/* * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "../ssl_local.h" #include "../quic/quic_local.h" #include #include #include #include #include "record_local.h" #include "internal/packet.h" void RECORD_LAYER_init(RECORD_LAYER *rl, SSL_CONNECTION *s) { rl->s = s; } void RECORD_LAYER_clear(RECORD_LAYER *rl) { rl->wnum = 0; memset(rl->handshake_fragment, 0, sizeof(rl->handshake_fragment)); rl->handshake_fragment_len = 0; rl->wpend_tot = 0; rl->wpend_type = 0; rl->wpend_ret = 0; rl->wpend_buf = NULL; if (rl->rrlmethod != NULL) rl->rrlmethod->free(rl->rrl); /* Ignore return value */ if (rl->wrlmethod != NULL) rl->wrlmethod->free(rl->wrl); /* Ignore return value */ BIO_free(rl->rrlnext); rl->rrlmethod = NULL; rl->wrlmethod = NULL; rl->rrlnext = NULL; rl->rrl = NULL; rl->wrl = NULL; if (rl->d) DTLS_RECORD_LAYER_clear(rl); } /* Checks if we have unprocessed read ahead data pending */ int RECORD_LAYER_read_pending(const RECORD_LAYER *rl) { return rl->rrlmethod->unprocessed_read_pending(rl->rrl); } /* Checks if we have decrypted unread record data pending */ int RECORD_LAYER_processed_read_pending(const RECORD_LAYER *rl) { return (rl->curr_rec < rl->num_recs) || rl->rrlmethod->processed_read_pending(rl->rrl); } int RECORD_LAYER_write_pending(const RECORD_LAYER *rl) { return rl->wpend_tot > 0; } static uint32_t ossl_get_max_early_data(SSL_CONNECTION *s) { uint32_t max_early_data; SSL_SESSION *sess = s->session; /* * If we are a client then we always use the max_early_data from the * session/psksession. Otherwise we go with the lowest out of the max early * data set in the session and the configured max_early_data. */ if (!s->server && sess->ext.max_early_data == 0) { if (!ossl_assert(s->psksession != NULL && s->psksession->ext.max_early_data > 0)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } sess = s->psksession; } if (!s->server) max_early_data = sess->ext.max_early_data; else if (s->ext.early_data != SSL_EARLY_DATA_ACCEPTED) max_early_data = s->recv_max_early_data; else max_early_data = s->recv_max_early_data < sess->ext.max_early_data ? s->recv_max_early_data : sess->ext.max_early_data; return max_early_data; } static int ossl_early_data_count_ok(SSL_CONNECTION *s, size_t length, size_t overhead, int send) { uint32_t max_early_data; max_early_data = ossl_get_max_early_data(s); if (max_early_data == 0) { SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, SSL_R_TOO_MUCH_EARLY_DATA); return 0; } /* If we are dealing with ciphertext we need to allow for the overhead */ max_early_data += overhead; if (s->early_data_count + length > max_early_data) { SSLfatal(s, send ? SSL_AD_INTERNAL_ERROR : SSL_AD_UNEXPECTED_MESSAGE, SSL_R_TOO_MUCH_EARLY_DATA); return 0; } s->early_data_count += length; return 1; } size_t ssl3_pending(const SSL *s) { size_t i, num = 0; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; if (SSL_CONNECTION_IS_DTLS(sc)) { TLS_RECORD *rdata; pitem *item, *iter; iter = pqueue_iterator(sc->rlayer.d->buffered_app_data.q); while ((item = pqueue_next(&iter)) != NULL) { rdata = item->data; num += rdata->length; } } for (i = 0; i < sc->rlayer.num_recs; i++) { if (sc->rlayer.tlsrecs[i].type != SSL3_RT_APPLICATION_DATA) return num; num += sc->rlayer.tlsrecs[i].length; } num += sc->rlayer.rrlmethod->app_data_pending(sc->rlayer.rrl); return num; } void SSL_CTX_set_default_read_buffer_len(SSL_CTX *ctx, size_t len) { ctx->default_read_buf_len = len; } void SSL_set_default_read_buffer_len(SSL *s, size_t len) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL || IS_QUIC(s)) return; sc->rlayer.default_read_buf_len = len; } const char *SSL_rstate_string_long(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); const char *lng; if (sc == NULL) return NULL; if (sc->rlayer.rrlmethod == NULL || sc->rlayer.rrl == NULL) return "unknown"; sc->rlayer.rrlmethod->get_state(sc->rlayer.rrl, NULL, &lng); return lng; } const char *SSL_rstate_string(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); const char *shrt; if (sc == NULL) return NULL; if (sc->rlayer.rrlmethod == NULL || sc->rlayer.rrl == NULL) return "unknown"; sc->rlayer.rrlmethod->get_state(sc->rlayer.rrl, &shrt, NULL); return shrt; } static int tls_write_check_pending(SSL_CONNECTION *s, int type, const unsigned char *buf, size_t len) { if (s->rlayer.wpend_tot == 0) return 0; /* We have pending data, so do some sanity checks */ if ((s->rlayer.wpend_tot > len) || (!