in %.2fs\n", count, ec_curves[testnum].bits, d); ecdh_results[testnum][0] = (double)count / d; rsa_count = count; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(ecdh_doit, testnum); } } for (testnum = 0; testnum < EdDSA_NUM; testnum++) { int st = 1; EVP_PKEY *ed_pkey = NULL; EVP_PKEY_CTX *ed_pctx = NULL; if (!eddsa_doit[testnum]) continue; /* Ignore Curve */ for (i = 0; i < loopargs_len; i++) { loopargs[i].eddsa_ctx[testnum] = EVP_MD_CTX_new(); if (loopargs[i].eddsa_ctx[testnum] == NULL) { st = 0; break; } if ((ed_pctx = EVP_PKEY_CTX_new_id(ed_curves[testnum].nid, NULL)) == NULL || EVP_PKEY_keygen_init(ed_pctx) <= 0 || EVP_PKEY_keygen(ed_pctx, &ed_pkey) <= 0) { st = 0; EVP_PKEY_CTX_free(ed_pctx); break; } EVP_PKEY_CTX_free(ed_pctx); if (!EVP_DigestSignInit(loopargs[i].eddsa_ctx[testnum], NULL, NULL, NULL, ed_pkey)) { st = 0; EVP_PKEY_free(ed_pkey); break; } EVP_PKEY_free(ed_pkey); } if (st == 0) { BIO_printf(bio_err, "EdDSA failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { for (i = 0; i < loopargs_len; i++) { /* Perform EdDSA signature test */ loopargs[i].sigsize = ed_curves[testnum].sigsize; st = EVP_DigestSign(loopargs[i].eddsa_ctx[testnum], loopargs[i].buf2, &loopargs[i].sigsize, loopargs[i].buf, 20); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "EdDSA sign failure. No EdDSA sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", ed_curves[testnum].name, eddsa_c[testnum][0], ed_curves[testnum].bits, seconds.eddsa); Time_F(START); count = run_benchmark(async_jobs, EdDSA_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R8:%ld:%u:%s:%.2f\n" : "%ld %u bits %s signs in %.2fs \n", count, ed_curves[testnum].bits, ed_curves[testnum].name, d); eddsa_results[testnum][0] = (double)count / d; rsa_count = count; } /* Perform EdDSA verification test */ for (i = 0; i < loopargs_len; i++) { st = EVP_DigestVerify(loopargs[i].eddsa_ctx[testnum], loopargs[i].buf2, loopargs[i].sigsize, loopargs[i].buf, 20); if (st != 1) break; } if (st != 1) { BIO_printf(bio_err, "EdDSA verify failure. No EdDSA verify will be done.\n"); ERR_print_errors(bio_err); eddsa_doit[testnum] = 0; } else { pkey_print_message("verify", ed_curves[testnum].name, eddsa_c[testnum][1], ed_curves[testnum].bits, seconds.eddsa); Time_F(START); count = run_benchmark(async_jobs, EdDSA_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R9:%ld:%u:%s:%.2f\n" : "%ld %u bits %s verify in %.2fs\n", count, ed_curves[testnum].bits, ed_curves[testnum].name, d); eddsa_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ stop_it(eddsa_doit, testnum); } } } # ifndef OPENSSL_NO_SM2 for (testnum = 0; testnum < SM2_NUM; testnum++) { int st = 1; EVP_PKEY *sm2_pkey = NULL; if (!sm2_doit[testnum]) continue; /* Ignore Curve */ /* Init signing and verification */ for (i = 0; i < loopargs_len; i++) { EVP_PKEY_CTX *sm2_pctx = NULL; EVP_PKEY_CTX *sm2_vfy_pctx = NULL; EVP_PKEY_CTX *pctx = NULL; st = 0; loopargs[i].sm2_ctx[testnum] = EVP_MD_CTX_new(); loopargs[i].sm2_vfy_ctx[testnum] = EVP_MD_CTX_new(); if (loopargs[i].sm2_ctx[testnum] == NULL || loopargs[i].sm2_vfy_ctx[testnum] == NULL) break; /* SM2 keys are generated as normal EC keys with a special curve */ st = !((pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_EC, NULL)) == NULL || EVP_PKEY_keygen_init(pctx) <= 0 || EVP_PKEY_CTX_set_ec_paramgen_curve_nid(pctx, sm2_curves[testnum].nid) <= 0 || EVP_PKEY_keygen(pctx, &sm2_pkey) <= 0); EVP_PKEY_CTX_free(pctx); if (st == 0) break; st = 0; /* set back to zero */ /* attach it sooner to rely on main final cleanup */ loopargs[i].sm2_pkey[testnum] = sm2_pkey; loopargs[i].sigsize = EVP_PKEY_size(sm2_pkey); sm2_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL); sm2_vfy_pctx = EVP_PKEY_CTX_new(sm2_pkey, NULL); if (sm2_pctx == NULL || sm2_vfy_pctx == NULL) { EVP_PKEY_CTX_free(sm2_vfy_pctx); break; } /* attach them directly to respective ctx */ EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_ctx[testnum], sm2_pctx); EVP_MD_CTX_set_pkey_ctx(loopargs[i].sm2_vfy_ctx[testnum], sm2_vfy_pctx); /* * No need to allow user to set an explicit ID here, just use * the one defined in the 'draft-yang-tls-tl13-sm-suites' I-D. */ if (EVP_PKEY_CTX_set1_id(sm2_pctx, SM2_ID, SM2_ID_LEN) != 1 || EVP_PKEY_CTX_set1_id(sm2_vfy_pctx, SM2_ID, SM2_ID_LEN) != 1) break; if (!EVP_DigestSignInit(loopargs[i].sm2_ctx[testnum], NULL, EVP_sm3(), NULL, sm2_pkey)) break; if (!EVP_DigestVerifyInit(loopargs[i].sm2_vfy_ctx[testnum], NULL, EVP_sm3(), NULL, sm2_pkey)) break; st = 1; /* mark loop as succeeded */ } if (st == 0) { BIO_printf(bio_err, "SM2 init failure.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { for (i = 0; i < loopargs_len; i++) { size_t sm2_sigsize = loopargs[i].sigsize; /* Perform SM2 signature test */ st = EVP_DigestSign(loopargs[i].sm2_ctx[testnum], loopargs[i].buf2, &sm2_sigsize, loopargs[i].buf, 20); if (st == 0) break; } if (st == 0) { BIO_printf(bio_err, "SM2 sign failure. No SM2 sign will be done.\n"); ERR_print_errors(bio_err); rsa_count = 1; } else { pkey_print_message("sign", sm2_curves[testnum].name, sm2_c[testnum][0], sm2_curves[testnum].bits, seconds.sm2); Time_F(START); count = run_benchmark(async_jobs, SM2_sign_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R8:%ld:%u:%s:%.2f\n" : "%ld %u bits %s signs in %.2fs \n", count, sm2_curves[testnum].bits, sm2_curves[testnum].name, d); sm2_results[testnum][0] = (double)count / d; rsa_count = count; } /* Perform SM2 verification test */ for (i = 0; i < loopargs_len; i++) { st = EVP_DigestVerify(loopargs[i].sm2_vfy_ctx[testnum], loopargs[i].buf2, loopargs[i].sigsize, loopargs[i].buf, 20); if (st != 1) break; } if (st != 1) { BIO_printf(bio_err, "SM2 verify failure. No SM2 verify will be done.\n"); ERR_print_errors(bio_err); sm2_doit[testnum] = 0; } else { pkey_print_message("verify", sm2_curves[testnum].name, sm2_c[testnum][1], sm2_curves[testnum].bits, seconds.sm2); Time_F(START); count = run_benchmark(async_jobs, SM2_verify_loop, loopargs); d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R9:%ld:%u:%s:%.2f\n" : "%ld %u bits %s verify in %.2fs\n", count, sm2_curves[testnum].bits, sm2_curves[testnum].name, d); sm2_results[testnum][1] = (double)count / d; } if (rsa_count <= 1) { /* if longer than 10s, don't do any more */ for (testnum++; testnum < SM2_NUM; testnum++) sm2_doit[testnum] = 0; } } } # endif /* OPENSSL_NO_SM2 */ #endif /* OPENSSL_NO_EC */ #ifndef NO_FORK show_res: #endif if (!mr) { printf("version: %s\n", OpenSSL_version(OPENSSL_FULL_VERSION_STRING)); printf("built