/* * Copyright 2017-2021 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include #include #include #include #include "crypto/evp.h" #include "internal/numbers.h" #include "prov/implementations.h" #include "prov/provider_ctx.h" #include "prov/providercommon.h" #include "prov/implementations.h" #include "prov/provider_util.h" #ifndef OPENSSL_NO_SCRYPT static OSSL_FUNC_kdf_newctx_fn kdf_scrypt_new; static OSSL_FUNC_kdf_dupctx_fn kdf_scrypt_dup; static OSSL_FUNC_kdf_freectx_fn kdf_scrypt_free; static OSSL_FUNC_kdf_reset_fn kdf_scrypt_reset; static OSSL_FUNC_kdf_derive_fn kdf_scrypt_derive; static OSSL_FUNC_kdf_settable_ctx_params_fn kdf_scrypt_settable_ctx_params; static OSSL_FUNC_kdf_set_ctx_params_fn kdf_scrypt_set_ctx_params; static OSSL_FUNC_kdf_gettable_ctx_params_fn kdf_scrypt_gettable_ctx_params; static OSSL_FUNC_kdf_get_ctx_params_fn kdf_scrypt_get_ctx_params; static int scrypt_alg(const char *pass, size_t passlen, const unsigned char *salt, size_t saltlen, uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, unsigned char *key, size_t keylen, EVP_MD *sha256, OSSL_LIB_CTX *libctx, const char *propq); typedef struct { OSSL_LIB_CTX *libctx; char *propq; unsigned char *pass; size_t pass_len; unsigned char *salt; size_t salt_len; uint64_t N; uint64_t r, p; uint64_t maxmem_bytes; EVP_MD *sha256; } KDF_SCRYPT; static void kdf_scrypt_init(KDF_SCRYPT *ctx); static void *kdf_scrypt_new_inner(OSSL_LIB_CTX *libctx) { KDF_SCRYPT *ctx; if (!ossl_prov_is_running()) return NULL; ctx = OPENSSL_zalloc(sizeof(*ctx)); if (ctx == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return NULL; } ctx->libctx = libctx; kdf_scrypt_init(ctx); return ctx; } static void *kdf_scrypt_new(void *provctx) { return kdf_scrypt_new_inner(PROV_LIBCTX_OF(provctx)); } static void kdf_scrypt_free(void *vctx) { KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; if (ctx != NULL) { OPENSSL_free(ctx->propq); EVP_MD_free(ctx->sha256); kdf_scrypt_reset(ctx); OPENSSL_free(ctx); } } static void kdf_scrypt_reset(void *vctx) { KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; OPENSSL_free(ctx->salt); OPENSSL_clear_free(ctx->pass, ctx->pass_len); kdf_scrypt_init(ctx); } static void *kdf_scrypt_dup(void *vctx) { const KDF_SCRYPT *src = (const KDF_SCRYPT *)vctx; KDF_SCRYPT *dest; dest = kdf_scrypt_new_inner(src->libctx); if (dest != NULL) { if (src->sha256 != NULL && !EVP_MD_up_ref(src->sha256)) goto err; if (src->propq != NULL) { dest->propq = OPENSSL_strdup(src->propq); if (dest->propq == NULL) goto err; } if (!ossl_prov_memdup(src->salt, src->salt_len, &dest->salt, &dest->salt_len) || !ossl_prov_memdup(src->pass, src->pass_len, &dest->pass , &dest->pass_len)) goto err; dest->N = src->N; dest->r = src->r; dest->p = src->p; dest->maxmem_bytes = src->maxmem_bytes; dest->sha256 = src->sha256; } return dest; err: kdf_scrypt_free(dest); return NULL; } static void kdf_scrypt_init(KDF_SCRYPT *ctx) { /* Default values are the most conservative recommendation given in the * original paper of C. Percival. Derivation uses roughly 1 GiB of memory * for this parameter choice (approx. 