/* * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include "internal/cryptlib_int.h" #include "internal/thread_once.h" /* * Each structure type (sometimes called a class), that supports * exdata has a stack of callbacks for each instance. */ struct ex_callback_st { long argl; /* Arbitrary long */ void *argp; /* Arbitrary void * */ CRYPTO_EX_new *new_func; CRYPTO_EX_free *free_func; CRYPTO_EX_dup *dup_func; }; /* * The state for each class. This could just be a typedef, but * a structure allows future changes. */ typedef struct ex_callbacks_st { STACK_OF(EX_CALLBACK) *meth; } EX_CALLBACKS; static EX_CALLBACKS ex_data[CRYPTO_EX_INDEX__COUNT]; static CRYPTO_RWLOCK *ex_data_lock = NULL; static CRYPTO_ONCE ex_data_init = CRYPTO_ONCE_STATIC_INIT; DEFINE_RUN_ONCE_STATIC(do_ex_data_init) { if (!OPENSSL_init_crypto(0, NULL)) return 0; ex_data_lock = CRYPTO_THREAD_lock_new(); return ex_data_lock != NULL; } /* * Return the EX_CALLBACKS from the |ex_data| array that corresponds to * a given class. On success, *holds the lock.* */ static EX_CALLBACKS *get_and_lock(int class_index) { EX_CALLBACKS *ip; if (class_index < 0 || class_index >= CRYPTO_EX_INDEX__COUNT) { CRYPTOerr(CRYPTO_F_GET_AND_LOCK, ERR_R_PASSED_INVALID_ARGUMENT); return NULL; } if (!RUN_ONCE(&ex_data_init, do_ex_data_init)) { CRYPTOerr(CRYPTO_F_GET_AND_LOCK, ERR_R_MALLOC_FAILURE); return NULL; } if (ex_data_lock == NULL) { /* * This can happen in normal operation when using CRYPTO_mem_leaks(). * The CRYPTO_mem_leaks() function calls OPENSSL_cleanup() which cleans * up the locks. Subsequently the BIO that CRYPTO_mem_leaks() uses gets * freed, which also attempts to free the ex_data. However * CRYPTO_mem_leaks() ensures that the ex_data is freed early (i.e. * before OPENSSL_cleanup() is called), so if we get here we can safely * ignore this operation. We just treat it as an error. */ return NULL; } ip = &ex_data[class_index]; CRYPTO_THREAD_write_lock(ex_data_lock); return ip; } static void cleanup_cb(EX_CALLBACK *funcs) { OPENSSL_free(funcs); } /* * Release all "ex_data" state to prevent memory leaks. This can't be made * thread-safe without overhauling a lot of stuff, and shouldn't really be * called under potential race-conditions anyway (it's for program shutdown * after all). */ void crypto_cleanup_all_ex_data_int(void) { int i; for (i = 0; i < CRYPTO_EX_INDEX__COUNT; ++i) { EX_CALLBACKS *ip = &ex_data[i]; sk_EX_CALLBACK_pop_free(ip->meth, cleanup_cb); ip->meth = NULL; } CRYPTO_THREAD_lock_free(ex_data_lock); ex_data_lock = NULL; } /* * Unregister a new index by replacing the callbacks with no-ops. * Any in-use instances are leaked. */ static void dummy_new(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { } static void dummy_free(void *parent, void *ptr, CRYPTO_EX_DATA *ad, int idx, long argl, void *argp) { } static int dummy_dup(CRYPTO_EX_DATA *to, const CRYPTO_EX_DATA *from, void *from_d, int idx, long argl, void *argp) { return 1; } int CRYPTO_free_ex_index(int class_index, int idx) { EX_CALLBACKS *ip = get_and_lock(class_index); EX_CALLBACK *a; int toret = 0; if (ip == NULL) return 0; if (idx < 0 || idx >= sk_EX_CALLBACK_num(ip->meth)) goto err; a = sk_EX_CALLBACK_value(ip->meth, idx); if (a == NULL) goto err; a->new_func = dummy_new; a->dup_func = dummy_dup; a->free_func = dummy_free; toret = 1; err: