/* * Copyright 2015-2024 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #define OPENSSL_SUPPRESS_DEPRECATED /* EVP_PKEY_new_CMAC_key */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "internal/numbers.h" #include "internal/nelem.h" #include "crypto/evp.h" #include "testutil.h" typedef struct evp_test_buffer_st EVP_TEST_BUFFER; DEFINE_STACK_OF(EVP_TEST_BUFFER) #define AAD_NUM 4 typedef struct evp_test_method_st EVP_TEST_METHOD; /* Structure holding test information */ typedef struct evp_test_st { STANZA s; /* Common test stanza */ char *name; int skip; /* Current test should be skipped */ const EVP_TEST_METHOD *meth; /* method for this test */ const char *err, *aux_err; /* Error string for test */ char *expected_err; /* Expected error value of test */ char *reason; /* Expected error reason string */ void *data; /* test specific data */ int expect_unapproved; } EVP_TEST; /* Test method structure */ struct evp_test_method_st { /* Name of test as it appears in file */ const char *name; /* Initialise test for "alg" */ int (*init) (EVP_TEST *t, const char *alg); /* Clean up method */ void (*cleanup) (EVP_TEST *t); /* Test specific name value pair processing */ int (*parse) (EVP_TEST *t, const char *name, const char *value); /* Run the test itself */ int (*run_test) (EVP_TEST *t); }; /* Linked list of named keys. */ typedef struct key_list_st { char *name; EVP_PKEY *key; struct key_list_st *next; } KEY_LIST; typedef enum OPTION_choice { OPT_ERR = -1, OPT_EOF = 0, OPT_CONFIG_FILE, OPT_IN_PLACE, OPT_PROVIDER_NAME, OPT_PROV_PROPQUERY, OPT_DATA_CHUNK, OPT_TEST_ENUM } OPTION_CHOICE; static OSSL_PROVIDER *prov_null = NULL; static OSSL_PROVIDER *libprov = NULL; static OSSL_LIB_CTX *libctx = NULL; static int fips_indicator_callback_unapproved_count = 0; /* List of public and private keys */ static KEY_LIST *private_keys; static KEY_LIST *public_keys; static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst); static int parse_bin(const char *value, unsigned char **buf, size_t *buflen); static int parse_bin_chunk(const char *value, size_t offset, size_t max, unsigned char **buf, size_t *buflen, size_t *out_offset); static int is_digest_disabled(const char *name); static int is_pkey_disabled(const char *name); static int is_mac_disabled(const char *name); static int is_cipher_disabled(const char *name); static int is_kdf_disabled(const char *name); /* A callback that is triggered if fips unapproved mode is detected */ static int fips_indicator_cb(const char *type, const char *desc, const OSSL_PARAM params[]) { fips_indicator_callback_unapproved_count++; TEST_info("(Indicator Callback received %s : %s is not approved)", type, desc); return 1; } static int check_fips_approved(EVP_TEST *t, int approved) { /* * If the expected result is approved * then it is expected that approved will be 1 * and the fips indicator callback has not been triggered, otherwise * approved should be 0 and the fips indicator callback should be triggered. */ if (t->expect_unapproved) { if (approved == 1 || fips_indicator_callback_unapproved_count == 0) return 0; } else { if (approved == 0 || fips_indicator_callback_unapproved_count > 0) return 0; } return 1; } static int mac_check_fips_approved(EVP_MAC_CTX *ctx, EVP_TEST *t) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; /* * For any getters that do not handle the FIPS indicator assume a default * value of approved. */ int approved = 1; params[0] = OSSL_PARAM_construct_int(OSSL_MAC_PARAM_FIPS_APPROVED_INDICATOR, &approved); if (!EVP_MAC_CTX_get_params(ctx, params)) return 0; return check_fips_approved(t, approved); } static int pkey_check_fips_approved(EVP_PKEY_CTX *ctx, EVP_TEST *t) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; /* * For any getters that do not handle the FIPS indicator assume a default * value of approved. */ int approved = 1; params[0] = OSSL_PARAM_construct_int(OSSL_ALG_PARAM_FIPS_APPROVED_INDICATOR, &approved); if (!EVP_PKEY_CTX_get_params(ctx, params)) return 0; return check_fips_approved(t, approved); } static int rand_check_fips_approved(EVP_RAND_CTX *ctx, EVP_TEST *t) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; /* * For any getters that do not handle the FIPS indicator assume a default * value of approved. */ int approved = 1; params[0] = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_FIPS_APPROVED_INDICATOR, &approved); if (!EVP_RAND_CTX_get_params(ctx, params)) return 0; return check_fips_approved(t, approved); } static int ctrladd(STACK_OF(OPENSSL_STRING) *controls, const char *value) { char *data = OPENSSL_strdup(value); if (data == NULL) return -1; return sk_OPENSSL_STRING_push(controls, data) > 0; } /* Because OPENSSL_free is a macro, it can't be passed as a function pointer */ static void openssl_free(char *m) { OPENSSL_free(m); } static void ctrlfree(STACK_OF(OPENSSL_STRING) *controls) { sk_OPENSSL_STRING_pop_free(controls, openssl_free); } /* * This is used if ctrl2params() passes settables as NULL. * A default list of settable OSSL_PARAM that may be set during an operations * init(). * Using the algorithms settable list is problematic since it requires that the * init() has already run. */ static const OSSL_PARAM settable_ctx_params[] = { OSSL_PARAM_int("key-check", NULL), OSSL_PARAM_int("digest-check", NULL), OSSL_PARAM_int("ems_check", NULL), OSSL_PARAM_int("sign-check", NULL), OSSL_PARAM_int("encrypt-check", NULL), OSSL_PARAM_int("sign-x931-pad-check", NULL), OSSL_PARAM_END }; static int ctrl2params(EVP_TEST *t, STACK_OF(OPENSSL_STRING) *controls, const OSSL_PARAM *settables, OSSL_PARAM params[], size_t params_sz, size_t *params_n) { int i; if (settables == NULL) settables = settable_ctx_params; /* check bounds */ if (*params_n + sk_OPENSSL_STRING_num(controls) >= params_sz) { t->err = "ERR_TOO_MANY_PARAMETERS"; goto err; } for (i = 0; i < sk_OPENSSL_STRING_num(controls); i++) { char *tmpkey, *tmpval; char *value = sk_OPENSSL_STRING_value(controls, i); if (!TEST_ptr(tmpkey = OPENSSL_strdup(value))) { t->err = "ERR_PARAM_ERROR"; goto err; } tmpval = strchr(tmpkey, ':'); if (tmpval != NULL) *tmpval++ = '\0'; if (tmpval == NULL || !OSSL_PARAM_allocate_from_text(¶ms[*params_n], settables, tmpkey, tmpval, strlen(tmpval), NULL)) { OPENSSL_free(tmpkey); t->err = "ERR_PARAM_ERROR"; goto err; } *params_n += 1; OPENSSL_free(tmpkey); } params[*params_n] = OSSL_PARAM_construct_end(); return 1; err: return 0; } static void ctrl2params_free(OSSL_PARAM params[], size_t params_n, size_t params_n_allocstart) { while (params_n-- > params_n_allocstart) { OPENSSL_free(params[params_n].data); } } static int kdf_check_fips_approved(EVP_KDF_CTX *ctx, EVP_TEST *t) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; int approved = 1; params[0] = OSSL_PARAM_construct_int(OSSL_KDF_PARAM_FIPS_APPROVED_INDICATOR, &approved); if (!EVP_KDF_CTX_get_params(ctx, params)) return 0; return check_fips_approved(t, approved); } static int cipher_check_fips_approved(EVP_CIPHER_CTX *ctx, EVP_TEST *t) { OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; int approved = 1; params[0] = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_FIPS_APPROVED_INDICATOR, &approved); if (!EVP_CIPHER_CTX_get_params(ctx, params)) return 0; return check_fips_approved(t, approved); } /* * Compare two memory regions for equality, returning zero if they differ. * However, if there is expected to be an error and the actual error * matches then the memory is expected to be different so handle this * case without producing unnecessary test framework output. */ static int memory_err_compare(EVP_TEST *t, const char *err, const void *expected, size_t expected_len, const void *got, size_t got_len) { int r; if (t->expected_err != NULL && strcmp(t->expected_err, err) == 0) r = !TEST_mem_ne(expected, expected_len, got, got_len); else r = TEST_mem_eq(expected, expected_len, got, got_len); if (!r) t->err = err; return r; } /* Option specific for evp test */ static int process_mode_in_place; static const char *propquery = NULL; static int data_chunk_size; static int evp_test_process_mode(char *mode) { if (strcmp(mode, "in_place") == 0) return 1; else if (strcmp(mode, "both") == 0) return 0; return -1; } /* * Structure used to hold a list of blocks of memory to test * calls to "update" like functions. */ struct evp_test_buffer_st { unsigned char *buf; size_t buflen; size_t count; int count_set; }; static void evp_test_buffer_free(EVP_TEST_BUFFER *db) { if (db != NULL) { OPENSSL_free(db->buf); OPENSSL_free(db); } } /* append buffer to a list */ static int evp_test_buffer_append(const char *value, size_t max_len, STACK_OF(EVP_TEST_BUFFER) **sk) { EVP_TEST_BUFFER *db = NULL; int rv = 0; size_t offset = 0; if (*sk == NULL && !TEST_ptr(*sk = sk_EVP_TEST_BUFFER_new_null())) goto err; do { if (!TEST_ptr(db = OPENSSL_zalloc(sizeof(*db)))) goto err; if (max_len == 0) { /* parse all in one shot */ if ((rv = parse_bin(value, &db->buf, &db->buflen)) != 1) goto err; } else { /* parse in chunks */ size_t new_offset = 0; if ((rv = parse_bin_chunk(value, offset, max_len, &db->buf, &db->buflen, &new_offset)) == -1) goto err; offset = new_offset; } db->count = 1; db->count_set = 0; if (db->buf == NULL) evp_test_buffer_free(db); else if (db->buf != NULL && !sk_EVP_TEST_BUFFER_push(*sk, db)) goto err; /* if processing by chunks, continue until the whole value is parsed */ } while (rv == 1 && max_len != 0); return 1; err: evp_test_buffer_free(db); return 0; } /* replace last buffer in list with copies of itself */ static int evp_test_buffer_ncopy(const char *value, STACK_OF(EVP_TEST_BUFFER) *sk) { EVP_TEST_BUFFER *db; unsigned char *tbuf, *p; size_t tbuflen; int ncopy = atoi(value); int i; if (ncopy <= 0) return 0; if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0) return 0; db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1); tbuflen = db->buflen * ncopy; if (!TEST_ptr(tbuf = OPENSSL_malloc(tbuflen))) return 0; for (i = 0, p = tbuf; i < ncopy; i++, p += db->buflen) memcpy(p, db->buf, db->buflen); OPENSSL_free(db->buf); db->buf = tbuf; db->buflen = tbuflen; return 1; } /* set repeat count for last buffer in list */ static int evp_test_buffer_set_count(const char *value, STACK_OF(EVP_TEST_BUFFER) *sk) { EVP_TEST_BUFFER *db; int count = atoi(value); if (count <= 0) return 0; if (sk == NULL || sk_EVP_TEST_BUFFER_num(sk) == 0) return 0; db = sk_EVP_TEST_BUFFER_value(sk, sk_EVP_TEST_BUFFER_num(sk) - 1); if (db->count_set != 0) return 0; db->count = (size_t)count; db->count_set = 1; return 1; } /* call "fn" with each element of the list in turn */ static int evp_test_buffer_do(STACK_OF(EVP_TEST_BUFFER) *sk, int (*fn)(void *ctx, const unsigned char *buf, size_t buflen), void *ctx) { int i; for (i = 0; i < sk_EVP_TEST_BUFFER_num(sk); i++) { EVP_TEST_BUFFER *tb = sk_EVP_TEST_BUFFER_value(sk, i); size_t j; for (j = 0; j < tb->count; j++) { if (fn(ctx, tb->buf, tb->buflen) <= 0) return 0; } } return 1; } /* * Unescape some sequences in string literals (only \n for now). * Return an allocated buffer, set |out_len|. If |input_len| * is zero, get an empty buffer but set length to zero. */ static unsigned char* unescape(const char *input, size_t input_len, size_t *out_len) { unsigned char *ret, *p; size_t i; if (input_len == 0) { *out_len = 0; return OPENSSL_zalloc(1); } /* Escaping is non-expanding; over-allocate original size for simplicity. */ if (!TEST_ptr(ret = p = OPENSSL_malloc(input_len))) return NULL; for (i = 0; i < input_len; i++) { if (*input == '\\') { if (i == input_len - 1 || *++input != 'n') { TEST_error("Bad escape sequence in file"); goto err; } *p++ = '\n'; i++; input++; } else { *p++ = *input++; } } *out_len = p - ret; return ret; err: OPENSSL_free(ret); return NULL; } /* * For a hex string "value" convert to a binary allocated buffer. * Return 1 on success or 0 on failure. */ static int parse_bin(const char *value, unsigned char **buf, size_t *buflen) { long len; /* Check for NULL literal */ if (strcmp(value, "NULL") == 0) { *buf = NULL; *buflen = 0; return 1; } /* Check for empty value */ if (*value == '\0') { /* * Don't return NULL for zero length buffer. This is needed for * some tests with empty keys: HMAC_Init_ex() expects a non-NULL key * buffer even if the key length is 0, in order to detect key reset. */ *buf = OPENSSL_malloc(1); if (*buf == NULL) return 0; **buf = 0; *buflen = 0; return 1; } /* Check for string literal */ if (value[0] == '"') { size_t vlen = strlen(++value); if (vlen == 0 || value[vlen - 1] != '"') return 0; vlen--; *buf = unescape(value, vlen, buflen); return *buf == NULL ? 