=pod =head1 NAME EVP_RAND, EVP_RAND_fetch, EVP_RAND_free, EVP_RAND_up_ref, EVP_RAND_CTX, EVP_RAND_CTX_new, EVP_RAND_CTX_free, EVP_RAND_instantiate, EVP_RAND_uninstantiate, EVP_RAND_generate, EVP_RAND_reseed, EVP_RAND_nonce, EVP_RAND_enable_locking, EVP_RAND_set_callbacks, EVP_RAND_verify_zeroization, EVP_RAND_strength, EVP_RAND_state, EVP_RAND_provider, EVP_RAND_CTX_rand, EVP_RAND_is_a, EVP_RAND_number, EVP_RAND_name, EVP_RAND_names_do_all, EVP_RAND_get_ctx_params, EVP_RAND_set_ctx_params, EVP_RAND_do_all_provided, EVP_RAND_get_params, EVP_RAND_gettable_ctx_params, EVP_RAND_settable_ctx_params, EVP_RAND_gettable_params, EVP_RAND_STATE_UNINITIALISED, EVP_RAND_STATE_READY, EVP_RAND_STATE_ERROR - EVP RAND routines =head1 SYNOPSIS #include typedef struct evp_rand_st EVP_RAND; typedef struct evp_rand_ctx_st EVP_RAND_CTX; EVP_RAND *EVP_RAND_fetch(OPENSSL_CTX *libctx, const char *algorithm, const char *properties); int EVP_RAND_up_ref(EVP_RAND *rand); void EVP_RAND_free(EVP_RAND *rand); EVP_RAND_CTX *EVP_RAND_CTX_new(EVP_RAND *rand, EVP_RAND_CTX *parent); void EVP_RAND_CTX_free(EVP_RAND_CTX *ctx); EVP_RAND *EVP_RAND_CTX_rand(EVP_RAND_CTX *ctx); int EVP_RAND_get_params(EVP_RAND *rand, OSSL_PARAM params[]); int EVP_RAND_get_ctx_params(EVP_RAND_CTX *ctx, OSSL_PARAM params[]); int EVP_RAND_set_ctx_params(EVP_RAND_CTX *ctx, const OSSL_PARAM params[]); const OSSL_PARAM *EVP_RAND_gettable_params(const EVP_RAND *rand); const OSSL_PARAM *EVP_RAND_gettable_ctx_params(const EVP_RAND *rand); const OSSL_PARAM *EVP_RAND_settable_ctx_params(const EVP_RAND *rand); int EVP_RAND_number(const EVP_RAND *rand); const char *EVP_RAND_name(const EVP_RAND *rand); int EVP_RAND_is_a(const EVP_RAND *rand, const char *name); const OSSL_PROVIDER *EVP_RAND_provider(const EVP_RAND *rand); void EVP_RAND_do_all_provided(OPENSSL_CTX *libctx, void (*fn)(EVP_RAND *rand, void *arg), void *arg); void EVP_RAND_names_do_all(const EVP_RAND *rand, void (*fn)(const char *name, void *data), void *data); int EVP_RAND_instantiate(EVP_RAND_CTX *ctx, unsigned int strength, int prediction_resistance, const unsigned char *pstr, size_t pstr_len); int EVP_RAND_uninstantiate(EVP_RAND_CTX *ctx); int EVP_RAND_generate(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen, unsigned int strength, int prediction_resistance, const unsigned char *addin, size_t addin_len); int EVP_RAND_reseed(EVP_RAND_CTX *ctx, int prediction_resistance, const unsigned char *ent, size_t ent_len, const unsigned char *addin, size_t addin_len); int EVP_RAND_nonce(EVP_RAND_CTX *ctx, unsigned char *out, size_t outlen); int EVP_RAND_enable_locking(EVP_RAND_CTX *ctx); int EVP_RAND_set_callbacks(EVP_RAND_CTX *ctx, OSSL_CALLBACK *get_entropy, OSSL_CALLBACK *cleanup_entropy, OSSL_CALLBACK *get_nonce, OSSL_CALLBACK *cleanup_nonce, void *arg); int EVP_RAND_verify_zeroization(EVP_RAND_CTX *ctx); unsigned int EVP_RAND_strength(EVP_RAND_CTX *ctx); int EVP_RAND_state(EVP_RAND_CTX *ctx); #define EVP_RAND_STATE_UNINITIALISED 0 #define EVP_RAND_STATE_READY 1 #define EVP_RAND_STATE_ERROR 2 =head1 DESCRIPTION The EVP RAND routines are a high-level interface to random number generators both deterministic and not. If you just want to generate random bytes then you don't need to use these functions: just call RAND_bytes() or RAND_priv_bytes(). If you want to do more, these calls should be used instead of the older RAND and RAND_DRBG functions. After creating a B for the required algorithm using EVP_RAND_CTX_new(), inputs to the algorithm are supplied using calls to EVP_RAND_set_ctx_params() before calling EVP_RAND_instantiate() and then EVP_RAND_generate() to produce cryptographically secure random bytes. =head2 Types B is a type that holds the implementation of a RAND. B is a context type that holds the algorithm inputs. =head2 Algorithm implementation fetching EVP_RAND_fetch() fetches an implementation of a RAND I, given a library context I and a set of I. See L for further information. The returned value must eventually be freed with L. EVP_RAND_up_ref() increments the reference count of an already fetched RAND. EVP_RAND_free() frees a