CRYPTO_THREAD_unlock(ex_data_lock); return toret; } /* * Register a new index. */ int CRYPTO_get_ex_new_index(int class_index, long argl, void *argp, CRYPTO_EX_new *new_func, CRYPTO_EX_dup *dup_func, CRYPTO_EX_free *free_func) { int toret = -1; EX_CALLBACK *a; EX_CALLBACKS *ip = get_and_lock(class_index); if (ip == NULL) return -1; if (ip->meth == NULL) { ip->meth = sk_EX_CALLBACK_new_null(); /* We push an initial value on the stack because the SSL * "app_data" routines use ex_data index zero. See RT 3710. */ if (ip->meth == NULL || !sk_EX_CALLBACK_push(ip->meth, NULL)) { CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); goto err; } } a = (EX_CALLBACK *)OPENSSL_malloc(sizeof(*a)); if (a == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); goto err; } a->argl = argl; a->argp = argp; a->new_func = new_func; a->dup_func = dup_func; a->free_func = free_func; if (!sk_EX_CALLBACK_push(ip->meth, NULL)) { CRYPTOerr(CRYPTO_F_CRYPTO_GET_EX_NEW_INDEX, ERR_R_MALLOC_FAILURE); OPENSSL_free(a); goto err; } toret = sk_EX_CALLBACK_num(ip->meth) - 1; (void)sk_EX_CALLBACK_set(ip->meth, toret, a); err: CRYPTO_THREAD_unlock(ex_data_lock); return toret; } /* * Initialise a new CRYPTO_EX_DATA for use in a particular class - including * calling new() callbacks for each index in the class used by this variable * Thread-safe by copying a class's array of "EX_CALLBACK" entries * in the lock, then using them outside the lock. Note this only applies * to the global "ex_data" state (ie. class definitions), not 'ad' itself. */ int CRYPTO_new_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad) { int mx, i; void *ptr; EX_CALLBACK **storage = NULL; EX_CALLBACK *stack[10]; EX_CALLBACKS *ip = get_and_lock(class_index); if (ip == NULL) return 0; ad->sk = NULL; mx = sk_EX_CALLBACK_num(ip->meth); if (mx > 0) { if (mx < (int)OSSL_NELEM(stack)) storage = stack; else storage = OPENSSL_malloc(sizeof(*storage) * mx); if (storage != NULL) for (i = 0; i < mx; i++) storage[i] = sk_EX_CALLBACK_value(ip->meth, i); } CRYPTO_THREAD_unlock(ex_data_lock); if (mx > 0 && storage == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_NEW_EX_DATA, ERR_R_MALLOC_FAILURE); return 0; } for (i = 0; i < mx; i++) { if (storage[i] != NULL && storage[i]->new_func != NULL) { ptr = CRYPTO_get_ex_data(ad, i); storage[i]->new_func(obj, ptr, ad, i, storage[i]->argl, storage[i]->argp); } } if (storage != stack) OPENSSL_free(storage); return 1; } /* * Duplicate a CRYPTO_EX_DATA variable - including calling dup() callbacks * for each index in the class used by this variable */ int CRYPTO_dup_ex_data(int class_index, CRYPTO_EX_DATA *to, const CRYPTO_EX_DATA *from) { int mx, j, i; void *ptr; EX_CALLBACK *stack[10]; EX_CALLBACK **storage = NULL; EX_CALLBACKS *ip; int toret = 0; if (from->sk == NULL) /* Nothing to copy over */ return 1; if ((ip = get_and_lock(class_index)) == NULL) return 0; mx = sk_EX_CALLBACK_num(ip->meth); j = sk_void_num(from->sk); if (j < mx) mx = j; if (mx > 0) { if (mx < (int)OSSL_NELEM(stack)) storage = stack; else storage = OPENSSL_malloc(sizeof(*storage) * mx); if (storage != NULL) for (i = 0; i < mx; i++) storage[i] = sk_EX_CALLBACK_value(ip->meth, i); } CRYPTO_THREAD_unlock(ex_data_lock); if (mx == 0) return 1; if (storage == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_DUP_EX_DATA, ERR_R_MALLOC_FAILURE); return 0; } /* * Make