0 : 1; } /* Otherwise assume as hex literal and convert it to binary buffer */ if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(value, &len))) { TEST_info("Can't convert %s", value); TEST_openssl_errors(); return -1; } /* Size of input buffer means we'll never overflow */ *buflen = len; return 1; } /* * Convert at maximum "max" bytes to a binary allocated buffer. * Return 1 on success, -1 on failure or 0 for end of value string. */ static int parse_bin_chunk(const char *value, size_t offset, size_t max, unsigned char **buf, size_t *buflen, size_t *out_offset) { size_t vlen; size_t chunk_len; const char *value_str = value[0] == '"' ? value + offset + 1 : value + offset; if (max < 1) return -1; if (*value == '\0' || strcmp(value, "\"\"") == 0) { *buf = OPENSSL_malloc(1); if (*buf == NULL) return 0; **buf = 0; *buflen = 0; return 0; } if (*value_str == '\0') return 0; vlen = strlen(value_str); if (value[0] == '"') { /* Parse string literal */ if (vlen == 1 && value_str[0] != '"') /* Missing ending quotation mark */ return -1; if (vlen == 1 && value_str[0] == '"') /* End of value */ return 0; vlen--; chunk_len = max > vlen ? vlen : max; if ((*buf = unescape(value_str, chunk_len, buflen)) == NULL) return -1; } else { /* Parse hex string chunk */ long len; char *chunk = NULL; chunk_len = 2 * max > vlen ? vlen : 2 * max; chunk = OPENSSL_strndup(value_str, chunk_len); if (chunk == NULL) return -1; if (!TEST_ptr(*buf = OPENSSL_hexstr2buf(chunk, &len))) { OPENSSL_free(chunk); TEST_openssl_errors(); return -1; } OPENSSL_free(chunk); *buflen = len; } *out_offset = value[0] == '"' ? offset + (*buflen) : offset + 2 * (*buflen); return 1; } /** ** MESSAGE DIGEST TESTS **/ typedef struct digest_data_st { /* Digest this test is for */ const EVP_MD *digest; EVP_MD *fetched_digest; /* Input to digest */ STACK_OF(EVP_TEST_BUFFER) *input; /* Expected output */ unsigned char *output; size_t output_len; /* Padding type */ int pad_type; /* XOF mode? */ int xof; /* Size for variable output length but non-XOF */ size_t digest_size; } DIGEST_DATA; static int digest_test_init(EVP_TEST *t, const char *alg) { DIGEST_DATA *mdat; const EVP_MD *digest; EVP_MD *fetched_digest; if (is_digest_disabled(alg)) { TEST_info("skipping, '%s' is disabled", alg); t->skip = 1; return 1; } if ((digest = fetched_digest = EVP_MD_fetch(libctx, alg, propquery)) == NULL && (digest = EVP_get_digestbyname(alg)) == NULL) return 0; if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat)))) return 0; t->data = mdat; mdat->digest = digest; mdat->fetched_digest = fetched_digest; mdat->pad_type = 0; mdat->xof = 0; if (fetched_digest != NULL) TEST_info("%s is fetched", alg); return 1; } static void digest_test_cleanup(EVP_TEST *t) { DIGEST_DATA *mdat = t->data; sk_EVP_TEST_BUFFER_pop_free(mdat->input, evp_test_buffer_free); OPENSSL_free(mdat->output); EVP_MD_free(mdat->fetched_digest); } static int digest_test_parse(EVP_TEST *t, const char *keyword, const char *value) { DIGEST_DATA *mdata = t->data; if (strcmp(keyword, "Input") == 0) return evp_test_buffer_append(value, data_chunk_size, &mdata->input); if (strcmp(keyword, "Output") == 0) return parse_bin(value, &mdata->output, &mdata->output_len); if (strcmp(keyword, "Count") == 0) return evp_test_buffer_set_count(value, mdata->input); if (strcmp(keyword, "Ncopy") == 0) return evp_test_buffer_ncopy(value, mdata->input); if (strcmp(keyword, "Padding") == 0) return (mdata->pad_type = atoi(value)) > 0; if (strcmp(keyword, "XOF") == 0) return (mdata->xof = atoi(value)) > 0; if (strcmp(keyword, "OutputSize") == 0) { int sz; sz = atoi(value); if (sz < 0) return -1; mdata->digest_size = sz; return 1; } return 0; } static int digest_update_fn(void *ctx, const unsigned char *buf, size_t buflen) { return EVP_DigestUpdate(ctx, buf, buflen); } static int test_duplicate_md_ctx(EVP_TEST *t, EVP_MD_CTX *mctx) { char dont[] = "touch"; if (!TEST_ptr(mctx)) return 0; if (!EVP_DigestFinalXOF(mctx, (unsigned char *)dont, 0)) { EVP_MD_CTX_free(mctx); t->err = "DIGESTFINALXOF_ERROR"; return 0; } if (!TEST_str_eq(dont, "touch")) { EVP_MD_CTX_free(mctx); t->err = "DIGESTFINALXOF_ERROR"; return 0; } EVP_MD_CTX_free(mctx); return 1; } static int digest_test_run(EVP_TEST *t) { DIGEST_DATA *expected = t->data; EVP_TEST_BUFFER *inbuf; EVP_MD_CTX *mctx; unsigned char *got = NULL; unsigned int got_len; size_t size = 0; int xof = 0; OSSL_PARAM params[4], *p = ¶ms[0]; t->err = "TEST_FAILURE"; if (!TEST_ptr(mctx = EVP_MD_CTX_new())) goto err; got = OPENSSL_malloc(expected->output_len > EVP_MAX_MD_SIZE ? expected->output_len : EVP_MAX_MD_SIZE); if (!TEST_ptr(got)) goto err; if (expected->xof > 0) { xof |= 1; *p++ = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_XOFLEN, &expected->output_len); } if (expected->digest_size > 0) { *p++ = OSSL_PARAM_construct_size_t(OSSL_DIGEST_PARAM_SIZE, &expected->digest_size); } if (expected->pad_type > 0) *p++ = OSSL_PARAM_construct_int(OSSL_DIGEST_PARAM_PAD_TYPE, &expected->pad_type); *p++ = OSSL_PARAM_construct_end(); if (!EVP_DigestInit_ex2(mctx, expected->digest, params)) { t->err = "DIGESTINIT_ERROR"; goto err; } if (!evp_test_buffer_do(expected->input, digest_update_fn, mctx)) { t->err = "DIGESTUPDATE_ERROR"; goto err; } xof |= (EVP_MD_get_flags(expected->digest) & EVP_MD_FLAG_XOF) != 0; if (xof) { EVP_MD_CTX *mctx_cpy; if (!TEST_ptr(mctx_cpy = EVP_MD_CTX_new())) { goto err; } if (!TEST_true(EVP_MD_CTX_copy(mctx_cpy, mctx))) { EVP_MD_CTX_free(mctx_cpy); goto err; } else if (!test_duplicate_md_ctx(t, mctx_cpy)) { goto err; } if (!test_duplicate_md_ctx(t, EVP_MD_CTX_dup(mctx))) goto err; got_len = expected->output_len; if (!EVP_DigestFinalXOF(mctx, got, got_len)) { t->err = "DIGESTFINALXOF_ERROR"; goto err; } } else { if (!EVP_DigestFinal(mctx, got, &got_len)) { t->err = "DIGESTFINAL_ERROR"; goto err; } } if (!TEST_int_eq(expected->output_len, got_len)) { t->err = "DIGEST_LENGTH_MISMATCH"; goto err; } if (!memory_err_compare(t, "DIGEST_MISMATCH", expected->output, expected->output_len, got, got_len)) goto err; t->err = NULL; /* Test the EVP_Q_digest interface as well */ if (sk_EVP_TEST_BUFFER_num(expected->input) == 1 && !xof /* This should never fail but we need the returned pointer now */ && !TEST_ptr(inbuf = sk_EVP_TEST_BUFFER_value(expected->input, 0)) && !inbuf->count_set) { OPENSSL_cleanse(got, got_len); if (!TEST_true(EVP_Q_digest(libctx, EVP_MD_get0_name(expected->fetched_digest), NULL, inbuf->buf, inbuf->buflen, got, &size)) || !TEST_mem_eq(got, size, expected->output, expected->output_len)) { t->err = "EVP_Q_digest failed"; goto err; } } err: OPENSSL_free(got); EVP_MD_CTX_free(mctx); return 1; } static const EVP_TEST_METHOD digest_test_method = { "Digest", digest_test_init, digest_test_cleanup, digest_test_parse, digest_test_run }; /** *** CIPHER TESTS **/ typedef struct cipher_data_st { const EVP_CIPHER *cipher; EVP_CIPHER *fetched_cipher; int enc; /* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */ int aead; unsigned char *key; size_t key_len; size_t key_bits; /* Used by RC2 */ unsigned char *iv; unsigned char *next_iv; /* Expected IV state after operation */ unsigned int rounds; size_t iv_len; unsigned char *plaintext; size_t plaintext_len; unsigned char *ciphertext; size_t ciphertext_len; /* AEAD ciphers only */ unsigned char *aad[AAD_NUM]; size_t aad_len[AAD_NUM]; int tls_aad; int tls_version; unsigned char *tag; const char *cts_mode; size_t tag_len; int tag_late; unsigned char *mac_key; size_t mac_key_len; const char *xts_standard; STACK_OF(OPENSSL_STRING) *init_controls; /* collection of controls */ } CIPHER_DATA; /* * XTS, SIV, CCM, stitched ciphers and Wrap modes have special * requirements about input lengths so we don't fragment for those */ static int cipher_test_valid_fragmentation(CIPHER_DATA *cdat) { return (cdat->aead == EVP_CIPH_CCM_MODE || cdat->aead == EVP_CIPH_CBC_MODE || (cdat->aead == -1 && EVP_CIPHER_get_mode(cdat->cipher) == EVP_CIPH_STREAM_CIPHER) || ((EVP_CIPHER_get_flags(cdat->cipher) & EVP_CIPH_FLAG_CTS) != 0) || EVP_CIPHER_get_mode(cdat->cipher) == EVP_CIPH_SIV_MODE || EVP_CIPHER_get_mode(cdat->cipher) == EVP_CIPH_GCM_SIV_MODE || EVP_CIPHER_get_mode(cdat->cipher) == EVP_CIPH_XTS_MODE || EVP_CIPHER_get_mode(cdat->cipher) == EVP_CIPH_WRAP_MODE) ? 