(s->mode & SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER) && (s->rlayer.wpend_buf != buf)) || (s->rlayer.wpend_type != type)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_WRITE_RETRY); return -1; } return 1; } /* * Call this to write data in records of type 'type' It will return <= 0 if * not all data has been sent or non-blocking IO. */ int ssl3_write_bytes(SSL *ssl, int type, const void *buf_, size_t len, size_t *written) { const unsigned char *buf = buf_; size_t tot; size_t n, max_send_fragment, split_send_fragment, maxpipes; int i; SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl); OSSL_RECORD_TEMPLATE tmpls[SSL_MAX_PIPELINES]; unsigned int recversion; if (s == NULL) return -1; s->rwstate = SSL_NOTHING; tot = s->rlayer.wnum; /* * ensure that if we end up with a smaller value of data to write out * than the original len from a write which didn't complete for * non-blocking I/O and also somehow ended up avoiding the check for * this in tls_write_check_pending/SSL_R_BAD_WRITE_RETRY as it must never be * possible to end up with (len-tot) as a large number that will then * promptly send beyond the end of the users buffer ... so we trap and * report the error in a way the user will notice */ if ((len < s->rlayer.wnum) || ((s->rlayer.wpend_tot != 0) && (len < (s->rlayer.wnum + s->rlayer.wpend_tot)))) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_BAD_LENGTH); return -1; } if (s->early_data_state == SSL_EARLY_DATA_WRITING && !ossl_early_data_count_ok(s, len, 0, 1)) { /* SSLfatal() already called */ return -1; } s->rlayer.wnum = 0; /* * If we are supposed to be sending a KeyUpdate or NewSessionTicket then go * into init unless we have writes pending - in which case we should finish * doing that first. */ if (s->rlayer.wpend_tot == 0 && (s->key_update != SSL_KEY_UPDATE_NONE || s->ext.extra_tickets_expected > 0)) ossl_statem_set_in_init(s, 1); /* * When writing early data on the server side we could be "in_init" in * between receiving the EoED and the CF - but we don't want to handle those * messages yet. */ if (SSL_in_init(ssl) && !ossl_statem_get_in_handshake(s) && s->early_data_state != SSL_EARLY_DATA_UNAUTH_WRITING) { i = s->handshake_func(ssl); /* SSLfatal() already called */ if (i < 0) return i; if (i == 0) { return -1; } } i = tls_write_check_pending(s, type, buf, len); if (i < 0) { /* SSLfatal() already called */ return i; } else if (i > 0) { /* Retry needed */ i = HANDLE_RLAYER_WRITE_RETURN(s, s->rlayer.wrlmethod->retry_write_records(s->rlayer.wrl)); if (i <= 0) return i; tot += s->rlayer.wpend_tot; s->rlayer.wpend_tot = 0; } /* else no retry required */ if (tot == 0) { /* * We've not previously sent any data for this write so memorize * arguments so that we can detect bad write retries later */ s->rlayer.wpend_tot = 0; s->rlayer.wpend_type = type; s->rlayer.wpend_buf = buf; s->rlayer.wpend_ret = len; } if (tot == len) { /* done? */ *written = tot; return 1; } /* If we have an alert to send, lets send it */ if (s->s3.alert_dispatch > 0) { i = ssl->method->ssl_dispatch_alert(ssl); if (i <= 0) { /* SSLfatal() already called if appropriate */ return i; } /* if it went, fall through and send more stuff */ } n = (len - tot); max_send_fragment = ssl_get_max_send_fragment(s); split_send_fragment = ssl_get_split_send_fragment(s); if (max_send_fragment == 0 || split_send_fragment == 0 || split_send_fragment > max_send_fragment) { /* * We should have prevented this when we set/get the split and max send * fragments so we shouldn't get here */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } /* * Some servers hang if initial client hello is larger than 256 bytes * and record version number > TLS 1.0 */ recversion = (s->version == TLS1_3_VERSION) ? TLS1_2_VERSION : s->version; if (SSL_get_state(ssl) == TLS_ST_CW_CLNT_HELLO && !s->renegotiate && TLS1_get_version(ssl) > TLS1_VERSION && s->hello_retry_request == SSL_HRR_NONE) recversion = TLS1_VERSION; for (;;) { size_t tmppipelen, remain; size_t j, lensofar = 0; /* * Ask the record layer how it would like to split the amount of data * that we have, and how many of those records it would like in one go. */ maxpipes = s->rlayer.wrlmethod->get_max_records(s->rlayer.wrl, type, n, max_send_fragment, &split_send_fragment); /* * If max_pipelines is 0 then this means "undefined" and we default to * whatever the record layer wants to do. Otherwise we use the smallest * value from the number requested by the record layer, and max number * configured by the user. */ if (s->max_pipelines > 0 && maxpipes > s->max_pipelines) maxpipes = s->max_pipelines; if (maxpipes > SSL_MAX_PIPELINES) maxpipes = SSL_MAX_PIPELINES; if (split_send_fragment > max_send_fragment) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } if (n / maxpipes >= split_send_fragment) { /* * We have enough data to completely fill all available * pipelines */ for (j = 0; j < maxpipes; j++) { tmpls[j].type = type; tmpls[j].version = recversion; tmpls[j].buf = &(buf[tot]) + (j * split_send_fragment); tmpls[j].buflen = split_send_fragment; } /* Remember how much data we are going to be sending */ s->rlayer.wpend_tot = maxpipes * split_send_fragment; } else { /* We can partially fill all available pipelines */ tmppipelen = n / maxpipes; remain = n % maxpipes; /* * If there is a remainder we add an extra byte to the first few * pipelines */ if (remain > 0) tmppipelen++; for (j = 0; j < maxpipes; j++) { tmpls[j].type = type; tmpls[j].version = recversion; tmpls[j].buf = &(buf[tot]) + lensofar; tmpls[j].buflen = tmppipelen; lensofar += tmppipelen; if (j + 1 == remain) tmppipelen--; } /* Remember how much data we are going to be sending */ s->rlayer.wpend_tot = n; } i = HANDLE_RLAYER_WRITE_RETURN(s, s->rlayer.wrlmethod->write_records(s->rlayer.wrl, tmpls, maxpipes)); if (i <= 0) { /* SSLfatal() already called if appropriate */ s->rlayer.wnum = tot; return i; } if (s->rlayer.wpend_tot == n || (type == SSL3_RT_APPLICATION_DATA && (s->mode & SSL_MODE_ENABLE_PARTIAL_WRITE) != 0)) { *written = tot + s->rlayer.wpend_tot; s->rlayer.wpend_tot = 0; return 1; } n -= s->rlayer.wpend_tot; tot += s->rlayer.wpend_tot; } } int ossl_tls_handle_rlayer_return(SSL_CONNECTION *s, int writing, int ret, char *file, int line) { SSL *ssl = SSL_CONNECTION_GET_SSL(s); if (ret == OSSL_RECORD_RETURN_RETRY) { s->rwstate = writing ? SSL_WRITING : SSL_READING; ret = -1; } else { s->rwstate = SSL_NOTHING; if (ret == OSSL_RECORD_RETURN_EOF) { if (writing) { /* * This shouldn't happen with a writing operation. We treat it * as fatal. */ ERR_new(); ERR_set_debug(file, line, 0); ossl_statem_fatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR, NULL); ret = OSSL_RECORD_RETURN_FATAL; } else if ((s->options & SSL_OP_IGNORE_UNEXPECTED_EOF) != 0) { SSL_set_shutdown(ssl, SSL_RECEIVED_SHUTDOWN); s->s3.warn_alert = SSL_AD_CLOSE_NOTIFY; } else { ERR_new(); ERR_set_debug(file, line, 0); ossl_statem_fatal(s, SSL_AD_DECODE_ERROR, SSL_R_UNEXPECTED_EOF_WHILE_READING, NULL); } } else if (ret == OSSL_RECORD_RETURN_FATAL) { int al = s->rlayer.rrlmethod->get_alert_code(s->rlayer.rrl); if (al != SSL_AD_NO_ALERT) { ERR_new(); ERR_set_debug(file, line, 0); ossl_statem_fatal(s, al, SSL_R_RECORD_LAYER_FAILURE, NULL); } /* * else some failure but there is no alert code. We don't log an * error for this. The record layer should have logged an error * already or, if not, its due to some sys call error which will be * reported via SSL_ERROR_SYSCALL and errno. */ } /* * The record layer distinguishes the cases of EOF, non-fatal * err and retry. Upper layers do not. * If we got a retry or success then *ret is already correct, * otherwise we need to convert the return value. */ if (ret == OSSL_RECORD_RETURN_NON_FATAL_ERR || ret == OSSL_RECORD_RETURN_EOF) ret = 0; else if (ret < OSSL_RECORD_RETURN_NON_FATAL_ERR) ret = -1; } return ret; } int ssl_release_record(SSL_CONNECTION *s, TLS_RECORD *rr, size_t length) { assert(rr->length >= length); if (rr->rechandle != NULL) { if (length == 0) length = rr->length; /* The record layer allocated the buffers for this record */ if (HANDLE_RLAYER_READ_RETURN(s, s->rlayer.rrlmethod->release_record(s->rlayer.rrl, rr->rechandle, length)) <= 0) { /* RLAYER_fatal already called */ return 0; } if (length == rr->length) s->rlayer.curr_rec++; } else if (length == 0 || length == rr->length) { /* We allocated the buffers for this record (only happens with DTLS) */ OPENSSL_free(rr->allocdata); rr->allocdata = NULL; } rr->length -= length; if (rr->length > 0) rr->off += length; else rr->off = 0; return 1; } /*- * Return up to 'len' payload bytes received in 'type' records. * 'type' is one of the following: * * - SSL3_RT_HANDSHAKE (when ssl3_get_message calls us) * - SSL3_RT_APPLICATION_DATA (when ssl3_read calls us) * - 0 (during a shutdown, no data has to be returned) * * If we don't have stored data to work from, read a SSL/TLS record first * (possibly multiple records if we still don't have anything to return). * * This function must handle any surprises the peer may have for us, such as * Alert records (e.g. close_notify) or renegotiation requests. ChangeCipherSpec * messages are treated as if they were handshake messages *if* the |recvd_type| * argument is non NULL. * Also if record payloads contain fragments too small to process, we store * them until there is enough for the respective protocol (the record protocol * may use arbitrary fragmentation and even interleaving): * Change cipher spec protocol * just 1 byte needed, no need for keeping anything stored * Alert protocol * 2 bytes needed (AlertLevel, AlertDescription) * Handshake protocol * 4 bytes needed (HandshakeType, uint24 length) -- we just have * to detect unexpected Client Hello and Hello Request messages * here, anything else is handled by higher layers * Application data protocol * none of our business */ int ssl3_read_bytes(SSL *ssl, int type, int *recvd_type, unsigned char *buf, size_t len, int peek, size_t *readbytes) { int i, j, ret; size_t n, curr_rec, totalbytes; TLS_RECORD *rr; void (*cb) (const SSL *ssl, int type2, int val) = NULL; int is_tls13; SSL_CONNECTION *s = SSL_CONNECTION_FROM_SSL_ONLY(ssl); is_tls13 = SSL_CONNECTION_IS_TLS13(s); if ((type != 0 && (type != SSL3_RT_APPLICATION_DATA) && (type != SSL3_RT_HANDSHAKE)) || (peek && (type != SSL3_RT_APPLICATION_DATA))) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } if ((type == SSL3_RT_HANDSHAKE) && (s->rlayer.handshake_fragment_len > 0)) /* (partially) satisfy request from storage */ { unsigned char *src = s->rlayer.handshake_fragment; unsigned char *dst = buf; unsigned int k; /* peek == 0 */ n = 0; while ((len > 0) && (s->rlayer.handshake_fragment_len > 0)) { *dst++ = *src++; len--; s->rlayer.handshake_fragment_len--; n++; } /* move any remaining fragment bytes: */ for (k = 0; k < s->rlayer.handshake_fragment_len; k++) s->rlayer.handshake_fragment[k] = *src++; if (recvd_type != NULL) *recvd_type = SSL3_RT_HANDSHAKE; *readbytes = n; return 1; } /* * Now s->rlayer.handshake_fragment_len == 0 if type == SSL3_RT_HANDSHAKE. */ if (!ossl_statem_get_in_handshake(s) && SSL_in_init(ssl)) { /* type == SSL3_RT_APPLICATION_DATA */ i = s->handshake_func(ssl); /* SSLfatal() already called */ if (i < 0) return i; if (i == 0) return -1; } start: s->rwstate = SSL_NOTHING; /*- * For each record 'i' up to |num_recs] * rr[i].type - is the type of record * rr[i].data, - data * rr[i].off, - offset into 'data' for next read * rr[i].length, - number of bytes. */ /* get new records if necessary */ if (s->rlayer.curr_rec >= s->rlayer.num_recs) { s->rlayer.curr_rec = s->rlayer.num_recs = 0; do { rr = &s->rlayer.tlsrecs[s->rlayer.num_recs]; ret = HANDLE_RLAYER_READ_RETURN(s, s->rlayer.rrlmethod->read_record(s->rlayer.rrl, &rr->rechandle, &rr->version, &rr->type, &rr->data, &rr->length, NULL, NULL)); if (ret <= 0) { /* SSLfatal() already called if appropriate */ return ret; } rr->off = 0; s->rlayer.num_recs++; } while (s->rlayer.rrlmethod->processed_read_pending(s->rlayer.rrl) && s->rlayer.num_recs < SSL_MAX_PIPELINES); } rr = &s->rlayer.tlsrecs[s->rlayer.curr_rec]; if (s->rlayer.handshake_fragment_len > 0 && rr->type != SSL3_RT_HANDSHAKE && SSL_CONNECTION_IS_TLS13(s)) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_MIXED_HANDSHAKE_AND_NON_HANDSHAKE_DATA); return -1; } /* * Reset the count of consecutive warning alerts if we've got a non-empty * record that isn't an alert. */ if (rr->type != SSL3_RT_ALERT && rr->length != 0) s->rlayer.alert_count = 0; /* we now have a packet which can be read and processed */ if (s->s3.change_cipher_spec /* set when we receive ChangeCipherSpec, * reset by ssl3_get_finished */ && (rr->type != SSL3_RT_HANDSHAKE)) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_DATA_BETWEEN_CCS_AND_FINISHED); return -1; } /* * If the other end has shut down, throw anything we read away (even in * 'peek' mode) */ if (s->shutdown & SSL_RECEIVED_SHUTDOWN) { s->rlayer.curr_rec++; s->rwstate = SSL_NOTHING; return 0; } if (type == rr->type || (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC && type == SSL3_RT_HANDSHAKE && recvd_type != NULL && !is_tls13)) { /* * SSL3_RT_APPLICATION_DATA or * SSL3_RT_HANDSHAKE or * SSL3_RT_CHANGE_CIPHER_SPEC */ /* * make sure that we are not getting application data when we are * doing a handshake for the first time */ if (SSL_in_init(ssl) && type == SSL3_RT_APPLICATION_DATA && SSL_IS_FIRST_HANDSHAKE(s)) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_APP_DATA_IN_HANDSHAKE); return -1; } if (type == SSL3_RT_HANDSHAKE && rr->type == SSL3_RT_CHANGE_CIPHER_SPEC && s->rlayer.handshake_fragment_len > 0) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY); return -1; } if (recvd_type != NULL) *recvd_type = rr->type; if (len == 0) { /* * Skip a zero length record. This ensures multiple calls to * SSL_read() with a zero length buffer will eventually cause * SSL_pending() to report data as being available. */ if (rr->length == 0 && !ssl_release_record(s, rr, 0)) return -1; return 0; } totalbytes = 0; curr_rec = s->rlayer.curr_rec; do { if (len - totalbytes > rr->length) n = rr->length; else n = len - totalbytes; memcpy(buf, &(rr->data[rr->off]), n); buf += n; if (peek) { /* Mark any zero length record as consumed CVE-2016-6305 */ if (rr->length == 0 && !ssl_release_record(s, rr, 0)) return -1; } else { if (!ssl_release_record(s, rr, n)) return -1; } if (rr->length == 0 || (peek && n == rr->length)) { rr++; curr_rec++; } totalbytes += n; } while (type == SSL3_RT_APPLICATION_DATA && curr_rec < s->rlayer.num_recs && totalbytes < len); if (totalbytes == 0) { /* We must have read empty records. Get more data */ goto start; } *readbytes = totalbytes; return 1; } /* * If