/* * Copyright 2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "quic_local.h" #include "internal/quic_tls.h" #include "internal/quic_rx_depack.h" #include "internal/quic_error.h" #include "internal/time.h" static void aon_write_finish(QUIC_XSO *xso); static int create_channel(QUIC_CONNECTION *qc); static QUIC_XSO *create_xso_from_stream(QUIC_CONNECTION *qc, QUIC_STREAM *qs); static int qc_try_create_default_xso(QUIC_CONNECTION *qc, int remote_init); /* * QUIC Front-End I/O API: Common Utilities * ======================================== */ /* * Block until a predicate is met. * * Precondition: Must have a channel. * Precondition: Must hold channel lock (unchecked). */ QUIC_NEEDS_LOCK static int block_until_pred(QUIC_CONNECTION *qc, int (*pred)(void *arg), void *pred_arg, uint32_t flags) { QUIC_REACTOR *rtor; assert(qc->ch != NULL); rtor = ossl_quic_channel_get_reactor(qc->ch); return ossl_quic_reactor_block_until_pred(rtor, pred, pred_arg, flags, qc->mutex); } /* * Raise a 'normal' error, meaning one that can be reported via SSL_get_error() * rather than via ERR. */ static int quic_raise_normal_error(QUIC_CONNECTION *qc, int err) { qc->last_error = err; return 0; } /* * Raise a 'non-normal' error, meaning any error that is not reported via * SSL_get_error() and must be reported via ERR. * * qc should be provided if available. In exceptional circumstances when qc is * not known NULL may be passed. This should generally only happen when an * expect_...() function defined below fails, which generally indicates a * dispatch error or caller error. */ static int quic_raise_non_normal_error(QUIC_CONNECTION *qc, const char *file, int line, const char *func, int reason, const char *fmt, ...) { va_list args; ERR_new(); ERR_set_debug(file, line, func); va_start(args, fmt); ERR_vset_error(ERR_LIB_SSL, reason, fmt, args); va_end(args); if (qc != NULL) qc->last_error = SSL_ERROR_SSL; return 0; } #define QUIC_RAISE_NORMAL_ERROR(qc, err) \ quic_raise_normal_error((qc), (err)) #define QUIC_RAISE_NON_NORMAL_ERROR(qc, reason, msg) \ quic_raise_non_normal_error((qc), \ OPENSSL_FILE, OPENSSL_LINE, \ OPENSSL_FUNC, \ (reason), \ (msg)) /* * QCTX is a utility structure which provides information we commonly wish to * unwrap upon an API call being dispatched to us, namely: * * - a pointer to the QUIC_CONNECTION (regardless of whether a QCSO or QSSO * was passed); * - a pointer to any applicable QUIC_XSO (e.g. if a QSSO was passed, or if * a QCSO with a default stream was passed); * - whether a QSSO was passed (xso == NULL must not be used to determine this * because it may be non-NULL when a QCSO is passed if that QCSO has a * default stream). */ typedef struct qctx_st { QUIC_CONNECTION *qc; QUIC_XSO *xso; int is_stream; } QCTX; /* * Given a QCSO or QSSO, initialises a QCTX, determining the contextually * applicable QUIC_CONNECTION pointer and, if applicable, QUIC_XSO pointer. * * After this returns 1, all fields of the passed QCTX are initialised. * Returns 0 on failure. This function is intended to be used to provide API * semantics and as such, it invokes QUIC_RAISE_NON_NORMAL_ERROR() on failure. */ static int expect_quic(const SSL *s, QCTX *ctx) { QUIC_CONNECTION *qc; QUIC_XSO *xso; ctx->qc = NULL; ctx->xso = NULL; ctx->is_stream = 0; if (s == NULL) return QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL); switch (s->type) { case SSL_TYPE_QUIC_CONNECTION: qc = (QUIC_CONNECTION *)s; ctx->qc = qc; ctx->xso = qc->default_xso; ctx->is_stream = 0; return 1; case SSL_TYPE_QUIC_XSO: xso = (QUIC_XSO *)s; ctx->qc = xso->conn; ctx->xso = xso; ctx->is_stream = 1; return 1; default: return QUIC_RAISE_NON_NORMAL_ERROR(NULL, ERR_R_INTERNAL_ERROR, NULL); } } /* * Like expect_quic(), but requires a QUIC_XSO be contextually available. In * other words, requires that the passed QSO be a QSSO or a QCSO with a default * stream. * * remote_init determines if we expect the default XSO to be remotely created or * not. If it is -1, do not instantiate a default XSO if one does not yet exist. */ static int ossl_unused expect_quic_with_stream(const SSL *s, int remote_init, QCTX *ctx) { if (!expect_quic(s, ctx)) return 0; if (ctx->xso == NULL && remote_init >= 0) { qc_try_create_default_xso(ctx->qc, remote_init); ctx->xso = ctx->qc->default_xso; } if (ctx->xso == NULL) return QUIC_RAISE_NON_NORMAL_ERROR(ctx->qc, ERR_R_INTERNAL_ERROR, NULL); return 1; } /* * Like expect_quic(), but fails if called on a QUIC_XSO. ctx->xso may still * be non-NULL if the QCSO has a default stream. */ static int ossl_unused expect_quic_conn_only(const SSL *s, QCTX *ctx) { if (!expect_quic(s, ctx)) return 0; if (ctx->is_stream) return QUIC_RAISE_NON_NORMAL_ERROR(ctx->qc, ERR_R_INTERNAL_ERROR, NULL); return 1; } /* * Ensures that the channel mutex is held for a method which touches channel * state. * * Precondition: Channel mutex is not held (unchecked) */ static void quic_lock(QUIC_CONNECTION *qc) { ossl_crypto_mutex_lock(qc->mutex); } /* Precondition: Channel mutex is held (unchecked) */ QUIC_NEEDS_LOCK static void quic_unlock(QUIC_CONNECTION *qc) { ossl_crypto_mutex_unlock(qc->mutex); } /* * QUIC Front-End I/O API: Initialization * ====================================== * * SSL_new => ossl_quic_new * ossl_quic_init * SSL_reset => ossl_quic_reset * SSL_clear => ossl_quic_clear * ossl_quic_deinit * SSL_free => ossl_quic_free * */ /* SSL_new */ SSL *ossl_quic_new(SSL_CTX *ctx) { QUIC_CONNECTION *qc = NULL; SSL *ssl_base = NULL; SSL_CONNECTION *sc = NULL; qc = OPENSSL_zalloc(sizeof(*qc)); if (qc == NULL) goto err; /* Initialise the QUIC_CONNECTION's stub header. */ ssl_base = &qc->ssl; if (!ossl_ssl_init(ssl_base, ctx, ctx->method, SSL_TYPE_QUIC_CONNECTION)) { ssl_base = NULL; goto err; } qc->tls = ossl_ssl_connection_new_int(ctx, TLS_method()); if (qc->tls == NULL || (sc = SSL_CONNECTION_FROM_SSL(qc->tls)) == NULL) goto err; if ((qc->mutex = ossl_crypto_mutex_new()) == NULL) goto err; qc->is_thread_assisted = (ssl_base->method == OSSL_QUIC_client_thread_method()); qc->as_server = 0; /* TODO(QUIC): server support */ qc->as_server_state = qc->as_server; qc->default_ssl_mode = qc->ssl.ctx->mode; qc->default_blocking = 1; qc->last_error = SSL_ERROR_NONE; if (!create_channel(qc)) goto err; /* * We do not create the default XSO yet. The reason for this is that the * stream ID of the default XSO will depend on whether the stream is client * or server-initiated, which depends on who transmits first. Since we do * not know whether the application will be using a client-transmits-first * or server-transmits-first protocol, we defer default XSO creation until * the client calls SSL_read() or SSL_write(). If it calls SSL_read() first, * we take that as a cue that the client is expecting a server-initiated * stream, and vice versa if SSL_write() is called first. */ return ssl_base; err: if (qc != NULL) { ossl_quic_channel_free(qc->ch); SSL_free(qc->tls); } OPENSSL_free(qc); return NULL; } /* SSL_free */ QUIC_TAKES_LOCK void ossl_quic_free(SSL *s) { QCTX ctx; /* We should never be called on anything but a QSO. */ if (!expect_quic(s, &ctx)) return; if (ctx.is_stream) { /* * When a QSSO is freed, the XSO is freed immediately, because the XSO * itself only contains API personality layer data. However the * underlying QUIC_STREAM is not freed immediately but is instead marked * as deleted for later collection. */ quic_lock(ctx.qc); assert(ctx.qc->num_xso > 0); --ctx.qc->num_xso; ctx.xso->stream->deleted = 1; /* Auto-conclude stream. */ /* TODO(QUIC): Do RESET_STREAM here instead of auto-conclude */ if (ctx.xso->stream->sstream != NULL) ossl_quic_sstream_fin(ctx.xso->stream->sstream); /* Update stream state. */ ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(ctx.xso->conn->ch), ctx.xso->stream); quic_unlock(ctx.qc); /* Note: SSL_free calls OPENSSL_free(xso) for us */ return; } quic_lock(ctx.qc); /* * Free the default XSO, if any. The QUIC_STREAM is not deleted at this * stage, but is freed during the channel free when the whole QSM is freed. */ if (ctx.qc->default_xso != NULL) { QUIC_XSO *xso = ctx.qc->default_xso; quic_unlock(ctx.qc); SSL_free(&xso->ssl); quic_lock(ctx.qc); } /* Ensure we have no remaining XSOs. */ assert(ctx.qc->num_xso == 0); if (ctx.qc->is_thread_assisted && ctx.qc->started) { ossl_quic_thread_assist_wait_stopped(&ctx.qc->thread_assist); ossl_quic_thread_assist_cleanup(&ctx.qc->thread_assist); } ossl_quic_channel_free(ctx.qc->ch); BIO_free(ctx.qc->net_rbio); BIO_free(ctx.qc->net_wbio); /* Note: SSL_free calls OPENSSL_free(qc) for us */ SSL_free(ctx.qc->tls); ossl_crypto_mutex_free(&ctx.qc->mutex); /* freed while still locked */ } /* SSL method init */ int ossl_quic_init(SSL *s) { /* Same op as SSL_clear, forward the call. */ return ossl_quic_clear(s); } /* SSL method deinit */ void ossl_quic_deinit(SSL *s) { /* No-op. */ } /* SSL_reset */ int ossl_quic_reset(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; /* TODO(QUIC); Currently a no-op. */ return 1; } /* SSL_clear */ int ossl_quic_clear(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; /* TODO(QUIC): Currently a no-op. */ return 1; } void ossl_quic_conn_set_override_now_cb(SSL *s, OSSL_TIME (*now_cb)(void *arg), void *now_cb_arg) { QCTX ctx; if (!expect_quic(s, &ctx)) return; ctx.qc->override_now_cb = now_cb; ctx.qc->override_now_cb_arg = now_cb_arg; } void ossl_quic_conn_force_assist_thread_wake(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return; if (ctx.qc->is_thread_assisted && ctx.qc->started) ossl_quic_thread_assist_notify_deadline_changed(&ctx.qc->thread_assist); } /* * QUIC Front-End I/O API: Network BIO Configuration * ================================================= * * Handling the different BIOs is difficult: * * - It is more or less a requirement that we use non-blocking network I/O; * we need to be able to have timeouts on recv() calls, and make best effort * (non blocking) send() and recv() calls. * * The only sensible way to do this is to configure the socket into * non-blocking mode. We could try to do select() before calling send() or * recv() to get a guarantee that the call will not block, but this will * probably run into issues with buggy OSes which generate spurious socket * readiness events. In any case, relying on this to work reliably does not * seem sane. * * Timeouts could be handled via setsockopt() socket timeout options, but * this depends on OS support and adds another syscall to every network I/O * operation. It also has obvious thread safety concerns if we want to move * to concurrent use of a single socket at some later date. * * Some OSes support a MSG_DONTWAIT flag which allows a single I/O option to * be made non-blocking. However some OSes (e.g. Windows) do not support * this, so we cannot rely on this. * * As such, we need to configure any FD in non-blocking mode. This may * confound users who pass a blocking socket to libssl. However, in practice * it would be extremely strange for a user of QUIC to pass an FD to us, * then also try and send receive traffic on the same socket(!). Thus the * impact of this should be