sure the ex_data stack is at least |mx| elements long to avoid * issues in the for loop that follows; so go get the |mx|'th element * (if it does not exist CRYPTO_get_ex_data() returns NULL), and assign * to itself. This is normally a no-op; but ensures the stack is the * proper size */ if (!CRYPTO_set_ex_data(to, mx - 1, CRYPTO_get_ex_data(to, mx - 1))) goto err; for (i = 0; i < mx; i++) { ptr = CRYPTO_get_ex_data(from, i); if (storage[i] != NULL && storage[i]->dup_func != NULL) if (!storage[i]->dup_func(to, from, &ptr, i, storage[i]->argl, storage[i]->argp)) goto err; CRYPTO_set_ex_data(to, i, ptr); } toret = 1; err: if (storage != stack) OPENSSL_free(storage); return toret; } /* * Cleanup a CRYPTO_EX_DATA variable - including calling free() callbacks for * each index in the class used by this variable */ void CRYPTO_free_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad) { int mx, i; EX_CALLBACKS *ip; void *ptr; EX_CALLBACK *f; EX_CALLBACK *stack[10]; EX_CALLBACK **storage = NULL; if ((ip = get_and_lock(class_index)) == NULL) goto err; mx = sk_EX_CALLBACK_num(ip->meth); if (mx > 0) { if (mx < (int)OSSL_NELEM(stack)) storage = stack; else storage = OPENSSL_malloc(sizeof(*storage) * mx); if (storage != NULL) for (i = 0; i < mx; i++) storage[i] = sk_EX_CALLBACK_value(ip->meth, i); } CRYPTO_THREAD_unlock(ex_data_lock); for (i = 0; i < mx; i++) { if (storage != NULL) f = storage[i]; else { CRYPTO_THREAD_write_lock(ex_data_lock); f = sk_EX_CALLBACK_value(ip->meth, i); CRYPTO_THREAD_unlock(ex_data_lock); } if (f != NULL && f->free_func != NULL) { ptr = CRYPTO_get_ex_data(ad, i); f->free_func(obj, ptr, ad, i, f->argl, f->argp); } } if (storage != stack) OPENSSL_free(storage); err: sk_void_free(ad->sk); ad->sk = NULL; } /* * Allocate a given CRYPTO_EX_DATA item using the class specific allocation * function */ int CRYPTO_alloc_ex_data(int class_index, void *obj, CRYPTO_EX_DATA *ad, int idx) { EX_CALLBACK *f; EX_CALLBACKS *ip; void *curval; curval = CRYPTO_get_ex_data(ad, idx); /* Already there, no need to allocate */ if (curval != NULL) return 1; ip = get_and_lock(class_index); if (ip == NULL) return 0; f = sk_EX_CALLBACK_value(ip->meth, idx); CRYPTO_THREAD_unlock(ex_data_lock); /* * This should end up calling CRYPTO_set_ex_data(), which allocates * everything necessary to support placing the new data in the right spot. */ if (f->new_func == NULL) return 0; f->new_func(obj, curval, ad, idx, f->argl, f->argp); return 1; } /* * For a given CRYPTO_EX_DATA variable, set the value corresponding to a * particular index in the class used by this variable */ int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int idx, void *val) { int i; if (ad->sk == NULL) { if ((ad->sk = sk_void_new_null()) == NULL) { CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA, ERR_R_MALLOC_FAILURE); return 0; } } for (i = sk_void_num(ad->sk); i <= idx; ++i) { if (!sk_void_push(ad->sk, NULL)) { CRYPTOerr(CRYPTO_F_CRYPTO_SET_EX_DATA, ERR_R_MALLOC_FAILURE); return 0; } } sk_void_set(ad->sk, idx, val); return 1; } /* * For a given CRYPTO_EX_DATA_ variable, get the value corresponding to a * particular index in the class used by this variable */ void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int idx) { if (ad->sk == NULL || idx >= sk_void_num(ad->sk)) return NULL; return sk_void_value(ad->sk, idx); }