we get here, then type != rr->type; if we have a handshake message, * then it was unexpected (Hello Request or Client Hello) or invalid (we * were actually expecting a CCS). */ /* * Lets just double check that we've not got an SSLv2 record */ if (rr->version == SSL2_VERSION) { /* * Should never happen. ssl3_get_record() should only give us an SSLv2 * record back if this is the first packet and we are looking for an * initial ClientHello. Therefore |type| should always be equal to * |rr->type|. If not then something has gone horribly wrong */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return -1; } if (ssl->method->version == TLS_ANY_VERSION && (s->server || rr->type != SSL3_RT_ALERT)) { /* * If we've got this far and still haven't decided on what version * we're using then this must be a client side alert we're dealing * with. We shouldn't be receiving anything other than a ClientHello * if we are a server. */ s->version = rr->version; SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_MESSAGE); return -1; } /*- * s->rlayer.handshake_fragment_len == 4 iff rr->type == SSL3_RT_HANDSHAKE; * (Possibly rr is 'empty' now, i.e. rr->length may be 0.) */ if (rr->type == SSL3_RT_ALERT) { unsigned int alert_level, alert_descr; const unsigned char *alert_bytes = rr->data + rr->off; PACKET alert; if (!PACKET_buf_init(&alert, alert_bytes, rr->length) || !PACKET_get_1(&alert, &alert_level) || !PACKET_get_1(&alert, &alert_descr) || PACKET_remaining(&alert) != 0) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_INVALID_ALERT); return -1; } if (s->msg_callback) s->msg_callback(0, s->version, SSL3_RT_ALERT, alert_bytes, 2, ssl, s->msg_callback_arg); if (s->info_callback != NULL) cb = s->info_callback; else if (ssl->ctx->info_callback != NULL) cb = ssl->ctx->info_callback; if (cb != NULL) { j = (alert_level << 8) | alert_descr; cb(ssl, SSL_CB_READ_ALERT, j); } if ((!is_tls13 && alert_level == SSL3_AL_WARNING) || (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED)) { s->s3.warn_alert = alert_descr; if (!ssl_release_record(s, rr, 0)) return -1; s->rlayer.alert_count++; if (s->rlayer.alert_count == MAX_WARN_ALERT_COUNT) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_TOO_MANY_WARN_ALERTS); return -1; } } /* * Apart from close_notify the only other warning alert in TLSv1.3 * is user_cancelled - which we just ignore. */ if (is_tls13 && alert_descr == SSL_AD_USER_CANCELLED) { goto start; } else if (alert_descr == SSL_AD_CLOSE_NOTIFY && (is_tls13 || alert_level == SSL3_AL_WARNING)) { s->shutdown |= SSL_RECEIVED_SHUTDOWN; return 0; } else if (alert_level == SSL3_AL_FATAL || is_tls13) { s->rwstate = SSL_NOTHING; s->s3.fatal_alert = alert_descr; SSLfatal_data(s, SSL_AD_NO_ALERT, SSL_AD_REASON_OFFSET + alert_descr, "SSL alert number %d", alert_descr); s->shutdown |= SSL_RECEIVED_SHUTDOWN; if (!ssl_release_record(s, rr, 0)) return -1; SSL_CTX_remove_session(s->session_ctx, s->session); return 0; } else if (alert_descr == SSL_AD_NO_RENEGOTIATION) { /* * This is a warning but we receive it if we requested * renegotiation and the peer denied it. Terminate with a fatal * alert because if application tried to renegotiate it * presumably had a good reason and expects it to succeed. In * future we might have a renegotiation where we don't care if * the peer refused it where we carry on. */ SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_NO_RENEGOTIATION); return -1; } else if (alert_level == SSL3_AL_WARNING) { /* We ignore any other warning alert in TLSv1.2 and below */ goto start; } SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_UNKNOWN_ALERT_TYPE); return -1; } if ((s->shutdown & SSL_SENT_SHUTDOWN) != 0) { if (rr->type == SSL3_RT_HANDSHAKE) { BIO *rbio; /* * We ignore any handshake messages sent to us unless they are * TLSv1.3 in which case we want to process them. For all other * handshake messages we can't do anything reasonable with them * because we are unable to write any response due to having already * sent close_notify. */ if (!SSL_CONNECTION_IS_TLS13(s)) { if (!ssl_release_record(s, rr, 0)) return -1; if ((s->mode & SSL_MODE_AUTO_RETRY) != 0) goto start; s->rwstate = SSL_READING; rbio = SSL_get_rbio(ssl); BIO_clear_retry_flags(rbio); BIO_set_retry_read(rbio); return -1; } } else { /* * The peer is continuing to send application data, but we have * already sent close_notify. If this was expected we should have * been called via SSL_read() and this would have been handled * above. * No alert sent because we already sent close_notify */ if (!ssl_release_record(s, rr, 0)) return -1; SSLfatal(s, SSL_AD_NO_ALERT, SSL_R_APPLICATION_DATA_AFTER_CLOSE_NOTIFY); return -1; } } /* * For handshake data we have 'fragment' storage, so fill that so that we * can process the header at a fixed