fetched algorithm. NULL is a valid parameter, for which this function is a no-op. =head2 Context manipulation functions EVP_RAND_CTX_new() creates a new context for the RAND implementation I. If not NULL, I specifies the seed source for this implementation. Not all random number generators need to have a seed source specified. If a parent is required, a NULL I will utilise the operating system entropy sources. It is recommended to minimise the number of random number generators that rely on the operating system for their randomness because this is often scarce. EVP_RAND_CTX_free() frees up the context I. If I is NULL, nothing is done. EVP_RAND_CTX_rand() returns the B associated with the context I. =head2 Random Number Generator Functions EVP_RAND_instantiate() instantiates the RAND I with a minimum security strength of and personalisation string I of length . If I is specified, fresh entropy from a live source will be sought. This call operates as per NIST SP 800-90A and SP 800-90C. EVP_RAND_uninstantiate() uninstantiates the RAND I as per NIST SP 800-90A and SP 800-90C. Subsequent to this call, the RAND cannot be used to generate bytes. It can only be freed or instantiated again. EVP_RAND_generate() produces random bytes from the RAND I with the additional input I of length I. The bytes produced will meet the security I. If I is specified, fresh entropy from a live source will be sought. This call operates as per NIST SP 800-90A and SP 800-90C. EVP_RAND_reseed() reseeds the RAND with new entropy. Entropy I of length I bytes can be supplied as can additional input I of length I bytes. In the FIPS provider, both are treated as additional input as per NIST SP-800-90Ar1, Sections 9.1 and 9.2. Additional seed material is also drawn from the RAND's parent or the operating system. If I is specified, fresh entropy from a live source will be sought. This call operates as per NIST SP 800-90A and SP 800-90C. EVP_RAND_nonce() creates a nonce in I of maximum length I bytes from the RAND I. The function returns the length of the generated nonce. If I is NULL, the length is still returned but no generation takes place. This allows a caller to dynamically allocate a buffer of the appropriate size. EVP_RAND_enable_locking() enables locking for the RAND I and all of its parents. After this I will operate in a thread safe manner, albeit more slowly. EVP_RAND_set_callbacks() sets callbacks on the RAND I to accept external entropy and nonce input. The callback I fills a buffer with new randomness and the callback I clears and frees the buffer. Likewise for I and I. In all cases the callbacks are passed I in addition to an OSSL_PARAM array. EVP_RAND_get_params() retrieves details about the implementation I. The set of parameters given with I determine exactly what parameters should be retrieved. Note that a parameter that is unknown in the underlying context is simply ignored. EVP_RAND_get_ctx_params() retrieves chosen parameters, given the context I and its underlying context. The set of parameters given with I determine exactly what parameters should be retrieved. Note that a parameter that is unknown in the underlying context is simply ignored. EVP_RAND_set_ctx_params() passes chosen parameters to the underlying context, given a context I. The set of parameters given with I determine exactly what parameters are passed down. Note that a parameter that is unknown in the underlying context is simply ignored. Also, what happens when a needed parameter isn't passed down is defined by the implementation. EVP_RAND_gettable_params(), EVP_RAND_gettable_ctx_params() and EVP_RAND_settable_ctx_params() get a constant B array that describes the retrievable and settable parameters, i.e. parameters that can be used with EVP_RAND_get_params(), EVP_RAND_get_ctx_params() and EVP_RAND_set_ctx_params(), respectively. See L for the use of B as parameter descriptor. =head2 Information functions EVP_RAND_strength() returns the security strength of the RAND I. EVP_RAND_state() returns the current state of the RAND I. States defined by the OpenSSL DRBGs are: =over 4 =item * EVP_RAND_STATE_UNINITIALISED: this DRBG is currently uninitialised. The instantiate call will change this to the ready state. =item * EVP_RAND_STATE_READY: this DRBG is currently ready to generate output. =item * EVP_RAND_STATE_ERROR: this DRBG is in an error state. =back EVP_RAND_is_a() returns 1 if I is an implementation of an algorithm that's identifiable with I, otherwise 0. EVP_RAND_provider() returns the provider that holds the implementation of the given I. EVP_RAND_do_all_provided() traverses all RAND implemented by all activated providers in the given library context I, and for each of the implementations, calls the given function I with the implementation method and the given I as argument. EVP_RAND_number() returns the internal dynamic number assigned to I. EVP_RAND_name() returns the canonical name of I. EVP_RAND_names_do_all() traverses all names for I, and calls I with each name and I. EVP_RAND_verify_zeroization() confirms if the internal DRBG state is currently zeroed. This is used by the FIPS provider to support the mandatory self tests. =head1 PARAMETERS The standard parameter names are: =over 4 =item "state" (B) Returns the state of the random number generator. =item "strength" (B) Returns the bit strength of the random number generator. =back For rands that are also deterministic random bit generators (DRBGs), these additional parameters are recognised. Not all parameters are relevant to, or are understood by all DRBG rands: =over 4 =item "reseed_requests" (B) Reads or set the number of generate requests before reseeding the associated RAND ctx. =item "reseed_time_interval" (B) Reads or set the number of elapsed seconds before reseeding the associated RAND ctx. =item "max_request" (B) Specifies the maximum number of bytes that can be generated in a single call to OSSL_FUNC_rand_generate. =item "min_entropylen" (B) =item "max_entropylen" (B) Specify the minimum and maximum number of bytes of random material that can be used to seed the DRBG. =item "min_noncelen" (B) =item "max_noncelen" (B) Specify the minimum and maximum number of bytes of nonce that can be used to seed the DRBG. =item "max_perslen" (B) =item "max_adinlen" (B) Specify the minimum and maximum number of bytes of personalisation string that can be used with the DRBG. =item "reseed_counter" (B) Specifies the number of times the DRBG has been seeded or reseeded. =item "properties" (B) =item "mac" (B) =item "digest" (B) =item "cipher" (B) For RAND implementations that use an underlying computation MAC, digest or cipher, these parameters set what the algorithm should be. The value is always the name of the intended algorithm, or the properties in the case of B. =back =head1 RETURN VALUES EVP_RAND_fetch() returns a pointer to a newly fetched B, or NULL if allocation failed. EVP_RAND_provider() returns a pointer to the provider for the RAND, or NULL on error. EVP_RAND_CTX_rand() returns a pointer to the B associated with the context. EVP_RAND_name() returns the name of the random number generation algorithm. EVP_RAND_number() returns the provider specific identification number for the specified algorithm. EVP_RAND_up_ref() returns 1 on success, 0 on error. EVP_RAND_CTX_new() returns either the newly allocated B structure or NULL if an error occurred. EVP_RAND_CTX_free() does not return a value. EVP_RAND_nonce() returns the length of the nonce. EVP_RAND_strength() returns the strength of the random number generator in bits. EVP_RAND_gettable_params(), EVP_RAND_gettable_ctx_params() and EVP_RAND_settable_ctx_params() return an array of OSSL_PARAMs. EVP_RAND_verify_zeroization() returns 1 if the internal DRBG state is currently zeroed, and 0 if not. The remaining functions return 1 for success and 0 or a negative value for failure. =head1 SEE ALSO L, L, L, L, L, L =head1 HISTORY This functionality was added to OpenSSL 3.0. =head1 COPYRIGHT Copyright 2020 The OpenSSL Project Authors. All Rights Reserved. Licensed under the Apache License 2.0 (the "License"). You may not use this file except in compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or at L. =cut