128 * r * N * p bytes). */ ctx->N = 1 << 20; ctx->r = 8; ctx->p = 1; ctx->maxmem_bytes = 1025 * 1024 * 1024; } static int scrypt_set_membuf(unsigned char **buffer, size_t *buflen, const OSSL_PARAM *p) { OPENSSL_clear_free(*buffer, *buflen); *buffer = NULL; *buflen = 0; if (p->data_size == 0) { if ((*buffer = OPENSSL_malloc(1)) == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return 0; } } else if (p->data != NULL) { if (!OSSL_PARAM_get_octet_string(p, (void **)buffer, 0, buflen)) return 0; } return 1; } static int set_digest(KDF_SCRYPT *ctx) { EVP_MD_free(ctx->sha256); ctx->sha256 = EVP_MD_fetch(ctx->libctx, "sha256", ctx->propq); if (ctx->sha256 == NULL) { OPENSSL_free(ctx); ERR_raise(ERR_LIB_PROV, PROV_R_UNABLE_TO_LOAD_SHA256); return 0; } return 1; } static int set_property_query(KDF_SCRYPT *ctx, const char *propq) { OPENSSL_free(ctx->propq); ctx->propq = NULL; if (propq != NULL) { ctx->propq = OPENSSL_strdup(propq); if (ctx->propq == NULL) { ERR_raise(ERR_LIB_PROV, ERR_R_MALLOC_FAILURE); return 0; } } return 1; } static int kdf_scrypt_derive(void *vctx, unsigned char *key, size_t keylen, const OSSL_PARAM params[]) { KDF_SCRYPT *ctx = (KDF_SCRYPT *)vctx; if (!ossl_prov_is_running() || !kdf_scrypt_set_ctx_params(ctx, params)) return 0; if (ctx->pass == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_PASS); return 0; } if (ctx->salt == NULL) { ERR_raise(ERR_LIB_PROV, PROV_R_MISSING_SALT); return 0; } if (ctx->sha256 == NULL && !set_digest(ctx)) return 0; return scrypt_alg((char *)ctx->pass, ctx->pass_len, ctx->salt, ctx->salt_len, ctx->N, ctx->r, ctx->p, ctx->maxmem_bytes, key, keylen, ctx->sha256, ctx->libctx, ctx->propq); } static int is_power_of_two(uint64_t value) { return (value != 0) && ((value & (value - 1)) == 0); } static int kdf_scrypt_set_ctx_params(void *vctx, const OSSL_PARAM params[]) { const OSSL_PARAM *p; KDF_SCRYPT *ctx = vctx; uint64_t u64_value; if (params == NULL) return 1; if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PASSWORD)) != NULL) if (!scrypt_set_membuf(&ctx->pass, &ctx->pass_len, p)) return 0; if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SALT)) != NULL) if (!scrypt_set_membuf(&ctx->salt, &ctx->salt_len, p)) return 0; if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_N)) != NULL) { if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value <= 1 || !is_power_of_two(u64_value)) return 0; ctx->N = u64_value; } if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_R)) != NULL) { if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) return 0; ctx->r = u64_value; } if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_P)) != NULL) { if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) return 0; ctx->p = u64_value; } if ((p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_SCRYPT_MAXMEM)) != NULL) { if (!OSSL_PARAM_get_uint64(p, &u64_value) || u64_value < 1) return 0; ctx->maxmem_bytes = u64_value; } p = OSSL_PARAM_locate_const(params, OSSL_KDF_PARAM_PROPERTIES); if (p != NULL) { if (p->data_type != OSSL_PARAM_UTF8_STRING || !set_property_query(ctx, p->data) || !set_digest(ctx)) return 0; } return 1; } static const OSSL_PARAM *kdf_scrypt_settable_ctx_params(ossl_unused void *ctx, ossl_unused void *p_ctx) { static const OSSL_PARAM known_settable_ctx_params[] = { OSSL_PARAM_octet_string(OSSL_KDF_PARAM_PASSWORD, NULL, 0), OSSL_PARAM_octet_string(OSSL_KDF_PARAM_SALT, NULL, 0), OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_N, NULL), OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_R, NULL), OSSL_PARAM_uint32(OSSL_KDF_PARAM_SCRYPT_P, NULL), OSSL_PARAM_uint64(OSSL_KDF_PARAM_SCRYPT_MAXMEM, NULL), OSSL_PARAM_utf8_string(OSSL_KDF_PARAM_PROPERTIES, NULL, 0), OSSL_PARAM_END }; return known_settable_ctx_params; } static int kdf_scrypt_get_ctx_params(void *vctx, OSSL_PARAM params[]) { OSSL_PARAM *p; if ((p = OSSL_PARAM_locate(params, OSSL_KDF_PARAM_SIZE)) != NULL) return OSSL_PARAM_set_size_t(p, SIZE_MAX); return -2; } static const OSSL_PARAM *kdf_scrypt_gettable_ctx_params(ossl_unused void *ctx, ossl_unused void *p_ctx) { static const OSSL_PARAM known_gettable_ctx_params[] = { OSSL_PARAM_size_t(OSSL_KDF_PARAM_SIZE, NULL), OSSL_PARAM_END }; return known_gettable_ctx_params; } const OSSL_DISPATCH ossl_kdf_scrypt_functions[] = { { OSSL_FUNC_KDF_NEWCTX, (void(*)(void))kdf_scrypt_new }, { OSSL_FUNC_KDF_DUPCTX, (void(*)(void))kdf_scrypt_dup }, { OSSL_FUNC_KDF_FREECTX, (void(*)(void))kdf_scrypt_free }, { OSSL_FUNC_KDF_RESET, (void(*)(void))kdf_scrypt_reset }, { OSSL_FUNC_KDF_DERIVE, (void(*)(void))kdf_scrypt_derive }, { OSSL_FUNC_KDF_SETTABLE_CTX_PARAMS, (void(*)(void))kdf_scrypt_settable_ctx_params }, { OSSL_FUNC_KDF_SET_CTX_PARAMS, (void(*)(void))kdf_scrypt_set_ctx_params }, { OSSL_FUNC_KDF_GETTABLE_CTX_PARAMS, (void(*)(void))kdf_scrypt_gettable_ctx_params }, { OSSL_FUNC_KDF_GET_CTX_PARAMS, (void(*)(void))kdf_scrypt_get_ctx_params }, { 0, NULL } }; #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) static void salsa208_word_specification(uint32_t inout[16]) { int i; uint32_t x[16]; memcpy(x, inout, sizeof(x)); for (i = 8; i > 0; i -= 2) { x[4] ^= R(x[0] + x[12], 7); x[8] ^= R(x[4] + x[0], 9); x[12] ^= R(x[8] + x[4], 13); x[0] ^= R(x[12] + x[8], 18); x[9] ^= R(x[5] + x[1], 7); x[13] ^= R(x[9] + x[5], 9); x[1] ^= R(x[13] + x[9], 13); x[5] ^= R(x[1] + x[13], 18); x[14] ^= R(x[10] + x[6], 7); x[2] ^= R(x[14] + x[10], 9); x[6] ^= R(x[2] + x[14], 13); x[10] ^= R(x[6] + x[2], 18); x[3] ^= R(x[15] + x[11], 7); x[7] ^= R(x[3] + x[15], 9); x[11] ^= R(x[7] + x[3], 13); x[15] ^= R(x[11] + x[7], 18); x[1] ^= R(x[0] + x[3], 7); x[2] ^= R(x[1] + x[0], 9); x[3] ^= R(x[2] + x[1], 13); x[0] ^= R(x[3] + x[2], 18); x[6] ^= R(x[5] + x[4], 7); x[7] ^= R(x[6] + x[5], 9); x[4] ^= R(x[7] + x[6], 13); x[5] ^= R(x[4] + x[7], 18); x[11] ^= R(x[10] + x[9], 7); x[8] ^= R(x[11] + x[10], 9); x[9] ^= R(x[8] + x[11], 13); x[10] ^= R(x[9] + x[8], 18); x[12] ^= R(x[15] + x[14], 7); x[13] ^= R(x[12] + x[15], 9); x[14] ^= R(x[13] + x[12], 13); x[15] ^= R(x[14] + x[13], 18); } for (i = 0; i < 16; ++i) inout[i] += x[i]; OPENSSL_cleanse(x, sizeof(x)); } static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) { uint64_t i, j; uint32_t X[16], *pB; memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); pB = B; for (i = 0; i < r * 2; i++) { for (j = 0; j < 16; j++) X[j] ^= *pB++; salsa208_word_specification(X); memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); } OPENSSL_cleanse(X, sizeof(X)); } static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, uint32_t *X, uint32_t *T, uint32_t *V) { unsigned char *pB; uint32_t *pV; uint64_t i, k; /* Convert from little endian input */ for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { *pV = *pB++; *pV |= *pB++ << 8; *pV |= *pB++ << 16; *pV |= (uint32_t)*pB++ << 24; } for (i = 1; i < N; i++, pV += 32 * r) scryptBlockMix(pV, pV - 32 * r, r); scryptBlockMix(X, V + (N - 1) * 32 * r, r); for (i = 0; i < N; i++) { uint32_t j; j = X[16 * (2 * r - 1)] % N; pV = V + 32 * r * j; for (k = 0; k < 32 * r; k++) T[k] = X[k] ^ *pV++; scryptBlockMix(X, T, r); } /* Convert output to little endian */ for (i = 0, pB = B; i < 32 * r; i++) { uint32_t xtmp = X[i]; *pB++ = xtmp & 0xff; *pB++ = (xtmp >> 8) & 0xff; *pB++ = (xtmp >> 16) & 0xff; *pB++ = (xtmp >> 24) & 0xff; } } #ifndef SIZE_MAX # define SIZE_MAX ((size_t)-1) #endif /* * Maximum power of two that will fit in uint64_t: this should work on * most (all?) platforms. */ #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) /* * Maximum value of p * r: * p <= ((2^32-1) * hLen) / MFLen => * p <= ((2^32-1) * 32) / (128 * r) => * p * r <= (2^30-1) */ #define SCRYPT_PR_MAX ((1 << 30) - 1) static int scrypt_alg(const char *pass, size_t passlen, const unsigned char *salt, size_t saltlen, uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, unsigned char *key, size_t keylen, EVP_MD *sha256, OSSL_LIB_CTX *libctx, const char *propq) { int rv = 0; unsigned char *B; uint32_t *X, *V, *T; uint64_t i, Blen, Vlen; /* Sanity check parameters */ /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) return 0; /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ if (p > SCRYPT_PR_MAX / r) { ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* * Need to check N: if 2^(128 * r / 8) overflows limit this is * automatically satisfied since N <= UINT64_MAX. */ if (16 * r <= LOG2_UINT64_MAX) { if (N >= (((uint64_t)1) << (16 * r))) { ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } } /* Memory checks: check total allocated buffer size fits in uint64_t */ /* * B size in section 5 step 1.S * Note: we know p * 128 * r < UINT64_MAX because we already checked * p * r < SCRYPT_PR_MAX */ Blen = p * 128 * r; /* * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] */ if (Blen > INT_MAX) { ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t * This is combined size V, X and T (section 4) */ i = UINT64_MAX / (32 * sizeof(uint32_t)); if (N + 2 > i / r) { ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } Vlen = 32 * r * (N + 2) * sizeof(uint32_t); /* check total allocated size fits in uint64_t */ if (Blen > UINT64_MAX - Vlen) { ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* Check that the maximum memory doesn't exceed a size_t limits */ if (maxmem > SIZE_MAX) maxmem = SIZE_MAX; if (Blen + Vlen > maxmem) { ERR_raise(ERR_LIB_EVP, EVP_R_MEMORY_LIMIT_EXCEEDED); return 0; } /* If no key return to indicate parameters are OK */ if (key == NULL) return 1; B = OPENSSL_malloc((size_t)(Blen + Vlen)); if (B == NULL) { ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE); return 0; } X = (uint32_t *)(B + Blen); T = X + 32 * r; V = T + 32 * r; if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, salt, saltlen, 1, sha256, (int)Blen, B, libctx, propq) == 0) goto err; for (i = 0; i < p; i++) scryptROMix(B + 128 * r * i, r, N, X, T, V); if (ossl_pkcs5_pbkdf2_hmac_ex(pass, passlen, B, (int)Blen, 1, sha256, keylen, key, libctx, propq) == 0) goto err; rv = 1; err: if (rv == 0) ERR_raise(ERR_LIB_EVP, EVP_R_PBKDF2_ERROR); OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); return rv; } #endif