place. This is done after the * "SHUTDOWN" code above to avoid filling the fragment storage with data * that we're just going to discard. */ if (rr->type == SSL3_RT_HANDSHAKE) { size_t dest_maxlen = sizeof(s->rlayer.handshake_fragment); unsigned char *dest = s->rlayer.handshake_fragment; size_t *dest_len = &s->rlayer.handshake_fragment_len; n = dest_maxlen - *dest_len; /* available space in 'dest' */ if (rr->length < n) n = rr->length; /* available bytes */ /* now move 'n' bytes: */ if (n > 0) { memcpy(dest + *dest_len, rr->data + rr->off, n); *dest_len += n; } /* * We release the number of bytes consumed, or the whole record if it * is zero length */ if ((n > 0 || rr->length == 0) && !ssl_release_record(s, rr, n)) return -1; if (*dest_len < dest_maxlen) goto start; /* fragment was too small */ } if (rr->type == SSL3_RT_CHANGE_CIPHER_SPEC) { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_CCS_RECEIVED_EARLY); return -1; } /* * Unexpected handshake message (ClientHello, NewSessionTicket (TLS1.3) or * protocol violation) */ if ((s->rlayer.handshake_fragment_len >= 4) && !ossl_statem_get_in_handshake(s)) { int ined = (s->early_data_state == SSL_EARLY_DATA_READING); /* We found handshake data, so we're going back into init */ ossl_statem_set_in_init(s, 1); i = s->handshake_func(ssl); /* SSLfatal() already called if appropriate */ if (i < 0) return i; if (i == 0) { return -1; } /* * If we were actually trying to read early data and we found a * handshake message, then we don't want to continue to try and read * the application data any more. It won't be "early" now. */ if (ined) return -1; if (!(s->mode & SSL_MODE_AUTO_RETRY)) { if (!RECORD_LAYER_read_pending(&s->rlayer)) { BIO *bio; /* * In the case where we try to read application data, but we * trigger an SSL handshake, we return -1 with the retry * option set. Otherwise renegotiation may cause nasty * problems in the blocking world */ s->rwstate = SSL_READING; bio = SSL_get_rbio(ssl); BIO_clear_retry_flags(bio); BIO_set_retry_read(bio); return -1; } } goto start; } switch (rr->type) { default: /* * TLS 1.0 and 1.1 say you SHOULD ignore unrecognised record types, but * TLS 1.2 says you MUST send an unexpected message alert. We use the * TLS 1.2 behaviour for all protocol versions to prevent issues where * no progress is being made and the peer continually sends unrecognised * record types, using up resources processing them. */ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD); return -1; case SSL3_RT_CHANGE_CIPHER_SPEC: case SSL3_RT_ALERT: case SSL3_RT_HANDSHAKE: /* * we already handled all of these, with the possible exception of * SSL3_RT_HANDSHAKE when ossl_statem_get_in_handshake(s) is true, but * that should not happen when type != rr->type */ SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, ERR_R_INTERNAL_ERROR); return -1; case SSL3_RT_APPLICATION_DATA: /* * At this point, we were expecting handshake data, but have * application data. If the library was running inside ssl3_read() * (i.e. in_read_app_data is set) and it makes sense to read * application data at this point (session renegotiation not yet * started), we will indulge it. */ if (ossl_statem_app_data_allowed(s)) { s->s3.in_read_app_data = 2; return -1; } else if (ossl_statem_skip_early_data(s)) { /* * This can happen after a client sends a CH followed by early_data, * but the server responds with a HelloRetryRequest. The server * reads the next record from the client expecting to find a * plaintext ClientHello but gets a record which appears to be * application data. The trial decrypt "works" because null * decryption was applied. We just skip it and move on to the next * record. */ if (!ossl_early_data_count_ok(s, rr->length, EARLY_DATA_CIPHERTEXT_OVERHEAD, 0)) { /* SSLfatal() already called */ return -1; } if (!ssl_release_record(s, rr, 0)) return -1; goto start; } else { SSLfatal(s, SSL_AD_UNEXPECTED_MESSAGE, SSL_R_UNEXPECTED_RECORD); return -1; } } } /* * Returns true if the current rrec was sent in SSLv2 backwards compatible * format and false otherwise. */ int RECORD_LAYER_is_sslv2_record(RECORD_LAYER *rl) { if (SSL_CONNECTION_IS_DTLS(rl->s)) return 0; return rl->tlsrecs[0].version == SSL2_VERSION; } static OSSL_FUNC_rlayer_msg_callback_fn rlayer_msg_callback_wrapper; static void rlayer_msg_callback_wrapper(int write_p, int version, int content_type, const void *buf, size_t len, void *cbarg) { SSL_CONNECTION *s = cbarg; SSL *ssl = SSL_CONNECTION_GET_SSL(s); if (s->msg_callback != NULL) s->msg_callback(write_p, version, content_type, buf, len, ssl, s->msg_callback_arg); } static OSSL_FUNC_rlayer_security_fn rlayer_security_wrapper; static int rlayer_security_wrapper(void *cbarg, int op, int bits, int nid, void *other) { SSL_CONNECTION *s = cbarg; return