0 : 1; } static int cipher_test_init(EVP_TEST *t, const char *alg) { const EVP_CIPHER *cipher; EVP_CIPHER *fetched_cipher; CIPHER_DATA *cdat; int m; if (is_cipher_disabled(alg)) { t->skip = 1; TEST_info("skipping, '%s' is disabled", alg); return 1; } ERR_set_mark(); if ((cipher = fetched_cipher = EVP_CIPHER_fetch(libctx, alg, propquery)) == NULL && (cipher = EVP_get_cipherbyname(alg)) == NULL) { /* a stitched cipher might not be available */ if (strstr(alg, "HMAC") != NULL) { ERR_pop_to_mark(); t->skip = 1; TEST_info("skipping, '%s' is not available", alg); return 1; } ERR_clear_last_mark(); return 0; } ERR_clear_last_mark(); if (!TEST_ptr(cdat = OPENSSL_zalloc(sizeof(*cdat)))) return 0; cdat->init_controls = sk_OPENSSL_STRING_new_null(); cdat->cipher = cipher; cdat->fetched_cipher = fetched_cipher; cdat->enc = -1; m = EVP_CIPHER_get_mode(cipher); if (EVP_CIPHER_get_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) cdat->aead = m != 0 ? m : -1; else cdat->aead = 0; if (data_chunk_size != 0 && !cipher_test_valid_fragmentation(cdat)) { ERR_pop_to_mark(); EVP_CIPHER_free(fetched_cipher); OPENSSL_free(cdat); t->skip = 1; TEST_info("skipping, '%s' does not support fragmentation", alg); return 1; } t->data = cdat; if (fetched_cipher != NULL) TEST_info("%s is fetched", alg); return 1; } static void cipher_test_cleanup(EVP_TEST *t) { int i; CIPHER_DATA *cdat = t->data; OPENSSL_free(cdat->key); OPENSSL_free(cdat->iv); OPENSSL_free(cdat->next_iv); OPENSSL_free(cdat->ciphertext); OPENSSL_free(cdat->plaintext); for (i = 0; i < AAD_NUM; i++) OPENSSL_free(cdat->aad[i]); OPENSSL_free(cdat->tag); OPENSSL_free(cdat->mac_key); EVP_CIPHER_free(cdat->fetched_cipher); ctrlfree(cdat->init_controls); } static int cipher_test_parse(EVP_TEST *t, const char *keyword, const char *value) { CIPHER_DATA *cdat = t->data; int i; if (strcmp(keyword, "Key") == 0) return parse_bin(value, &cdat->key, &cdat->key_len); if (strcmp(keyword, "Rounds") == 0) { i = atoi(value); if (i < 0) return -1; cdat->rounds = (unsigned int)i; return 1; } if (strcmp(keyword, "IV") == 0) return parse_bin(value, &cdat->iv, &cdat->iv_len); if (strcmp(keyword, "NextIV") == 0) return parse_bin(value, &cdat->next_iv, &cdat->iv_len); if (strcmp(keyword, "Plaintext") == 0) return parse_bin(value, &cdat->plaintext, &cdat->plaintext_len); if (strcmp(keyword, "Ciphertext") == 0) return parse_bin(value, &cdat->ciphertext, &cdat->ciphertext_len); if (strcmp(keyword, "KeyBits") == 0) { i = atoi(value); if (i < 0) return -1; cdat->key_bits = (size_t)i; return 1; } if (cdat->aead) { int tls_aad = 0; if (strcmp(keyword, "TLSAAD") == 0) cdat->tls_aad = tls_aad = 1; if (strcmp(keyword, "AAD") == 0 || tls_aad) { for (i = 0; i < AAD_NUM; i++) { if (cdat->aad[i] == NULL) return parse_bin(value, &cdat->aad[i], &cdat->aad_len[i]); } return -1; } if (strcmp(keyword, "Tag") == 0) return parse_bin(value, &cdat->tag, &cdat->tag_len); if (strcmp(keyword, "SetTagLate") == 0) { if (strcmp(value, "TRUE") == 0) cdat->tag_late = 1; else if (strcmp(value, "FALSE") == 0) cdat->tag_late = 0; else return -1; return 1; } if (strcmp(keyword, "MACKey") == 0) return parse_bin(value, &cdat->mac_key, &cdat->mac_key_len); if (strcmp(keyword, "TLSVersion") == 0) { char *endptr; cdat->tls_version = (int)strtol(value, &endptr, 0); return value[0] != '\0' && endptr[0] == '\0'; } } if (strcmp(keyword, "Operation") == 0) { if (strcmp(value, "ENCRYPT") == 0) cdat->enc = 1; else if (strcmp(value, "DECRYPT") == 0) cdat->enc = 0; else return -1; return 1; } if (strcmp(keyword, "CTSMode") == 0) { cdat->cts_mode = value; return 1; } if (strcmp(keyword, "XTSStandard") == 0) { cdat->xts_standard = value; return 1; } if (strcmp(keyword, "CtrlInit") == 0) return ctrladd(cdat->init_controls, value); return 0; } static int cipher_test_enc(EVP_TEST *t, int enc, size_t out_misalign, size_t inp_misalign, int frag, int in_place, const OSSL_PARAM initparams[]) { CIPHER_DATA *expected = t->data; unsigned char *in, *expected_out, *tmp = NULL; size_t in_len, out_len, donelen = 0; int ok = 0, tmplen, chunklen, tmpflen, i; EVP_CIPHER_CTX *ctx_base = NULL; EVP_CIPHER_CTX *ctx = NULL, *duped; int fips_dupctx_supported = fips_provider_version_ge(libctx, 3, 2, 0); t->err = "TEST_FAILURE"; if (!TEST_ptr(ctx_base = EVP_CIPHER_CTX_new())) goto err; if (!TEST_ptr(ctx = EVP_CIPHER_CTX_new())) goto err; EVP_CIPHER_CTX_set_flags(ctx_base, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW); if (enc) { in = expected->plaintext; in_len = expected->plaintext_len; expected_out = expected->ciphertext; out_len = expected->ciphertext_len; } else { in = expected->ciphertext; in_len = expected->ciphertext_len; expected_out = expected->plaintext; out_len = expected->plaintext_len; } if (in_place == 1) { /* Exercise in-place encryption */ tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH); if (!tmp) goto err; in = memcpy(tmp + out_misalign, in, in_len); } else { inp_misalign += 16 - ((out_misalign + in_len) & 15); /* * 'tmp' will store both output and copy of input. We make the copy * of input to specifically aligned part of 'tmp'. So we just * figured out how much padding would ensure the required alignment, * now we allocate extended buffer and finally copy the input just * past inp_misalign in expression below. Output will be written * past out_misalign... */ tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + inp_misalign + in_len); if (!tmp) goto err; in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH + inp_misalign, in, in_len); } if (!EVP_CipherInit_ex2(ctx_base, expected->cipher, NULL, NULL, enc, initparams)) { t->err = "CIPHERINIT_ERROR"; goto err; } if (expected->cts_mode != NULL) { OSSL_PARAM params[2]; params[0] = OSSL_PARAM_construct_utf8_string(OSSL_CIPHER_PARAM_CTS_MODE, (char *)expected->cts_mode, 0); params[1] = OSSL_PARAM_construct_end(); if (!EVP_CIPHER_CTX_set_params(ctx_base, params)) { t->err = "INVALID_CTS_MODE"; goto err; } } if (expected->iv) { if (expected->aead) { if (EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_IVLEN, expected->iv_len, 0) <= 0) { t->err = "INVALID_IV_LENGTH"; goto err; } } else if (expected->iv_len != (size_t)EVP_CIPHER_CTX_get_iv_length(ctx_base)) { t->err = "INVALID_IV_LENGTH"; goto err; } } if (expected->aead && !expected->tls_aad) { unsigned char *tag; /* * If encrypting or OCB just set tag length initially, otherwise * set tag length and value. */ if (enc || expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late) { t->err = "TAG_LENGTH_SET_ERROR"; tag = NULL; } else { t->err = "TAG_SET_ERROR"; tag = expected->tag; } if (tag || expected->aead != EVP_CIPH_GCM_MODE) { if (EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_AEAD_SET_TAG, expected->tag_len, tag) <= 0) goto err; } } if (expected->rounds > 0) { int rounds = (int)expected->rounds; if (EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC5_ROUNDS, rounds, NULL) <= 0) { t->err = "INVALID_ROUNDS"; goto err; } } if (!EVP_CIPHER_CTX_set_key_length(ctx_base, expected->key_len)) { t->err = "INVALID_KEY_LENGTH"; goto err; } if (expected->key_bits > 0) { int bits = (int)expected->key_bits; if (EVP_CIPHER_CTX_ctrl(ctx_base, EVP_CTRL_SET_RC2_KEY_BITS, bits, NULL) <= 0) { t->err = "INVALID KEY BITS"; goto err; } } if (!EVP_CipherInit_ex(ctx_base, NULL, NULL, expected->key, expected->iv, -1)) { t->err = "KEY_SET_ERROR"; goto err; } /* Check that we get the same IV back */ if (expected->iv != NULL) { /* Some (e.g., GCM) tests use IVs longer than EVP_MAX_IV_LENGTH. */ unsigned char iv[128]; if (!TEST_true(EVP_CIPHER_CTX_get_updated_iv(ctx_base, iv, sizeof(iv))) || ((EVP_CIPHER_get_flags(expected->cipher) & EVP_CIPH_CUSTOM_IV) == 0 && !TEST_mem_eq(expected->iv, expected->iv_len, iv, expected->iv_len))) { t->err = "INVALID_IV"; goto err; } } /* Test that the cipher dup functions correctly if it is supported */ ERR_set_mark(); if (!EVP_CIPHER_CTX_copy(ctx, ctx_base)) { if (fips_dupctx_supported) { TEST_info("Doing a copy of Cipher %s Fails!\n", EVP_CIPHER_get0_name(expected->cipher)); ERR_print_errors_fp(stderr); goto err; } else { TEST_info("Allowing copy fail as an old fips provider is in use."); } EVP_CIPHER_CTX_free(ctx); ctx = ctx_base; } else { EVP_CIPHER_CTX_free(ctx_base); ctx_base = NULL; } /* Likewise for dup */ duped = EVP_CIPHER_CTX_dup(ctx); if (duped != NULL) { EVP_CIPHER_CTX_free(ctx); ctx = duped; } else { if (fips_dupctx_supported) { TEST_info("Doing a dup of Cipher %s Fails!\n", EVP_CIPHER_get0_name(expected->cipher)); ERR_print_errors_fp(stderr); goto err; } else { TEST_info("Allowing dup fail as an old fips provider is in use."); } } ERR_pop_to_mark(); if (expected->mac_key != NULL && EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, (int)expected->mac_key_len, (void *)expected->mac_key) <= 0) { t->err = "SET_MAC_KEY_ERROR"; goto err; } if (expected->tls_version) { OSSL_PARAM params[2]; params[0] = OSSL_PARAM_construct_int(OSSL_CIPHER_PARAM_TLS_VERSION, &expected->tls_version); params[1] = OSSL_PARAM_construct_end(); if (!EVP_CIPHER_CTX_set_params(ctx, params)) { t->err = "SET_TLS_VERSION_ERROR"; goto err; } } if (expected->aead == EVP_CIPH_CCM_MODE) { if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) { t->err = "CCM_PLAINTEXT_LENGTH_SET_ERROR"; goto err; } } if (expected->aad[0] != NULL && !expected->tls_aad) { t->err = "AAD_SET_ERROR"; if (!frag) { /* Supply the data all in one go or according to data_chunk_size */ for (i = 0; expected->aad[i] != NULL; i++) { size_t aad_len = expected->aad_len[i]; donelen = 0; do { size_t current_aad_len = (size_t) data_chunk_size; if (data_chunk_size == 0 || (size_t) data_chunk_size > aad_len) current_aad_len = aad_len; if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i] + donelen, current_aad_len)) goto err; donelen += current_aad_len; aad_len -= current_aad_len; } while (aad_len > 0); } } else { /* Supply the AAD in chunks less than the block size where possible */ for (i = 0; expected->aad[i] != NULL; i++) { if (expected->aad_len[i] > 0) { if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i], 1)) goto err; donelen++; } if (expected->aad_len[i] > 2) { if (!EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i] + donelen, expected->aad_len[i] - 2)) goto err; donelen += expected->aad_len[i] - 2; } if (expected->aad_len[i] > 1 && !EVP_CipherUpdate(ctx, NULL, &chunklen, expected->aad[i] + donelen, 1)) goto err; } } } if (expected->tls_aad) { OSSL_PARAM params[2]; char *tls_aad; /* duplicate the aad as the implementation might modify it */ if ((tls_aad = OPENSSL_memdup(expected->aad[0], expected->aad_len[0])) == NULL) goto err; params[0] = OSSL_PARAM_construct_octet_string(OSSL_CIPHER_PARAM_AEAD_TLS1_AAD, tls_aad, expected->aad_len[0]); params[1] = OSSL_PARAM_construct_end(); if (!EVP_CIPHER_CTX_set_params(ctx, params)) { OPENSSL_free(tls_aad); t->err = "TLS1_AAD_ERROR"; goto err; } OPENSSL_free(tls_aad); } else if (!enc && (expected->aead == EVP_CIPH_OCB_MODE || expected->tag_late)) { if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG, expected->tag_len, expected->tag) <= 0) { t->err = "TAG_SET_ERROR"; goto err; } } if (expected->xts_standard != NULL) { OSSL_PARAM params[2]; params[0] = OSSL_PARAM_construct_utf8_string(OSSL_CIPHER_PARAM_XTS_STANDARD, (char *)expected->xts_standard, 0); params[1] = OSSL_PARAM_construct_end(); if (!EVP_CIPHER_CTX_set_params(ctx, params)) { t->err = "SET_XTS_STANDARD_ERROR"; goto err; } } EVP_CIPHER_CTX_set_padding(ctx, 0); t->err = "CIPHERUPDATE_ERROR"; tmplen = 0; if (!frag) { do { /* Supply the data all in one go or according to data_chunk_size */ size_t current_in_len = (size_t) data_chunk_size; if (data_chunk_size == 0 || (size_t) data_chunk_size > in_len) current_in_len = in_len; if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, in, current_in_len)) goto err; tmplen += chunklen; in += current_in_len; in_len -= current_in_len; } while (in_len > 0); } else { /* Supply the data in chunks less than the block size where possible */ if (in_len > 0) { if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &chunklen, in, 1)) goto err; tmplen += chunklen; in++; in_len--; } if (in_len > 1) { if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, in, in_len - 1)) goto err; tmplen += chunklen; in += in_len - 1; in_len = 1; } if (in_len > 0) { if (!EVP_CipherUpdate(ctx, tmp + out_misalign + tmplen, &chunklen, in, 1)) goto err; tmplen += chunklen; } } if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen)) { t->err = "CIPHERFINAL_ERROR"; goto err; } if (!cipher_check_fips_approved(ctx, t)) { t->err = "FIPSAPPROVED_ERROR"; goto err; } if (!enc && expected->tls_aad) { if (expected->tls_version >= TLS1_1_VERSION && (EVP_CIPHER_is_a(expected->cipher, "AES-128-CBC-HMAC-SHA1") || EVP_CIPHER_is_a(expected->cipher, "AES-256-CBC-HMAC-SHA1"))) { tmplen -= expected->iv_len; expected_out += expected->iv_len; out_misalign += expected->iv_len; } if ((int)out_len > tmplen + tmpflen) out_len = tmplen + tmpflen; } if (!memory_err_compare(t, "VALUE_MISMATCH", expected_out, out_len, tmp + out_misalign, tmplen + tmpflen)) goto err; if (enc && expected->aead && !expected->tls_aad) { unsigned char rtag[48]; /* longest known for TLS_SHA384_SHA384 */ if (!TEST_size_t_le(expected->tag_len, sizeof(rtag))) { t->err = "TAG_LENGTH_INTERNAL_ERROR"; goto err; } if (EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG, expected->tag_len, rtag) <= 0) { t->err = "TAG_RETRIEVE_ERROR"; goto err; } if (!memory_err_compare(t, "TAG_VALUE_MISMATCH", expected->tag, expected->tag_len, rtag, expected->tag_len)) goto err; } /* Check the updated IV */ if (expected->next_iv != NULL) { /* Some (e.g., GCM) tests use IVs longer than EVP_MAX_IV_LENGTH. */ unsigned char iv[128]; if (!TEST_true(EVP_CIPHER_CTX_get_updated_iv(ctx, iv, sizeof(iv))) || ((EVP_CIPHER_get_flags(expected->cipher) & EVP_CIPH_CUSTOM_IV) == 0 && !TEST_mem_eq(expected->next_iv, expected->iv_len, iv, expected->iv_len))) { t->err = "INVALID_NEXT_IV"; goto err; } } t->err = NULL; ok = 1; err: OPENSSL_free(tmp); if (ctx != ctx_base) EVP_CIPHER_CTX_free(ctx_base); EVP_CIPHER_CTX_free(ctx); return ok; } static int cipher_test_run(EVP_TEST *t) { CIPHER_DATA *cdat = t->data; int rv, frag, fragmax, in_place; size_t out_misalign, inp_misalign; OSSL_PARAM initparams[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; size_t params_n = 0; TEST_info("RUNNING TEST FOR CIPHER %s\n", EVP_CIPHER_get0_name(cdat->cipher)); if (!cdat->key) { t->err = "NO_KEY"; return 0; } if (!cdat->iv && EVP_CIPHER_get_iv_length(cdat->cipher) > 0) { /* IV is optional and usually omitted in wrap mode */ if (EVP_CIPHER_get_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) { t->err = "NO_IV"; return 0; } } if (cdat->aead && cdat->tag == NULL && !cdat->tls_aad) { t->err = "NO_TAG"; return 0; } if (sk_OPENSSL_STRING_num(cdat->init_controls) > 0) { if (!ctrl2params(t, cdat->init_controls, NULL, initparams, OSSL_NELEM(initparams), ¶ms_n)) return 0; } fragmax = (cipher_test_valid_fragmentation(cdat) == 0) ? 0 : 1; for (in_place = 1; in_place >= 0; in_place--) { static char aux_err[64]; t->aux_err = aux_err; /* Test only in-place data processing */ if (process_mode_in_place == 1 && in_place == 0) break; for (frag = 0; frag <= fragmax; frag++) { if (frag == 1 && data_chunk_size != 0) break; for (out_misalign = 0; out_misalign <= 1; out_misalign++) { for (inp_misalign = 0; inp_misalign <= 1; inp_misalign++) { /* Skip input misalign tests for in-place processing */ if (inp_misalign == 1 && in_place == 1) break; if (in_place == 1) { BIO_snprintf(aux_err, sizeof(aux_err), "%s in-place, %sfragmented", out_misalign ? "misaligned" : "aligned", frag ? "" : "not "); } else { BIO_snprintf(aux_err, sizeof(aux_err), "%s output and %s input, %sfragmented", out_misalign ? "misaligned" : "aligned", inp_misalign ? "misaligned" : "aligned", frag ? "" : "not "); } if (cdat->enc) { rv = cipher_test_enc(t, 1, out_misalign, inp_misalign, frag, in_place, initparams); if (rv != 1) goto end; } if (cdat->enc != 1) { rv = cipher_test_enc(t, 0, out_misalign, inp_misalign, frag, in_place, initparams); if (rv != 1) goto end; } } } } } ctrl2params_free(initparams, params_n, 0); t->aux_err = NULL; return 1; end: ctrl2params_free(initparams, params_n, 0); return (rv < 0 ? 0 : 1); } static const EVP_TEST_METHOD cipher_test_method = { "Cipher", cipher_test_init, cipher_test_cleanup, cipher_test_parse, cipher_test_run }; /** ** MAC TESTS **/ typedef struct mac_data_st { /* MAC type in one form or another */ char *mac_name; EVP_MAC *mac; /* for mac_test_run_mac */ int type; /* for mac_test_run_pkey */ /* Algorithm string for this MAC */ char *alg; /* MAC key */ unsigned char *key; size_t key_len; /* MAC IV (GMAC) */ unsigned char *iv; size_t iv_len; /* Input to MAC */ unsigned char *input; size_t input_len; /* Expected output */ unsigned char *output; size_t output_len; unsigned char *custom; size_t custom_len; /* MAC salt (blake2) */ unsigned char *salt; size_t salt_len; /* XOF mode? */ int xof; /* Reinitialization fails */ int no_reinit; /* Collection of controls */ STACK_OF(OPENSSL_STRING) *controls; /* Output size */ int output_size; /* Block size */ int block_size; } MAC_DATA; static int mac_test_init(EVP_TEST *t, const char *alg) { EVP_MAC *mac = NULL; int type = NID_undef; MAC_DATA *mdat; if (is_mac_disabled(alg)) { TEST_info("skipping, '%s' is disabled", alg); t->skip = 1; return 1; } if ((mac = EVP_MAC_fetch(libctx, alg, propquery)) == NULL) { /* * Since we didn't find an EVP_MAC, we check for known EVP_PKEY methods * For debugging purposes, we allow 'NNNN by EVP_PKEY' to force running * the EVP_PKEY method. */ size_t sz = strlen(alg); static const char epilogue[] = " by EVP_PKEY"; if (sz >= sizeof(epilogue) && strcmp(alg + sz - (sizeof(epilogue) - 1), epilogue) == 0) sz -= sizeof(epilogue) - 1; if (strncmp(alg, "HMAC", sz) == 0) type = EVP_PKEY_HMAC; else if (strncmp(alg, "CMAC", sz) == 0) type = EVP_PKEY_CMAC; else if (strncmp(alg, "Poly1305", sz) == 0) type = EVP_PKEY_POLY1305; else if (strncmp(alg, "SipHash", sz) == 0) type = EVP_PKEY_SIPHASH; else return 0; } if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat)))) return 0; mdat->type = type; if (!TEST_ptr(mdat->mac_name = OPENSSL_strdup(alg))) { OPENSSL_free(mdat); return 0; } mdat->mac = mac; if (!TEST_ptr(mdat->controls = sk_OPENSSL_STRING_new_null())) { OPENSSL_free(mdat->mac_name); OPENSSL_free(mdat); return 0; } mdat->output_size = mdat->block_size = -1; t->data = mdat; return 1; } static void mac_test_cleanup(EVP_TEST *t) { MAC_DATA *mdat = t->data; EVP_MAC_free(mdat->mac); OPENSSL_free(mdat->mac_name); sk_OPENSSL_STRING_pop_free(mdat->controls, openssl_free); OPENSSL_free(mdat->alg); OPENSSL_free(mdat->key); OPENSSL_free(mdat->iv); OPENSSL_free(mdat->custom); OPENSSL_free(mdat->salt); OPENSSL_free(mdat->input); OPENSSL_free(mdat->output); } static int mac_test_parse(EVP_TEST *t, const char *keyword, const char *value) { MAC_DATA *mdata = t->data; if (strcmp(keyword, "Key") == 0) return parse_bin(value, &mdata->key, &mdata->key_len); if (strcmp(keyword, "IV") == 0) return