on: %s\n", OpenSSL_version(OPENSSL_BUILT_ON)); printf("options:"); printf("%s ", BN_options()); #if !defined(OPENSSL_NO_MD2) && !defined(OPENSSL_NO_DEPRECATED_3_0) printf("%s ", MD2_options()); #endif #if !defined(OPENSSL_NO_RC4) && !defined(OPENSSL_NO_DEPRECATED_3_0) printf("%s ", RC4_options()); #endif #if !defined(OPENSSL_NO_DES) && !defined(OPENSSL_NO_DEPRECATED_3_0) printf("%s ", DES_options()); #endif #ifndef OPENSSL_NO_DEPRECATED_3_0 printf("%s ", AES_options()); #endif #if !defined(OPENSSL_NO_IDEA) && !defined(OPENSSL_NO_DEPRECATED_3_0) printf("%s ", IDEA_options()); #endif #if !defined(OPENSSL_NO_BF) && !defined(OPENSSL_NO_DEPRECATED_3_0) printf("%s ", BF_options()); #endif printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS)); printf("%s\n", OpenSSL_version(OPENSSL_CPU_INFO)); } if (pr_header) { if (mr) printf("+H"); else { printf ("The 'numbers' are in 1000s of bytes per second processed.\n"); printf("type "); } for (testnum = 0; testnum < size_num; testnum++) printf(mr ? ":%d" : "%7d bytes", lengths[testnum]); printf("\n"); } for (k = 0; k < ALGOR_NUM; k++) { if (!doit[k]) continue; if (mr) printf("+F:%u:%s", k, names[k]); else printf("%-13s", names[k]); for (testnum = 0; testnum < size_num; testnum++) { if (results[k][testnum] > 10000 && !mr) printf(" %11.2fk", results[k][testnum] / 1e3); else printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]); } printf("\n"); } #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) testnum = 1; for (k = 0; k < RSA_NUM; k++) { if (!rsa_doit[k]) continue; if (testnum && !mr) { printf("%18ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F2:%u:%u:%f:%f\n", k, rsa_keys[k].bits, rsa_results[k][0], rsa_results[k][1]); else printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", rsa_keys[k].bits, 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1], rsa_results[k][0], rsa_results[k][1]); } #endif #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) testnum = 1; for (k = 0; k < DSA_NUM; k++) { if (!dsa_doit[k]) continue; if (testnum && !mr) { printf("%18ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F3:%u:%u:%f:%f\n", k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); else printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", dsa_bits[k], 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1], dsa_results[k][0], dsa_results[k][1]); } #endif #ifndef OPENSSL_NO_EC testnum = 1; for (k = 0; k < OSSL_NELEM(ecdsa_doit); k++) { if (!ecdsa_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F4:%u:%u:%f:%f\n", k, ec_curves[k].bits, ecdsa_results[k][0], ecdsa_results[k][1]); else printf("%4u bits ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", ec_curves[k].bits, ec_curves[k].name, 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1], ecdsa_results[k][0], ecdsa_results[k][1]); } testnum = 1; for (k = 0; k < EC_NUM; k++) { if (!ecdh_doit[k]) continue; if (testnum && !mr) { printf("%30sop op/s\n", " "); testnum = 0; } if (mr) printf("+F5:%u:%u:%f:%f\n", k, ec_curves[k].bits, ecdh_results[k][0], 1.0 / ecdh_results[k][0]); else printf("%4u bits ecdh (%s) %8.4fs %8.1f\n", ec_curves[k].bits, ec_curves[k].name, 1.0 / ecdh_results[k][0], ecdh_results[k][0]); } testnum = 1; for (k = 0; k < OSSL_NELEM(eddsa_doit); k++) { if (!eddsa_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F6:%u:%u:%s:%f:%f\n", k, ed_curves[k].bits, ed_curves[k].name, eddsa_results[k][0], eddsa_results[k][1]); else printf("%4u bits EdDSA (%s) %8.4fs %8.4fs %8.1f %8.1f\n", ed_curves[k].bits, ed_curves[k].name, 1.0 / eddsa_results[k][0], 1.0 / eddsa_results[k][1], eddsa_results[k][0], eddsa_results[k][1]); } # ifndef OPENSSL_NO_SM2 testnum = 1; for (k = 0; k < OSSL_NELEM(sm2_doit); k++) { if (!sm2_doit[k]) continue; if (testnum && !mr) { printf("%30ssign verify sign/s verify/s\n", " "); testnum = 0; } if (mr) printf("+F6:%u:%u:%s:%f:%f\n", k, sm2_curves[k].bits, sm2_curves[k].name, sm2_results[k][0], sm2_results[k][1]); else printf("%4u bits SM2 (%s) %8.4fs %8.4fs %8.1f %8.1f\n", sm2_curves[k].bits, sm2_curves[k].name, 1.0 / sm2_results[k][0], 1.0 / sm2_results[k][1], sm2_results[k][0], sm2_results[k][1]); } # endif #endif /* OPENSSL_NO_EC */ ret = 0; end: ERR_print_errors(bio_err); for (i = 0; i < loopargs_len; i++) { OPENSSL_free(loopargs[i].buf_malloc); OPENSSL_free(loopargs[i].buf2_malloc); #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) for (k = 0; k < RSA_NUM; k++) RSA_free(loopargs[i].rsa_key[k]); #endif #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) for (k = 0; k < DSA_NUM; k++) DSA_free(loopargs[i].dsa_key[k]); #endif #ifndef OPENSSL_NO_EC for (k = 0; k < ECDSA_NUM; k++) EC_KEY_free(loopargs[i].ecdsa[k]); for (k = 0; k < EC_NUM; k++) EVP_PKEY_CTX_free(loopargs[i].ecdh_ctx[k]); for (k = 0; k < EdDSA_NUM; k++) EVP_MD_CTX_free(loopargs[i].eddsa_ctx[k]); # ifndef OPENSSL_NO_SM2 for (k = 0; k < SM2_NUM; k++) { EVP_PKEY_CTX *pctx = NULL; /* free signing ctx */ if (loopargs[i].sm2_ctx[k] != NULL && (pctx = EVP_MD_CTX_pkey_ctx(loopargs[i].sm2_ctx[k])) != NULL) EVP_PKEY_CTX_free(pctx); EVP_MD_CTX_free(loopargs[i].sm2_ctx[k]); /* free verification ctx */ if (loopargs[i].sm2_vfy_ctx[k] != NULL && (pctx = EVP_MD_CTX_pkey_ctx(loopargs[i].sm2_vfy_ctx[k])) != NULL) EVP_PKEY_CTX_free(pctx); EVP_MD_CTX_free(loopargs[i].sm2_vfy_ctx[k]); /* free pkey */ EVP_PKEY_free(loopargs[i].sm2_pkey[k]); } # endif OPENSSL_free(loopargs[i].secret_a); OPENSSL_free(loopargs[i].secret_b); #endif } #ifndef OPENSSL_NO_DEPRECATED_3_0 OPENSSL_free(evp_hmac_name); #endif #if !defined(OPENSSL_NO_CMAC) && !defined(OPENSSL_NO_DEPRECATED_3_0) OPENSSL_free(evp_cmac_name); #endif if (async_jobs > 0) { for (i = 0; i < loopargs_len; i++) ASYNC_WAIT_CTX_free(loopargs[i].wait_ctx); } if (async_init) { ASYNC_cleanup_thread(); } OPENSSL_free(loopargs); release_engine(e); return ret; } static void print_message(const char *s, long num, int length, int tm) { #ifdef SIGALRM BIO_printf(bio_err, mr ? "+DT:%s:%d:%d\n" : "Doing %s for %ds on %d size blocks: ", s, tm, length); (void)BIO_flush(bio_err); run = 1; alarm(tm); #else BIO_printf(bio_err, mr ? "+DN:%s:%ld:%d\n" : "Doing %s %ld times on %d size blocks: ", s, num, length); (void)BIO_flush(bio_err); #endif } static void pkey_print_message(const char *str, const char *str2, long num, unsigned int bits, int tm) { #ifdef SIGALRM BIO_printf(bio_err, mr ? "+DTP:%d:%s:%s:%d\n" : "Doing %u bits %s %s's for %ds: ", bits, str, str2, tm); (void)BIO_flush(bio_err); run = 1; alarm(tm); #else BIO_printf(bio_err, mr ? "+DNP:%ld:%d:%s:%s\n" : "Doing %ld %u bits %s %s's: ", num, bits, str, str2); (void)BIO_flush(bio_err); #endif } static void print_result(int alg, int run_no, int count, double time_used) { if (count == -1) { BIO_printf(bio_err, "%s error!