ssl_security(s, op, bits, nid, other); } static OSSL_FUNC_rlayer_padding_fn rlayer_padding_wrapper; static size_t rlayer_padding_wrapper(void *cbarg, int type, size_t len) { SSL_CONNECTION *s = cbarg; SSL *ssl = SSL_CONNECTION_GET_SSL(s); return s->rlayer.record_padding_cb(ssl, type, len, s->rlayer.record_padding_arg); } static const OSSL_DISPATCH rlayer_dispatch[] = { { OSSL_FUNC_RLAYER_SKIP_EARLY_DATA, (void (*)(void))ossl_statem_skip_early_data }, { OSSL_FUNC_RLAYER_MSG_CALLBACK, (void (*)(void))rlayer_msg_callback_wrapper }, { OSSL_FUNC_RLAYER_SECURITY, (void (*)(void))rlayer_security_wrapper }, { OSSL_FUNC_RLAYER_PADDING, (void (*)(void))rlayer_padding_wrapper }, OSSL_DISPATCH_END }; void ossl_ssl_set_custom_record_layer(SSL_CONNECTION *s, const OSSL_RECORD_METHOD *meth, void *rlarg) { s->rlayer.custom_rlmethod = meth; s->rlayer.rlarg = rlarg; } static const OSSL_RECORD_METHOD *ssl_select_next_record_layer(SSL_CONNECTION *s, int direction, int level) { if (s->rlayer.custom_rlmethod != NULL) return s->rlayer.custom_rlmethod; if (level == OSSL_RECORD_PROTECTION_LEVEL_NONE) { if (SSL_CONNECTION_IS_DTLS(s)) return &ossl_dtls_record_method; return &ossl_tls_record_method; } #ifndef OPENSSL_NO_KTLS /* KTLS does not support renegotiation */ if (level == OSSL_RECORD_PROTECTION_LEVEL_APPLICATION && (s->options & SSL_OP_ENABLE_KTLS) != 0 && (SSL_CONNECTION_IS_TLS13(s) || SSL_IS_FIRST_HANDSHAKE(s))) return &ossl_ktls_record_method; #endif /* Default to the current OSSL_RECORD_METHOD */ return direction == OSSL_RECORD_DIRECTION_READ ? s->rlayer.rrlmethod : s->rlayer.wrlmethod; } static int ssl_post_record_layer_select(SSL_CONNECTION *s, int direction) { const OSSL_RECORD_METHOD *thismethod; OSSL_RECORD_LAYER *thisrl; if (direction == OSSL_RECORD_DIRECTION_READ) { thismethod = s->rlayer.rrlmethod; thisrl = s->rlayer.rrl; } else { thismethod = s->rlayer.wrlmethod; thisrl = s->rlayer.wrl; } #ifndef OPENSSL_NO_KTLS { SSL *ssl = SSL_CONNECTION_GET_SSL(s); if (s->rlayer.rrlmethod == &ossl_ktls_record_method) { /* KTLS does not support renegotiation so disallow it */ SSL_set_options(ssl, SSL_OP_NO_RENEGOTIATION); } } #endif if (SSL_IS_FIRST_HANDSHAKE(s) && thismethod->set_first_handshake != NULL) thismethod->set_first_handshake(thisrl, 1); if (s->max_pipelines != 0 && thismethod->set_max_pipelines != NULL) thismethod->set_max_pipelines(thisrl, s->max_pipelines); return 1; } int ssl_set_new_record_layer(SSL_CONNECTION *s, int version, int direction, int level, unsigned char *secret, size_t secretlen, unsigned char *key, size_t keylen, unsigned char *iv, size_t ivlen, unsigned char *mackey, size_t mackeylen, const EVP_CIPHER *ciph, size_t taglen, int mactype, const EVP_MD *md, const SSL_COMP *comp, const EVP_MD *kdfdigest) { OSSL_PARAM options[5], *opts = options; OSSL_PARAM settings[6], *set = settings; const OSSL_RECORD_METHOD **thismethod; OSSL_RECORD_LAYER **thisrl, *newrl = NULL; BIO *thisbio; SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s); const OSSL_RECORD_METHOD *meth; int use_etm, stream_mac = 0, tlstree = 0; unsigned int maxfrag = (direction == OSSL_RECORD_DIRECTION_WRITE) ? ssl_get_max_send_fragment(s) : SSL3_RT_MAX_PLAIN_LENGTH; int use_early_data = 0; uint32_t max_early_data; COMP_METHOD *compm = (comp == NULL) ? NULL : comp->method; meth = ssl_select_next_record_layer(s, direction, level); if (direction == OSSL_RECORD_DIRECTION_READ) { thismethod = &s->rlayer.rrlmethod; thisrl = &s->rlayer.rrl; thisbio = s->rbio; } else { thismethod = &s->rlayer.wrlmethod; thisrl = &s->rlayer.wrl; thisbio = s->wbio; } if (meth == NULL) meth = *thismethod; if (!ossl_assert(meth != NULL)) { ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); return 0; } /* Parameters that *may* be supported by a record layer if passed */ *opts++ = OSSL_PARAM_construct_uint64(OSSL_LIBSSL_RECORD_LAYER_PARAM_OPTIONS, &s->options); *opts++ = OSSL_PARAM_construct_uint32(OSSL_LIBSSL_RECORD_LAYER_PARAM_MODE, &s->mode); if (direction == OSSL_RECORD_DIRECTION_READ) { *opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_READ_BUFFER_LEN, &s->rlayer.default_read_buf_len); *opts++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_READ_AHEAD, &s->rlayer.read_ahead); } else { *opts++ = OSSL_PARAM_construct_size_t(OSSL_LIBSSL_RECORD_LAYER_PARAM_BLOCK_PADDING, &s->rlayer.block_padding); } *opts = OSSL_PARAM_construct_end(); /* Parameters that *must* be supported by a record layer if passed */ if (direction == OSSL_RECORD_DIRECTION_READ) { use_etm = SSL_READ_ETM(s) ? 1 : 0; if ((s->mac_flags & SSL_MAC_FLAG_READ_MAC_STREAM) != 0) stream_mac = 1; if ((s->mac_flags & SSL_MAC_FLAG_READ_MAC_TLSTREE) != 0) tlstree = 1; } else { use_etm = SSL_WRITE_ETM(s) ? 