limited, and can be documented. * * - We support both blocking and non-blocking operation in terms of the API * presented to the user. One prospect is to set the blocking mode based on * whether the socket passed to us was already in blocking mode. However, * Windows has no API for determining if a socket is in blocking mode (!), * therefore this cannot be done portably. Currently therefore we expose an * explicit API call to set this, and default to blocking mode. * * - We need to determine our initial destination UDP address. The "natural" * way for a user to do this is to set the peer variable on a BIO_dgram. * However, this has problems because BIO_dgram's peer variable is used for * both transmission and reception. This means it can be constantly being * changed to a malicious value (e.g. if some random unrelated entity on the * network starts sending traffic to us) on every read call. This is not a * direct issue because we use the 'stateless' BIO_sendmmsg and BIO_recvmmsg * calls only, which do not use this variable. However, we do need to let * the user specify the peer in a 'normal' manner. The compromise here is * that we grab the current peer value set at the time the write BIO is set * and do not read the value again. * * - We also need to support memory BIOs (e.g. BIO_dgram_pair) or custom BIOs. * Currently we do this by only supporting non-blocking mode. * */ /* * Determines what initial destination UDP address we should use, if possible. * If this fails the client must set the destination address manually, or use a * BIO which does not need a destination address. */ static int csm_analyse_init_peer_addr(BIO *net_wbio, BIO_ADDR *peer) { if (BIO_dgram_get_peer(net_wbio, peer) <= 0) return 0; return 1; } void ossl_quic_conn_set0_net_rbio(SSL *s, BIO *net_rbio) { QCTX ctx; if (!expect_quic(s, &ctx)) return; if (ctx.qc->net_rbio == net_rbio) return; if (!ossl_quic_channel_set_net_rbio(ctx.qc->ch, net_rbio)) return; BIO_free(ctx.qc->net_rbio); ctx.qc->net_rbio = net_rbio; /* * If what we have is not pollable (e.g. a BIO_dgram_pair) disable blocking * mode as we do not support it for non-pollable BIOs. */ if (net_rbio != NULL) { BIO_POLL_DESCRIPTOR d = {0}; if (!BIO_get_rpoll_descriptor(net_rbio, &d) || d.type != BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD) { ctx.qc->blocking = 0; ctx.qc->default_blocking = 0; ctx.qc->can_poll_net_rbio = 0; } else { ctx.qc->can_poll_net_rbio = 1; } } } void ossl_quic_conn_set0_net_wbio(SSL *s, BIO *net_wbio) { QCTX ctx; if (!expect_quic(s, &ctx)) return; if (ctx.qc->net_wbio == net_wbio) return; if (!ossl_quic_channel_set_net_wbio(ctx.qc->ch, net_wbio)) return; BIO_free(ctx.qc->net_wbio); ctx.qc->net_wbio = net_wbio; if (net_wbio != NULL) { BIO_POLL_DESCRIPTOR d = {0}; if (!BIO_get_wpoll_descriptor(net_wbio, &d) || d.type != BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD) { ctx.qc->blocking = 0; ctx.qc->default_blocking = 0; ctx.qc->can_poll_net_wbio = 0; } else { ctx.qc->can_poll_net_wbio = 1; } /* * If we do not have a peer address yet, and we have not started trying * to connect yet, try to autodetect one. */ if (BIO_ADDR_family(&ctx.qc->init_peer_addr) == AF_UNSPEC && !ctx.qc->started) { if (!csm_analyse_init_peer_addr(net_wbio, &ctx.qc->init_peer_addr)) /* best effort */ BIO_ADDR_clear(&ctx.qc->init_peer_addr); ossl_quic_channel_set_peer_addr(ctx.qc->ch, &ctx.qc->init_peer_addr); } } } BIO *ossl_quic_conn_get_net_rbio(const SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return NULL; return ctx.qc->net_rbio; } BIO *ossl_quic_conn_get_net_wbio(const SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return NULL; return ctx.qc->net_wbio; } int ossl_quic_conn_get_blocking_mode(const SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; if (ctx.is_stream) return ctx.xso->blocking; return ctx.qc->blocking; } int ossl_quic_conn_set_blocking_mode(SSL *s, int blocking) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; /* Cannot enable blocking mode if we do not have pollable FDs. */ if (blocking != 0 && (!ctx.qc->can_poll_net_rbio || !ctx.qc->can_poll_net_wbio)) return QUIC_RAISE_NON_NORMAL_ERROR(ctx.qc, ERR_R_UNSUPPORTED, NULL); if (!ctx.is_stream) { /* * If called on a QCSO, update default and connection-level blocking * modes. */ ctx.qc->blocking = (blocking != 0); ctx.qc->default_blocking = ctx.qc->blocking; } if (ctx.xso != NULL) /* * If called on a QSSO or QCSO with a default XSO, update blocking * mode. */ ctx.xso->blocking = (blocking != 0); return 1; } int ossl_quic_conn_set_initial_peer_addr(SSL *s, const BIO_ADDR *peer_addr) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; if (ctx.qc->started) return QUIC_RAISE_NON_NORMAL_ERROR(ctx.qc, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED, NULL); if (peer_addr == NULL) { BIO_ADDR_clear(&ctx.qc->init_peer_addr); return 1; } ctx.qc->init_peer_addr = *peer_addr; return 1; } /* * QUIC Front-End I/O API: Asynchronous I/O Management * =================================================== * * (BIO/)SSL_tick => ossl_quic_tick * (BIO/)SSL_get_tick_timeout => ossl_quic_get_tick_timeout * (BIO/)SSL_get_poll_fd => ossl_quic_get_poll_fd * */ /* Returns 1 if the connection is being used in blocking mode. */ static int qc_blocking_mode(const QUIC_CONNECTION *qc) { return qc->blocking; } static int xso_blocking_mode(const QUIC_XSO *xso) { return xso->blocking && xso->conn->can_poll_net_rbio && xso->conn->can_poll_net_wbio; } /* SSL_tick; ticks the reactor. */ QUIC_TAKES_LOCK int