\n", names[alg]); ERR_print_errors(bio_err); /* exit(1); disable exit until default provider enabled */ return; } BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" : "%d %s's in %.2fs\n", count, names[alg], time_used); results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; } #ifndef NO_FORK static char *sstrsep(char **string, const char *delim) { char isdelim[256]; char *token = *string; if (**string == 0) return NULL; memset(isdelim, 0, sizeof(isdelim)); isdelim[0] = 1; while (*delim) { isdelim[(unsigned char)(*delim)] = 1; delim++; } while (!isdelim[(unsigned char)(**string)]) { (*string)++; } if (**string) { **string = 0; (*string)++; } return token; } static int do_multi(int multi, int size_num) { int n; int fd[2]; int *fds; static char sep[] = ":"; fds = app_malloc(sizeof(*fds) * multi, "fd buffer for do_multi"); for (n = 0; n < multi; ++n) { if (pipe(fd) == -1) { BIO_printf(bio_err, "pipe failure\n"); exit(1); } fflush(stdout); (void)BIO_flush(bio_err); if (fork()) { close(fd[1]); fds[n] = fd[0]; } else { close(fd[0]); close(1); if (dup(fd[1]) == -1) { BIO_printf(bio_err, "dup failed\n"); exit(1); } close(fd[1]); mr = 1; usertime = 0; OPENSSL_free(fds); return 0; } printf("Forked child %d\n", n); } /* for now, assume the pipe is long enough to take all the output */ for (n = 0; n < multi; ++n) { FILE *f; char buf[1024]; char *p; f = fdopen(fds[n], "r"); while (fgets(buf, sizeof(buf), f)) { p = strchr(buf, '\n'); if (p) *p = '\0'; if (buf[0] != '+') { BIO_printf(bio_err, "Don't understand line '%s' from child %d\n", buf, n); continue; } printf("Got: %s from %d\n", buf, n); if (strncmp(buf, "+F:", 3) == 0) { int alg; int j; p = buf + 3; alg = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); for (j = 0; j < size_num; ++j) results[alg][j] += atof(sstrsep(&p, sep)); } #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) else if (strncmp(buf, "+F2:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); rsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); rsa_results[k][1] += d; } #endif #if !defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_DEPRECATED_3_0) else if (strncmp(buf, "+F3:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); dsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); dsa_results[k][1] += d; } # endif # ifndef OPENSSL_NO_EC else if (strncmp(buf, "+F4:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); ecdsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); ecdsa_results[k][1] += d; } else if (strncmp(buf, "+F5:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); ecdh_results[k][0] += d; } else if (strncmp(buf, "+F6:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); eddsa_results[k][0] += d; d = atof(sstrsep(&p, sep)); eddsa_results[k][1] += d; } # ifndef OPENSSL_NO_SM2 else if (strncmp(buf, "+F7:", 4) == 0) { int k; double d; p = buf + 4; k = atoi(sstrsep(&p, sep)); sstrsep(&p, sep); d = atof(sstrsep(&p, sep)); sm2_results[k][0] += d; d = atof(sstrsep(&p, sep)); sm2_results[k][1] += d; } # endif /* OPENSSL_NO_SM2 */ # endif else if (strncmp(buf, "+H:", 3) == 0) { ; } else BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n); } fclose(f); } OPENSSL_free(fds); return 1; } #endif static void multiblock_speed(const EVP_CIPHER *evp_cipher, int lengths_single, const openssl_speed_sec_t *seconds) { static const int mblengths_list[] = { 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 }; const int *mblengths = mblengths_list; int j, count, keylen, num = OSSL_NELEM(mblengths_list); const char *alg_name; unsigned char *inp, *out, *key, no_key[32], no_iv[16]; EVP_CIPHER_CTX *ctx; double d = 0.0; if (lengths_single) { mblengths = &lengths_single; num = 1; } inp = app_malloc(mblengths[num - 1], "multiblock input buffer"); out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer"); ctx = EVP_CIPHER_CTX_new(); EVP_EncryptInit_ex(ctx, evp_cipher, NULL, NULL, no_iv); keylen = EVP_CIPHER_CTX_key_length(ctx); key = app_malloc(keylen, "evp_cipher key"); EVP_CIPHER_CTX_rand_key(ctx, key); EVP_EncryptInit_ex(ctx, NULL, NULL, key, NULL); OPENSSL_clear_free(key, keylen); EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key), no_key); alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)); for (j = 0; j < num; j++) { print_message(alg_name, 0, mblengths[j], seconds->sym); Time_F(START); for (count = 0; run && count < 0x7fffffff; count++) { unsigned char aad[EVP_AEAD_TLS1_AAD_LEN]; EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param; size_t len = mblengths[j]; int packlen; memset(aad, 0, 8); /* avoid uninitialized values */ aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */ aad[9] = 3; /* version */ aad[10] = 2; aad[11] = 0; /* length */ aad[12] = 0; mb_param.out = NULL; mb_param.inp = aad; mb_param.len = len; mb_param.interleave = 8; packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD, sizeof(mb_param), &mb_param); if (packlen > 0) { mb_param.out = out; mb_param.inp = inp; mb_param.len = len; EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT, sizeof(mb_param), &mb_param); } else { int pad; RAND_bytes(out, 16); len += 16; aad[11] = (unsigned char)(len >> 8); aad[12] = (unsigned char)(len); pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD, EVP_AEAD_TLS1_AAD_LEN, aad); EVP_Cipher(ctx, out, inp, len + pad); } } d = Time_F(STOP); BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n" : "%d %s's in %.2fs\n", count, "evp", d); results[D_EVP][j] = ((double)count) / d * mblengths[j]; } if (mr) { fprintf(stdout, "+H"); for (j = 0; j < num; j++) fprintf(stdout, ":%d", mblengths[j]); fprintf(stdout, "\n"); fprintf(stdout, "+F:%d:%s", D_EVP, alg_name); for (j = 0; j < num; j++) fprintf(stdout, ":%.2f", results[D_EVP][j]); fprintf(stdout, "\n"); } else { fprintf(stdout, "The 'numbers' are in 1000s of bytes per second processed.\n"); fprintf(stdout, "type "); for (j = 0; j < num; j++) fprintf(stdout, "%7d bytes", mblengths[j]); fprintf(stdout, "\n"); fprintf(stdout, "%-24s", alg_name); for (j = 0; j < num; j++) { if (results[D_EVP][j] > 10000) fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3); else fprintf(stdout, " %11.2f ", results[D_EVP][j]); } fprintf(stdout, "\n"); } OPENSSL_free(inp); OPENSSL_free(out); EVP_CIPHER_CTX_free(ctx); }