1 : 0; if ((s->mac_flags & SSL_MAC_FLAG_WRITE_MAC_STREAM) != 0) stream_mac = 1; if ((s->mac_flags & SSL_MAC_FLAG_WRITE_MAC_TLSTREE) != 0) tlstree = 1; } if (use_etm) *set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_USE_ETM, &use_etm); if (stream_mac) *set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_STREAM_MAC, &stream_mac); if (tlstree) *set++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_TLSTREE, &tlstree); /* * We only need to do this for the read side. The write side should already * have the correct value due to the ssl_get_max_send_fragment() call above */ if (direction == OSSL_RECORD_DIRECTION_READ && s->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(s->session)) maxfrag = GET_MAX_FRAGMENT_LENGTH(s->session); if (maxfrag != SSL3_RT_MAX_PLAIN_LENGTH) *set++ = OSSL_PARAM_construct_uint(OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_FRAG_LEN, &maxfrag); /* * The record layer must check the amount of early data sent or received * using the early keys. A server also needs to worry about rejected early * data that might arrive when the handshake keys are in force. */ if (s->server && direction == OSSL_RECORD_DIRECTION_READ) { use_early_data = (level == OSSL_RECORD_PROTECTION_LEVEL_EARLY || level == OSSL_RECORD_PROTECTION_LEVEL_HANDSHAKE); } else if (!s->server && direction == OSSL_RECORD_DIRECTION_WRITE) { use_early_data = (level == OSSL_RECORD_PROTECTION_LEVEL_EARLY); } if (use_early_data) { max_early_data = ossl_get_max_early_data(s); if (max_early_data != 0) *set++ = OSSL_PARAM_construct_uint32(OSSL_LIBSSL_RECORD_LAYER_PARAM_MAX_EARLY_DATA, &max_early_data); } *set = OSSL_PARAM_construct_end(); for (;;) { int rlret; BIO *prev = NULL; BIO *next = NULL; unsigned int epoch = 0; OSSL_DISPATCH rlayer_dispatch_tmp[OSSL_NELEM(rlayer_dispatch)]; size_t i, j; if (direction == OSSL_RECORD_DIRECTION_READ) { prev = s->rlayer.rrlnext; if (SSL_CONNECTION_IS_DTLS(s) && level != OSSL_RECORD_PROTECTION_LEVEL_NONE) epoch = DTLS_RECORD_LAYER_get_r_epoch(&s->rlayer) + 1; /* new epoch */ #ifndef OPENSSL_NO_DGRAM if (SSL_CONNECTION_IS_DTLS(s)) next = BIO_new(BIO_s_dgram_mem()); else #endif next = BIO_new(BIO_s_mem()); if (next == NULL) { BIO_free(prev); SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } s->rlayer.rrlnext = next; } else { if (SSL_CONNECTION_IS_DTLS(s) && level != OSSL_RECORD_PROTECTION_LEVEL_NONE) epoch = DTLS_RECORD_LAYER_get_w_epoch(&s->rlayer) + 1; /* new epoch */ } /* * Create a copy of the dispatch array, missing out wrappers for * callbacks that we don't need. */ for (i = 0, j = 0; i < OSSL_NELEM(rlayer_dispatch); i++) { switch (rlayer_dispatch[i].function_id) { case OSSL_FUNC_RLAYER_MSG_CALLBACK: if (s->msg_callback == NULL) continue; break; case OSSL_FUNC_RLAYER_PADDING: if (s->rlayer.record_padding_cb == NULL) continue; break; default: break; } rlayer_dispatch_tmp[j++] = rlayer_dispatch[i]; } rlret = meth->new_record_layer(sctx->libctx, sctx->propq, version, s->server, direction, level, epoch, secret, secretlen, key, keylen, iv, ivlen, mackey, mackeylen, ciph, taglen, mactype, md, compm, kdfdigest, prev, thisbio, next, NULL, NULL, settings, options, rlayer_dispatch_tmp, s, s->rlayer.rlarg, &newrl); BIO_free(prev); switch (rlret) { case OSSL_RECORD_RETURN_FATAL: SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_RECORD_LAYER_FAILURE); return 0; case OSSL_RECORD_RETURN_NON_FATAL_ERR: if (*thismethod != meth && *thismethod != NULL) { /* * We tried a new record layer method, but it didn't work out, * so we fallback to the original method and try again */ meth = *thismethod; continue; } SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_R_NO_SUITABLE_RECORD_LAYER); return 0; case OSSL_RECORD_RETURN_SUCCESS: break; default: /* Should not happen */ SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } break; } /* * Free the old record layer if we have one except in the case of DTLS when * writing and there are still buffered sent messages in our queue. In that * case the record layer is still referenced by those buffered messages for * potential retransmit. Only when those buffered messages get freed do we * free the record layer object (see dtls1_hm_fragment_free) */ if (!SSL_CONNECTION_IS_DTLS(s) || direction == OSSL_RECORD_DIRECTION_READ || pqueue_peek(s->d1->sent_messages) == NULL) { if (*thismethod != NULL && !(*thismethod)->free(*thisrl)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } } *thisrl = newrl; *thismethod = meth; return ssl_post_record_layer_select(s, direction); } int ssl_set_record_protocol_version(SSL_CONNECTION *s, int vers) { if (!ossl_assert(s->rlayer.rrlmethod != NULL) || !ossl_assert(s->rlayer.wrlmethod != NULL)) return 0; s->rlayer.rrlmethod->set_protocol_version(s->rlayer.rrl, s->version); s->rlayer.wrlmethod->set_protocol_version(s->rlayer.wrl, s->version); return 1; }