ossl_quic_tick(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0); quic_unlock(ctx.qc); return 1; } /* * SSL_get_tick_timeout. Get the time in milliseconds until the SSL object * should be ticked by the application by calling SSL_tick(). tv is set to 0 if * the object should be ticked immediately and tv->tv_sec is set to -1 if no * timeout is currently active. */ QUIC_TAKES_LOCK int ossl_quic_get_tick_timeout(SSL *s, struct timeval *tv) { QCTX ctx; OSSL_TIME deadline = ossl_time_infinite(); if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); deadline = ossl_quic_reactor_get_tick_deadline(ossl_quic_channel_get_reactor(ctx.qc->ch)); if (ossl_time_is_infinite(deadline)) { tv->tv_sec = -1; tv->tv_usec = 0; quic_unlock(ctx.qc); return 1; } *tv = ossl_time_to_timeval(ossl_time_subtract(deadline, ossl_time_now())); quic_unlock(ctx.qc); return 1; } /* SSL_get_rpoll_descriptor */ int ossl_quic_get_rpoll_descriptor(SSL *s, BIO_POLL_DESCRIPTOR *desc) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; if (desc == NULL || ctx.qc->net_rbio == NULL) return 0; return BIO_get_rpoll_descriptor(ctx.qc->net_rbio, desc); } /* SSL_get_wpoll_descriptor */ int ossl_quic_get_wpoll_descriptor(SSL *s, BIO_POLL_DESCRIPTOR *desc) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; if (desc == NULL || ctx.qc->net_wbio == NULL) return 0; return BIO_get_wpoll_descriptor(ctx.qc->net_wbio, desc); } /* SSL_net_read_desired */ QUIC_TAKES_LOCK int ossl_quic_get_net_read_desired(SSL *s) { QCTX ctx; int ret; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); ret = ossl_quic_reactor_net_read_desired(ossl_quic_channel_get_reactor(ctx.qc->ch)); quic_unlock(ctx.qc); return ret; } /* SSL_net_write_desired */ QUIC_TAKES_LOCK int ossl_quic_get_net_write_desired(SSL *s) { int ret; QCTX ctx; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); ret = ossl_quic_reactor_net_write_desired(ossl_quic_channel_get_reactor(ctx.qc->ch)); quic_unlock(ctx.qc); return ret; } /* * QUIC Front-End I/O API: Connection Lifecycle Operations * ======================================================= * * SSL_do_handshake => ossl_quic_do_handshake * SSL_set_connect_state => ossl_quic_set_connect_state * SSL_set_accept_state => ossl_quic_set_accept_state * SSL_shutdown => ossl_quic_shutdown * SSL_ctrl => ossl_quic_ctrl * (BIO/)SSL_connect => ossl_quic_connect * (BIO/)SSL_accept => ossl_quic_accept * */ /* SSL_shutdown */ static int quic_shutdown_wait(void *arg) { QUIC_CONNECTION *qc = arg; return ossl_quic_channel_is_terminated(qc->ch); } QUIC_TAKES_LOCK int ossl_quic_conn_shutdown(SSL *s, uint64_t flags, const SSL_SHUTDOWN_EX_ARGS *args, size_t args_len) { int ret; QCTX ctx; if (!expect_quic(s, &ctx)) return 0; if (ctx.is_stream) /* TODO(QUIC): Semantics currently undefined for QSSOs */ return -1; quic_lock(ctx.qc); ossl_quic_channel_local_close(ctx.qc->ch, args != NULL ? args->quic_error_code : 0); /* TODO(QUIC): !SSL_SHUTDOWN_FLAG_NO_STREAM_FLUSH */ if (ossl_quic_channel_is_terminated(ctx.qc->ch)) { quic_unlock(ctx.qc); return 1; } if (qc_blocking_mode(ctx.qc) && (flags & SSL_SHUTDOWN_FLAG_RAPID) == 0) block_until_pred(ctx.qc, quic_shutdown_wait, ctx.qc, 0); else ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0); ret = ossl_quic_channel_is_terminated(ctx.qc->ch); quic_unlock(ctx.qc); return ret; } /* SSL_ctrl */ long ossl_quic_ctrl(SSL *s, int cmd, long larg, void *parg) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; switch (cmd) { case SSL_CTRL_MODE: /* If called on a QCSO, update the default mode. */ if (!ctx.is_stream) ctx.qc->default_ssl_mode |= (uint32_t)larg; /* * If we were called on a QSSO or have a default stream, we also update * that. */ if (ctx.xso != NULL) { /* Cannot enable EPW while AON write in progress. */ if (ctx.xso->aon_write_in_progress) larg &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; ctx.xso->ssl_mode |= (uint32_t)larg; return ctx.xso->ssl_mode; } return ctx.qc->default_ssl_mode; case SSL_CTRL_CLEAR_MODE: if (!ctx.is_stream) ctx.qc->default_ssl_mode &= ~(uint32_t)larg; if (ctx.xso != NULL) { ctx.xso->ssl_mode &= ~(uint32_t)larg; return ctx.xso->ssl_mode; } return ctx.qc->default_ssl_mode; default: /* Probably a TLS related ctrl. Defer to our internal SSL object */ return SSL_ctrl(ctx.qc->tls, cmd, larg, parg); } } /* SSL_set_connect_state */ void ossl_quic_set_connect_state(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return; /* Cannot be changed after handshake started */ if (ctx.qc->started || ctx.is_stream) return; ctx.qc->as_server_state = 0; } /* SSL_set_accept_state */ void ossl_quic_set_accept_state(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return; /* Cannot be changed after handshake started */ if (ctx.qc->started || ctx.is_stream) return; ctx.qc->as_server_state = 1; } /* SSL_do_handshake */ struct quic_handshake_wait_args { QUIC_CONNECTION *qc; }; static int quic_handshake_wait(void *arg) { struct quic_handshake_wait_args *args = arg; if (!ossl_quic_channel_is_active(args->qc->ch)) return -1; if (ossl_quic_channel_is_handshake_complete(args->qc->ch)) return 1; return 0; } static int configure_channel(QUIC_CONNECTION *qc) { assert(qc->ch != NULL); if (!ossl_quic_channel_set_net_rbio(qc->ch, qc->net_rbio) || !ossl_quic_channel_set_net_wbio(qc->ch, qc->net_wbio) || !ossl_quic_channel_set_peer_addr(qc->ch, &qc->init_peer_addr)) return 0; return 1; } QUIC_NEEDS_LOCK static int create_channel(QUIC_CONNECTION *qc) { QUIC_CHANNEL_ARGS args = {0}; args.libctx = qc->ssl.ctx->libctx; args.propq = qc->ssl.ctx->propq; args.is_server = qc->as_server; args.tls = qc->tls; args.mutex = qc->mutex; args.now_cb = qc->override_now_cb; args.now_cb_arg = qc->override_now_cb_arg; qc->ch = ossl_quic_channel_new(&args); if (qc->ch == NULL) return 0; return 1; } /* * Creates a channel and configures it with the information we have accumulated * via calls made to us from the application prior to starting a handshake * attempt. */ QUIC_NEEDS_LOCK static int ensure_channel_started(QUIC_CONNECTION *qc) { if (!qc->started) { if (!configure_channel(qc) || !ossl_quic_channel_start(qc->ch)) goto err; if (qc->is_thread_assisted) if (!ossl_quic_thread_assist_init_start(&qc->thread_assist, qc->ch)) goto err; } qc->started = 1; return 1; err: ossl_quic_channel_free(qc->ch); qc->ch = NULL; return 0; } QUIC_NEEDS_LOCK static int quic_do_handshake(QUIC_CONNECTION *qc) { int ret; if (ossl_quic_channel_is_handshake_complete(qc->ch)) /* Handshake already completed. */ return 1; if (ossl_quic_channel_is_term_any(qc->ch)) return QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); if (BIO_ADDR_family(&qc->init_peer_addr) == AF_UNSPEC) { /* Peer address must have been set. */ QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_REMOTE_PEER_ADDRESS_NOT_SET, NULL); return -1; /* Non-protocol error */ } if (qc->as_server != qc->as_server_state) { /* TODO(QUIC): Must match the method used to create the QCSO */ QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_PASSED_INVALID_ARGUMENT, NULL); return -1; /* Non-protocol error */ } if (qc->net_rbio == NULL || qc->net_wbio == NULL) { /* Need read and write BIOs. */ QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_BIO_NOT_SET, NULL); return -1; /* Non-protocol error */ } /* * Start connection process. Note we may come here multiple times in * non-blocking mode, which is fine. */ if (!ensure_channel_started(qc)) { QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL); return -1; /* Non-protocol error */ } if (ossl_quic_channel_is_handshake_complete(qc->ch)) /* The handshake is now done. */ return 1; if (qc_blocking_mode(qc)) { /* In blocking mode, wait for the handshake to complete. */ struct quic_handshake_wait_args args; args.qc = qc; ret = block_until_pred(qc, quic_handshake_wait, &args, 0); if (!ossl_quic_channel_is_active(qc->ch)) { QUIC_RAISE_NON_NORMAL_ERROR(qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); return 0; /* Shutdown before completion */ } else if (ret <= 0) { QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL); return -1; /* Non-protocol error */ } assert(ossl_quic_channel_is_handshake_complete(qc->ch)); return 1; } else { /* Try to advance the reactor. */ ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(qc->ch), 0); if (ossl_quic_channel_is_handshake_complete(qc->ch)) /* The handshake is now done. */ return 1; /* Otherwise, indicate that the handshake isn't done yet. */ QUIC_RAISE_NORMAL_ERROR(qc, SSL_ERROR_WANT_READ); return -1; /* Non-protocol error */ } } QUIC_TAKES_LOCK int ossl_quic_do_handshake(SSL *s) { int ret; QCTX ctx; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); ret = quic_do_handshake(ctx.qc); quic_unlock(ctx.qc); return ret; } /* SSL_connect */ int ossl_quic_connect(SSL *s) { /* Ensure we are in connect state (no-op if non-idle). */ ossl_quic_set_connect_state(s); /* Begin or continue the handshake */ return ossl_quic_do_handshake(s); } /* SSL_accept */ int ossl_quic_accept(SSL *s) { /* Ensure we are in accept state (no-op if non-idle). */ ossl_quic_set_accept_state(s); /* Begin or continue the handshake */ return ossl_quic_do_handshake(s); } /* * QUIC Front-End I/O API: Stream Lifecycle Operations * =================================================== * * SSL_stream_new => ossl_quic_conn_stream_new * */ /* * Try to create the default XSO if it doesn't already exist. Returns 1 if the * default XSO was created. Returns 0 if it was not (e.g. because it already * exists). Note that this is NOT an error condition. */ QUIC_NEEDS_LOCK static int qc_try_create_default_xso(QUIC_CONNECTION *qc, int remote_init) { QUIC_STREAM *qs; if (qc->default_xso != NULL) qc->default_xso_created = 1; if (qc->default_xso_created) /* * We only do this once. If the user detaches a previously created * default XSO we don't auto-create another one. */ return 0; if (!remote_init) { /* * We are writing to the stream first, so this is a locally-initiated * stream. */ qc->default_xso = (QUIC_XSO *)ossl_quic_conn_stream_new(&qc->ssl, 0); if (qc->default_xso == NULL) return 0; } else { /* * Client is reading first. This means it is expecting to get data on a * stream the peer writes to first, meaning this is a remotely-initiated * stream. Ordinarily, we wait for the RXDP to handle a STREAM frame to * create such a stream. But in this case, special case it and create * the bookkeeping structures for the first peer-initiated bidirectional * stream so the client can start to wait on it. */ qs = ossl_quic_channel_new_stream_remote(qc->ch, QUIC_STREAM_INITIATOR_SERVER | QUIC_STREAM_DIR_BIDI); if (qs == NULL) return 0; qc->default_xso = create_xso_from_stream(qc, qs); if (qc->default_xso == NULL) { ossl_quic_stream_map_release(ossl_quic_channel_get_qsm(qc->ch), qs); return 0; } } qc->default_xso_created = 1; return 1; } QUIC_NEEDS_LOCK static QUIC_XSO *create_xso_from_stream(QUIC_CONNECTION *qc, QUIC_STREAM *qs) { QUIC_XSO *xso = NULL; if ((xso = OPENSSL_zalloc(sizeof(*xso))) == NULL) goto err; if (!ossl_ssl_init(&xso->ssl, qc->ssl.ctx, qc->ssl.method, SSL_TYPE_QUIC_XSO)) goto err; xso->conn = qc; xso->blocking = qc->default_blocking; xso->ssl_mode = qc->default_ssl_mode; xso->stream = qs; ++qc->num_xso; return xso; err: OPENSSL_free(xso); return NULL; } QUIC_TAKES_LOCK SSL *ossl_quic_conn_stream_new(SSL *s, uint64_t flags) { QCTX ctx; QUIC_XSO *xso = NULL; QUIC_STREAM *qs = NULL; int is_uni = ((flags & SSL_STREAM_FLAG_UNI) != 0); if (!expect_quic_conn_only(s, &ctx)) return NULL; quic_lock(ctx.qc); if (ossl_quic_channel_is_term_any(ctx.qc->ch)) { QUIC_RAISE_NON_NORMAL_ERROR(ctx.qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); goto err; } qs = ossl_quic_channel_new_stream_local(ctx.qc->ch, is_uni); if (qs == NULL) goto err; xso = create_xso_from_stream(ctx.qc, qs); if (xso == NULL) goto err; quic_unlock(ctx.qc); return &xso->ssl; err: OPENSSL_free(xso); ossl_quic_stream_map_release(ossl_quic_channel_get_qsm(ctx.qc->ch), qs); quic_unlock(ctx.qc); return NULL; } /* * QUIC Front-End I/O API: Steady-State Operations * =============================================== * * Here we dispatch calls to the steady-state front-end I/O API functions; that * is, the functions used during the established phase of a QUIC connection * (e.g. SSL_read, SSL_write). * * Each function must handle both blocking and non-blocking modes. As discussed * above, all QUIC I/O is implemented using non-blocking mode internally. * * SSL_get_error => partially implemented by ossl_quic_get_error * (BIO/)SSL_read => ossl_quic_read * (BIO/)SSL_write => ossl_quic_write * SSL_pending => ossl_quic_pending * SSL_stream_conclude => ossl_quic_conn_stream_conclude */ /* SSL_get_error */ int ossl_quic_get_error(const SSL *s, int i) { QCTX ctx; if (!expect_quic(s, &ctx)) return 0; return ctx.qc->last_error; } /* * SSL_write * --------- * * The set of functions below provide the implementation of the public SSL_write * function. We must handle: * * - both blocking and non-blocking operation at the application level, * depending on how we are configured; * * - SSL_MODE_ENABLE_PARTIAL_WRITE being on or off; * * - SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER. * */ QUIC_NEEDS_LOCK static void quic_post_write(QUIC_XSO *xso, int did_append, int do_tick) { /* * We have appended at least one byte to the stream. * Potentially mark stream as active, depending on FC. */ if (did_append) ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(xso->conn->ch), xso->stream); /* * Try and send. * * TODO(QUIC): It is probably inefficient to try and do this immediately, * plus we should eventually consider Nagle's algorithm. */ if (do_tick) ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(xso->conn->ch), 0); } struct quic_write_again_args { QUIC_XSO *xso; const unsigned char *buf; size_t len; size_t total_written; }; QUIC_NEEDS_LOCK static int quic_write_again(void *arg) { struct quic_write_again_args *args = arg; size_t actual_written = 0; if (!ossl_quic_channel_is_active(args->xso->conn->ch)) /* If connection is torn down due to an error while blocking, stop. */ return -2; if (!ossl_quic_sstream_append(args->xso->stream->sstream, args->buf, args->len, &actual_written)) return -2; quic_post_write(args->xso, actual_written > 0, 0); args->buf += actual_written; args->len -= actual_written; args->total_written += actual_written; if (args->len == 0) /* Written everything, done. */ return 1; /* Not written everything yet, keep trying. */ return 0; } QUIC_NEEDS_LOCK static int quic_write_blocking(QUIC_XSO *xso, const void *buf, size_t len, size_t *written) { int res; struct quic_write_again_args args; size_t actual_written = 0; /* First make a best effort to append as much of the data as possible. */ if (!ossl_quic_sstream_append(xso->stream->sstream, buf, len, &actual_written)) { /* Stream already finished or allocation error. */ *written = 0; return QUIC_RAISE_NON_NORMAL_ERROR(xso->conn, ERR_R_INTERNAL_ERROR, NULL); } quic_post_write(xso, actual_written > 0, 1); if (actual_written == len) { /* Managed to append everything on the first try. */ *written = actual_written; return 1; } /* * We did not manage to append all of the data immediately, so the stream * buffer has probably filled up. This means we need to block until some of * it is freed up. */ args.xso = xso; args.buf = (const unsigned char *)buf + actual_written; args.len = len - actual_written; args.total_written = 0; res = block_until_pred(xso->conn, quic_write_again, &args, 0); if (res <= 0) { if (!ossl_quic_channel_is_active(xso->conn->ch)) return QUIC_RAISE_NON_NORMAL_ERROR(xso->conn, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); else return QUIC_RAISE_NON_NORMAL_ERROR(xso->conn, ERR_R_INTERNAL_ERROR, NULL); } *written = args.total_written; return 1; } /* * Functions to manage All-or-Nothing (AON) (that is, non-ENABLE_PARTIAL_WRITE) * write semantics. */ static void aon_write_begin(QUIC_XSO *xso, const unsigned char *buf, size_t buf_len, size_t already_sent) { assert(!xso->aon_write_in_progress); xso->aon_write_in_progress = 1; xso->aon_buf_base = buf; xso->aon_buf_pos = already_sent; xso->aon_buf_len = buf_len; } static void aon_write_finish(QUIC_XSO *xso) { xso->aon_write_in_progress = 0; xso->aon_buf_base = NULL; xso->aon_buf_pos = 0; xso->aon_buf_len = 0; } QUIC_NEEDS_LOCK static int quic_write_nonblocking_aon(QUIC_XSO *xso, const void *buf, size_t len, size_t *written) { const void *actual_buf; size_t actual_len, actual_written = 0; int accept_moving_buffer = ((xso->ssl_mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER) != 0); if (xso->aon_write_in_progress) { /* * We are in the middle of an AON write (i.e., a previous write did not * manage to append all data