parse_bin(value, &mdata->iv, &mdata->iv_len); if (strcmp(keyword, "Custom") == 0) return parse_bin(value, &mdata->custom, &mdata->custom_len); if (strcmp(keyword, "Salt") == 0) return parse_bin(value, &mdata->salt, &mdata->salt_len); if (strcmp(keyword, "Algorithm") == 0) { mdata->alg = OPENSSL_strdup(value); if (mdata->alg == NULL) return -1; return 1; } if (strcmp(keyword, "Input") == 0) return parse_bin(value, &mdata->input, &mdata->input_len); if (strcmp(keyword, "Output") == 0) return parse_bin(value, &mdata->output, &mdata->output_len); if (strcmp(keyword, "XOF") == 0) return mdata->xof = 1; if (strcmp(keyword, "NoReinit") == 0) return mdata->no_reinit = 1; if (strcmp(keyword, "Ctrl") == 0) return ctrladd(mdata->controls, value); if (strcmp(keyword, "OutputSize") == 0) { mdata->output_size = atoi(value); if (mdata->output_size < 0) return -1; return 1; } if (strcmp(keyword, "BlockSize") == 0) { mdata->block_size = atoi(value); if (mdata->block_size < 0) return -1; return 1; } return 0; } static int mac_test_ctrl_pkey(EVP_TEST *t, EVP_PKEY_CTX *pctx, const char *value) { int rv = 0; char *p, *tmpval; if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) return 0; p = strchr(tmpval, ':'); if (p != NULL) { *p++ = '\0'; rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); } if (rv == -2) t->err = "PKEY_CTRL_INVALID"; else if (rv <= 0) t->err = "PKEY_CTRL_ERROR"; else rv = 1; OPENSSL_free(tmpval); return rv > 0; } static int mac_test_run_pkey(EVP_TEST *t) { MAC_DATA *expected = t->data; EVP_MD_CTX *mctx = NULL; EVP_PKEY_CTX *pctx = NULL, *genctx = NULL; EVP_PKEY *key = NULL; const char *mdname = NULL; EVP_CIPHER *cipher = NULL; unsigned char *got = NULL; size_t got_len; int i; size_t input_len, donelen; /* We don't do XOF mode via PKEY */ if (expected->xof) return 1; if (expected->alg == NULL) TEST_info("Trying the EVP_PKEY %s test", OBJ_nid2sn(expected->type)); else TEST_info("Trying the EVP_PKEY %s test with %s", OBJ_nid2sn(expected->type), expected->alg); if (expected->type == EVP_PKEY_CMAC) { #ifdef OPENSSL_NO_DEPRECATED_3_0 TEST_info("skipping, PKEY CMAC '%s' is disabled", expected->alg); t->skip = 1; t->err = NULL; goto err; #else OSSL_LIB_CTX *tmpctx; if (expected->alg != NULL && is_cipher_disabled(expected->alg)) { TEST_info("skipping, PKEY CMAC '%s' is disabled", expected->alg); t->skip = 1; t->err = NULL; goto err; } if (!TEST_ptr(cipher = EVP_CIPHER_fetch(libctx, expected->alg, propquery))) { t->err = "MAC_KEY_CREATE_ERROR"; goto err; } tmpctx = OSSL_LIB_CTX_set0_default(libctx); key = EVP_PKEY_new_CMAC_key(NULL, expected->key, expected->key_len, cipher); OSSL_LIB_CTX_set0_default(tmpctx); #endif } else { key = EVP_PKEY_new_raw_private_key_ex(libctx, OBJ_nid2sn(expected->type), NULL, expected->key, expected->key_len); } if (key == NULL) { t->err = "MAC_KEY_CREATE_ERROR"; goto err; } if (expected->type == EVP_PKEY_HMAC && expected->alg != NULL) { if (is_digest_disabled(expected->alg)) { TEST_info("skipping, HMAC '%s' is disabled", expected->alg); t->skip = 1; t->err = NULL; goto err; } mdname = expected->alg; } if (!TEST_ptr(mctx = EVP_MD_CTX_new())) { t->err = "INTERNAL_ERROR"; goto err; } if (!EVP_DigestSignInit_ex(mctx, &pctx, mdname, libctx, NULL, key, NULL)) { t->err = "DIGESTSIGNINIT_ERROR"; goto err; } for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) if (!mac_test_ctrl_pkey(t, pctx, sk_OPENSSL_STRING_value(expected->controls, i))) { t->err = "EVPPKEYCTXCTRL_ERROR"; goto err; } input_len = expected->input_len; donelen = 0; do { size_t current_len = (size_t) data_chunk_size; if (data_chunk_size == 0 || (size_t) data_chunk_size > input_len) current_len = input_len; if (!EVP_DigestSignUpdate(mctx, expected->input + donelen, current_len)) { t->err = "DIGESTSIGNUPDATE_ERROR"; goto err; } donelen += current_len; input_len -= current_len; } while (input_len > 0); if (!EVP_DigestSignFinal(mctx, NULL, &got_len)) { t->err = "DIGESTSIGNFINAL_LENGTH_ERROR"; goto err; } if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { t->err = "TEST_FAILURE"; goto err; } if (!EVP_DigestSignFinal(mctx, got, &got_len) || !memory_err_compare(t, "TEST_MAC_ERR", expected->output, expected->output_len, got, got_len)) { t->err = "TEST_MAC_ERR"; goto err; } t->err = NULL; err: EVP_CIPHER_free(cipher); EVP_MD_CTX_free(mctx); OPENSSL_free(got); EVP_PKEY_CTX_free(genctx); EVP_PKEY_free(key); return 1; } static int mac_test_run_mac(EVP_TEST *t) { MAC_DATA *expected = t->data; EVP_MAC_CTX *ctx = NULL; unsigned char *got = NULL; size_t got_len = 0, size = 0; size_t size_before_init = 0, size_after_init, size_val = 0; int block_size = -1, output_size = -1; OSSL_PARAM params[21], sizes[3], *psizes = sizes, *p; size_t params_n = 0; size_t params_n_allocstart = 0; const OSSL_PARAM *defined_params = EVP_MAC_settable_ctx_params(expected->mac); int xof; int reinit = 1; size_t input_len, donelen ; if (expected->alg == NULL) TEST_info("Trying the EVP_MAC %s test", expected->mac_name); else TEST_info("Trying the EVP_MAC %s test with %s", expected->mac_name, expected->alg); if (expected->alg != NULL) { int skip = 0; /* * The underlying algorithm may be a cipher or a digest. * We don't know which it is, but we can ask the MAC what it * should be and bet on that. */ if (OSSL_PARAM_locate_const(defined_params, OSSL_MAC_PARAM_CIPHER) != NULL) { if (is_cipher_disabled(expected->alg)) skip = 1; else params[params_n++] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_CIPHER, expected->alg, 0); } else if (OSSL_PARAM_locate_const(defined_params, OSSL_MAC_PARAM_DIGEST) != NULL) { if (is_digest_disabled(expected->alg)) skip = 1; else params[params_n++] = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, expected->alg, 0); } else { t->err = "MAC_BAD_PARAMS"; goto err; } if (skip) { TEST_info("skipping, algorithm '%s' is disabled", expected->alg); t->skip = 1; t->err = NULL; goto err; } } if (expected->custom != NULL) params[params_n++] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_CUSTOM, expected->custom, expected->custom_len); if (expected->salt != NULL) params[params_n++] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_SALT, expected->salt, expected->salt_len); if (expected->iv != NULL) params[params_n++] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV, expected->iv, expected->iv_len); params_n_allocstart = params_n; if (!ctrl2params(t, expected->controls, defined_params, params, OSSL_NELEM(params), ¶ms_n)) goto err; p = OSSL_PARAM_locate(params + params_n_allocstart, "size"); if (p != NULL) { if (!OSSL_PARAM_get_size_t(p, &size_val)) goto err; } if ((ctx = EVP_MAC_CTX_new(expected->mac)) == NULL) { t->err = "MAC_CREATE_ERROR"; goto