to the SSTREAM and we have Enable Partial * Write (EPW) mode disabled.) */ if ((!accept_moving_buffer && xso->aon_buf_base != buf) || len != xso->aon_buf_len) /* * Pointer must not have changed if we are not in accept moving * buffer mode. Length must never change. */ return QUIC_RAISE_NON_NORMAL_ERROR(xso->conn, SSL_R_BAD_WRITE_RETRY, NULL); actual_buf = (unsigned char *)buf + xso->aon_buf_pos; actual_len = len - xso->aon_buf_pos; assert(actual_len > 0); } else { actual_buf = buf; actual_len = len; } /* First make a best effort to append as much of the data as possible. */ if (!ossl_quic_sstream_append(xso->stream->sstream, actual_buf, actual_len, &actual_written)) { /* Stream already finished or allocation error. */ *written = 0; return QUIC_RAISE_NON_NORMAL_ERROR(xso->conn, ERR_R_INTERNAL_ERROR, NULL); } quic_post_write(xso, actual_written > 0, 1); if (actual_written == actual_len) { /* We have sent everything. */ if (xso->aon_write_in_progress) { /* * We have sent everything, and we were in the middle of an AON * write. The output write length is the total length of the AON * buffer, not however many bytes we managed to write to the stream * in this call. */ *written = xso->aon_buf_len; aon_write_finish(xso); } else { *written = actual_written; } return 1; } if (xso->aon_write_in_progress) { /* * AON write is in progress but we have not written everything yet. We * may have managed to send zero bytes, or some number of bytes less * than the total remaining which need to be appended during this * AON operation. */ xso->aon_buf_pos += actual_written; assert(xso->aon_buf_pos < xso->aon_buf_len); return QUIC_RAISE_NORMAL_ERROR(xso->conn, SSL_ERROR_WANT_WRITE); } /* * Not in an existing AON operation but partial write is not enabled, so we * need to begin a new AON operation. However we needn't bother if we didn't * actually append anything. */ if (actual_written > 0) aon_write_begin(xso, buf, len, actual_written); /* * AON - We do not publicly admit to having appended anything until AON * completes. */ *written = 0; return QUIC_RAISE_NORMAL_ERROR(xso->conn, SSL_ERROR_WANT_WRITE); } QUIC_NEEDS_LOCK static int quic_write_nonblocking_epw(QUIC_XSO *xso, const void *buf, size_t len, size_t *written) { /* Simple best effort operation. */ if (!ossl_quic_sstream_append(xso->stream->sstream, buf, len, written)) { /* Stream already finished or allocation error. */ *written = 0; return QUIC_RAISE_NON_NORMAL_ERROR(xso->conn, ERR_R_INTERNAL_ERROR, NULL); } quic_post_write(xso, *written > 0, 1); return 1; } QUIC_TAKES_LOCK int ossl_quic_write(SSL *s, const void *buf, size_t len, size_t *written) { int ret; QCTX ctx; int partial_write; *written = 0; if (!expect_quic_with_stream(s, /*remote_init=*/0, &ctx)) { return 0; } quic_lock(ctx.qc); partial_write = ((ctx.xso->ssl_mode & SSL_MODE_ENABLE_PARTIAL_WRITE) != 0); if (ossl_quic_channel_is_term_any(ctx.qc->ch)) { ret = QUIC_RAISE_NON_NORMAL_ERROR(ctx.qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); goto out; } /* * If we haven't finished the handshake, try to advance it. * We don't accept writes until the handshake is completed. */ if (quic_do_handshake(ctx.qc) < 1) { ret = 0; goto out; } if (ctx.xso->stream == NULL || ctx.xso->stream->sstream == NULL) { ret = QUIC_RAISE_NON_NORMAL_ERROR(ctx.qc, ERR_R_INTERNAL_ERROR, NULL); goto out; } if (xso_blocking_mode(ctx.xso)) ret = quic_write_blocking(ctx.xso, buf, len, written); else if (partial_write) ret = quic_write_nonblocking_epw(ctx.xso, buf, len, written); else ret = quic_write_nonblocking_aon(ctx.xso, buf, len, written); out: quic_unlock(ctx.qc); return ret; } /* * SSL_read * -------- */ struct quic_read_again_args { QUIC_CONNECTION *qc; QUIC_STREAM *stream; void *buf; size_t len; size_t *bytes_read; int peek; }; QUIC_NEEDS_LOCK static int quic_read_actual(QUIC_CONNECTION *qc, QUIC_STREAM *stream, void *buf, size_t buf_len, size_t *bytes_read, int peek) { int is_fin = 0; /* If the receive part of the stream is over, issue EOF. */ if (stream->recv_fin_retired) return QUIC_RAISE_NORMAL_ERROR(qc, SSL_ERROR_ZERO_RETURN); if (stream->rstream == NULL) return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL); if (peek) { if (!ossl_quic_rstream_peek(stream->rstream, buf, buf_len, bytes_read, &is_fin)) return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL); } else { if (!ossl_quic_rstream_read(stream->rstream, buf, buf_len, bytes_read, &is_fin)) return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL); } if (!peek) { if (*bytes_read > 0) { /* * We have read at least one byte from the stream. Inform stream-level * RXFC of the retirement of controlled bytes. Update the active stream * status (the RXFC may now want to emit a frame granting more credit to * the peer). */ OSSL_RTT_INFO rtt_info; ossl_statm_get_rtt_info(ossl_quic_channel_get_statm(qc->ch), &rtt_info); if (!ossl_quic_rxfc_on_retire(&stream->rxfc, *bytes_read, rtt_info.smoothed_rtt)) return QUIC_RAISE_NON_NORMAL_ERROR(qc, ERR_R_INTERNAL_ERROR, NULL); } if (is_fin) stream->recv_fin_retired = 1; if (*bytes_read > 0) ossl_quic_stream_map_update_state(ossl_quic_channel_get_qsm(qc->ch), stream); } return 1; } QUIC_NEEDS_LOCK static int quic_read_again(void *arg) { struct quic_read_again_args *args = arg; if (!ossl_quic_channel_is_active(args->qc->ch)) { /* If connection is torn down due to an error while blocking, stop. */ QUIC_RAISE_NON_NORMAL_ERROR(args->qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); return -1; } if (!quic_read_actual(args->qc, args->stream, args->buf, args->len, args->bytes_read, args->peek)) return -1; if (*args->bytes_read > 0) /* got at least one byte, the SSL_read op can finish now */ return 1; return 0; /* did not read anything, keep trying */ } QUIC_TAKES_LOCK static int quic_read(SSL *s, void *buf, size_t len, size_t *bytes_read, int peek) { int ret, res; QCTX ctx; struct quic_read_again_args args; *bytes_read = 0; if (!expect_quic_with_stream(s, /*remote_init=*/0, &ctx)) return 0; quic_lock(ctx.qc); if (ossl_quic_channel_is_term_any(ctx.qc->ch)) { ret = QUIC_RAISE_NON_NORMAL_ERROR(ctx.qc, SSL_R_PROTOCOL_IS_SHUTDOWN, NULL); goto out; } /* If we haven't finished the handshake, try to advance it. */ if (quic_do_handshake(ctx.qc) < 1) { ret = 0; /* ossl_quic_do_handshake raised error here */ goto out; } if (ctx.xso->stream == NULL) { ret = QUIC_RAISE_NON_NORMAL_ERROR(ctx.qc, ERR_R_INTERNAL_ERROR, NULL); goto out; } if (!quic_read_actual(ctx.qc, ctx.xso->stream, buf, len, bytes_read, peek)) { ret = 0; /* quic_read_actual raised error here */ goto out; } if (*bytes_read > 0) { /* * Even though we succeeded, tick the reactor here to ensure we are * handling other aspects of the QUIC connection. */ ossl_quic_reactor_tick(ossl_quic_channel_get_reactor(ctx.qc->ch), 0); ret = 1; } else if (xso_blocking_mode(ctx.xso)) { /* * We were not able to read anything immediately, so our stream * buffer is empty. This means we need to block until we get * at least one byte. */ args.qc = ctx.qc; args.stream = ctx.xso->stream; args.buf = buf; args.len = len; args.bytes_read = bytes_read; args.peek = peek; res = block_until_pred(ctx.qc, quic_read_again, &args, 0); if (res == 0) { ret = QUIC_RAISE_NON_NORMAL_ERROR(ctx.qc, ERR_R_INTERNAL_ERROR, NULL); goto out; } else if (res < 0) { ret = 0; /* quic_read_again raised error here */ goto out; } ret = 1; } else { /* We did not get any bytes and are not in blocking mode. */ ret = QUIC_RAISE_NORMAL_ERROR(ctx.qc, SSL_ERROR_WANT_READ); } out: quic_unlock(ctx.qc); return ret; } int ossl_quic_read(SSL *s, void *buf, size_t len, size_t *bytes_read) { return quic_read(s, buf, len, bytes_read, 0); } int ossl_quic_peek(SSL *s, void *buf, size_t len, size_t *bytes_read) { return quic_read(s, buf, len, bytes_read, 1); } /* * SSL_pending * ----------- */ QUIC_TAKES_LOCK static size_t ossl_quic_pending_int(const SSL *s) { QCTX ctx; size_t avail = 0; int fin = 0; if (!expect_quic_with_stream(s, /*remote_init=*/-1, &ctx)) return 0; quic_lock(ctx.qc); if (ctx.xso->stream == NULL || ctx.xso->stream->rstream == NULL) /* Cannot raise errors here because we are const, just fail. */ goto out; if (!ossl_quic_rstream_available(ctx.xso->stream->rstream, &avail, &fin)) avail = 0; out: quic_unlock(ctx.qc); return avail; } size_t ossl_quic_pending(const SSL *s) { return ossl_quic_pending_int(s); } int ossl_quic_has_pending(const SSL *s) { return ossl_quic_pending_int(s) > 0; } /* * SSL_stream_conclude * ------------------- */ QUIC_TAKES_LOCK int ossl_quic_conn_stream_conclude(SSL *s) { QCTX ctx; QUIC_STREAM *qs; if (!expect_quic_with_stream(s, /*remote_init=*/0, &ctx)) return 0; quic_lock(ctx.qc); qs = ctx.xso->stream; if (qs == NULL || qs->sstream == NULL) { quic_unlock(ctx.qc); return 0; } if (!ossl_quic_channel_is_active(ctx.qc->ch) || ossl_quic_sstream_get_final_size(qs->sstream, NULL)) { quic_unlock(ctx.qc); return 1; } ossl_quic_sstream_fin(qs->sstream); quic_post_write(ctx.xso, 1, 1); quic_unlock(ctx.qc); return 1; } /* * SSL_inject_net_dgram * -------------------- */ QUIC_TAKES_LOCK int SSL_inject_net_dgram(SSL *s, const unsigned char *buf, size_t buf_len, const BIO_ADDR *peer, const BIO_ADDR *local) { int ret; QCTX ctx; QUIC_DEMUX *demux; if (!expect_quic(s, &ctx)) return 0; quic_lock(ctx.qc); demux = ossl_quic_channel_get0_demux(ctx.qc->ch); ret = ossl_quic_demux_inject(demux, buf, buf_len, peer, local); quic_unlock(ctx.qc); return ret; } /* * SSL_get0_connection * ------------------- */ SSL *ossl_quic_get0_connection(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return NULL; return &ctx.qc->ssl; } /* * SSL_get_stream_type * ------------------- */ int ossl_quic_get_stream_type(SSL *s) { QCTX ctx; if (!expect_quic(s, &ctx)) return SSL_STREAM_TYPE_NONE; if (ctx.xso == NULL) { /* * If we are deferring XSO creation, assume single stream mode and * default to BIDI, as the deferred XSO which will be created will be * bidirectional. */ if (!ctx.qc->default_xso_created) return SSL_STREAM_TYPE_BIDI; else return SSL_STREAM_TYPE_NONE; } if (ossl_quic_stream_is_bidi(ctx.xso->stream)) return SSL_STREAM_TYPE_BIDI; if (ossl_quic_stream_is_server_init(ctx.xso->stream) != ctx.qc->as_server) return SSL_STREAM_TYPE_READ; else return SSL_STREAM_TYPE_WRITE; } /* * QUIC Front-End I/O API: SSL_CTX Management * ========================================== */ long ossl_quic_ctx_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) { switch (cmd) { default: return ssl3_ctx_ctrl(ctx, cmd, larg, parg); } } long ossl_quic_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) { return ssl3_callback_ctrl(s, cmd, fp); } long ossl_quic_ctx_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) { return ssl3_ctx_callback_ctrl(ctx, cmd, fp); } int ossl_quic_renegotiate_check(SSL *ssl, int initok) { /* We never do renegotiation. */ return 0; } /* * These functions define the TLSv1.2 (and below) ciphers that are supported by * the SSL_METHOD. Since QUIC only supports TLSv1.3 we don't support any. */ int ossl_quic_num_ciphers(void) { return 0; } const SSL_CIPHER *ossl_quic_get_cipher(unsigned int u) { return NULL; }