err; } if (fips_provider_version_gt(libctx, 3, 2, 0)) size_before_init = EVP_MAC_CTX_get_mac_size(ctx); if (!EVP_MAC_init(ctx, expected->key, expected->key_len, params)) { t->err = "MAC_INIT_ERROR"; goto err; } size_after_init = EVP_MAC_CTX_get_mac_size(ctx); if (!TEST_false(size_before_init == 0 && size_after_init == 0)) { t->err = "MAC SIZE not set"; goto err; } if (size_before_init != 0) { /* mac-size not modified by init params */ if (size_val == 0 && !TEST_size_t_eq(size_before_init, size_after_init)) { t->err = "MAC SIZE check failed"; goto err; } /* mac-size modified by init params */ if (size_val != 0 && !TEST_size_t_eq(size_val, size_after_init)) { t->err = "MAC SIZE check failed"; goto err; } } if (expected->output_size >= 0) *psizes++ = OSSL_PARAM_construct_int(OSSL_MAC_PARAM_SIZE, &output_size); if (expected->block_size >= 0) *psizes++ = OSSL_PARAM_construct_int(OSSL_MAC_PARAM_BLOCK_SIZE, &block_size); if (psizes != sizes) { *psizes = OSSL_PARAM_construct_end(); if (!TEST_true(EVP_MAC_CTX_get_params(ctx, sizes))) { t->err = "INTERNAL_ERROR"; goto err; } if (expected->output_size >= 0 && !TEST_int_eq(output_size, expected->output_size)) { t->err = "TEST_FAILURE"; goto err; } if (expected->block_size >= 0 && !TEST_int_eq(block_size, expected->block_size)) { t->err = "TEST_FAILURE"; goto err; } } retry: input_len = expected->input_len; donelen = 0; do { size_t current_len = (size_t) data_chunk_size; if (data_chunk_size == 0 || (size_t) data_chunk_size > input_len) current_len = input_len; if (!EVP_MAC_update(ctx, expected->input + donelen, current_len)) { t->err = "MAC_UPDATE_ERROR"; goto err; } donelen += current_len; input_len -= current_len; } while (input_len > 0); xof = expected->xof; if (xof) { if (!TEST_ptr(got = OPENSSL_malloc(expected->output_len))) { t->err = "TEST_FAILURE"; goto err; } if (!EVP_MAC_finalXOF(ctx, got, expected->output_len) || !memory_err_compare(t, "TEST_MAC_ERR", expected->output, expected->output_len, got, expected->output_len)) { t->err = "MAC_FINAL_ERROR"; goto err; } } else { if (!EVP_MAC_final(ctx, NULL, &got_len, 0)) { t->err = "MAC_FINAL_LENGTH_ERROR"; goto err; } if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { t->err = "TEST_FAILURE"; goto err; } if (!EVP_MAC_final(ctx, got, &got_len, got_len) || !memory_err_compare(t, "TEST_MAC_ERR", expected->output, expected->output_len, got, got_len)) { t->err = "TEST_MAC_ERR"; goto err; } if (!mac_check_fips_approved(ctx, t)) goto err; } /* FIPS(3.0.0): can't reinitialise MAC contexts #18100 */ if (reinit-- && fips_provider_version_gt(libctx, 3, 0, 0)) { OSSL_PARAM ivparams[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; int ret; /* If the MAC uses IV, we have to set it again */ if (expected->iv != NULL) { ivparams[0] = OSSL_PARAM_construct_octet_string(OSSL_MAC_PARAM_IV, expected->iv, expected->iv_len); ivparams[1] = OSSL_PARAM_construct_end(); } ERR_set_mark(); ret = EVP_MAC_init(ctx, NULL, 0, ivparams); if (expected->no_reinit) { if (ret) { ERR_clear_last_mark(); t->err = "MAC_REINIT_SHOULD_FAIL"; goto err; } } else if (ret) { ERR_clear_last_mark(); OPENSSL_free(got); got = NULL; goto retry; } else { ERR_clear_last_mark(); t->err = "MAC_REINIT_ERROR"; goto err; } /* If reinitialization fails, it is unsupported by the algorithm */ ERR_pop_to_mark(); } t->err = NULL; /* Test the EVP_Q_mac interface as well */ if (!xof) { OPENSSL_cleanse(got, got_len); if (!TEST_true(EVP_Q_mac(libctx, expected->mac_name, NULL, expected->alg, params, expected->key, expected->key_len, expected->input, expected->input_len, got, got_len, &size)) || !TEST_mem_eq(got, size, expected->output, expected->output_len)) { t->err = "EVP_Q_mac failed"; goto err; } } err: ctrl2params_free(params, params_n, params_n_allocstart); EVP_MAC_CTX_free(ctx); OPENSSL_free(got); return 1; } static int mac_test_run(EVP_TEST *t) { MAC_DATA *expected = t->data; if (expected->mac != NULL) return mac_test_run_mac(t); return mac_test_run_pkey(t); } static const EVP_TEST_METHOD mac_test_method = { "MAC", mac_test_init, mac_test_cleanup, mac_test_parse, mac_test_run }; typedef struct kem_data_st { /* Context for this operation */ EVP_PKEY_CTX *ctx; const char *op; /* Input to decapsulate */ unsigned char *input; size_t inputlen; /* Expected secret */ unsigned char *output; size_t outputlen; STACK_OF(OPENSSL_STRING) *init_ctrls; } KEM_DATA; static int kem_test_init(EVP_TEST *t, const char *name) { KEM_DATA *kdata = NULL; EVP_PKEY *pkey = NULL; int rv; rv = find_key(&pkey, name, private_keys); if (rv == 0 || pkey == NULL) { TEST_info("skipping, key '%s' is disabled", name); t->skip = 1; return 1; } if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) goto err; if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new_from_pkey(libctx, pkey, propquery))) goto err; t->data = kdata; kdata->init_ctrls = sk_OPENSSL_STRING_new_null(); return 1; err: EVP_PKEY_free(pkey); OPENSSL_free(kdata); return 0; } static void kem_test_cleanup(EVP_TEST *t) { KEM_DATA *kdata = t->data; ctrlfree(kdata->init_ctrls); OPENSSL_free(kdata->input); OPENSSL_free(kdata->output); EVP_PKEY_CTX_free(kdata->ctx); } static int kem_test_parse(EVP_TEST *t, const char *keyword, const char *value) { KEM_DATA *kdata = t->data; if (strcmp(keyword, "Op") == 0) { kdata->op = value; return 1; } if (strcmp(keyword, "CtrlInit") == 0) return ctrladd(kdata->init_ctrls, value); if (strcmp(keyword, "Input") == 0) return parse_bin(value, &kdata->input, &kdata->inputlen); if (strcmp(keyword, "Output") == 0) return parse_bin(value, &kdata->output, &kdata->outputlen); return 1; } static int encapsulate(EVP_TEST *t, EVP_PKEY_CTX *ctx, const char *op, unsigned char **outwrapped, size_t *outwrappedlen, unsigned char **outsecret, size_t *outsecretlen) { int ret = 1; KEM_DATA *kdata = t->data; unsigned char *wrapped = NULL, *secret = NULL; size_t wrappedlen = 0, secretlen = 0; OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; size_t params_n = 0, params_n_allocated = 0; OSSL_PARAM *p = NULL; if (sk_OPENSSL_STRING_num(kdata->init_ctrls) > 0) { if (ctrl2params(t, kdata->init_ctrls, NULL, params, OSSL_NELEM(params), ¶ms_n)) goto err; p = params; } if (EVP_PKEY_encapsulate_init(ctx, p) <= 0) { t->err = "TEST_ENCAPSULATE_INIT_ERROR"; goto err; } if (EVP_PKEY_CTX_set_kem_op(ctx, op) <= 0) { t->err = "TEST_SET_KEM_OP_ERROR"; goto err; } if (EVP_PKEY_encapsulate(ctx, NULL, &wrappedlen, NULL, &secretlen) <= 0) { t->err = "TEST_ENCAPSULATE_LEN_ERROR"; goto err; } wrapped = OPENSSL_malloc(wrappedlen); secret = OPENSSL_malloc(secretlen); if (!TEST_ptr(wrapped) || !TEST_ptr(secret)) { ret = 0; goto err; } if (EVP_PKEY_encapsulate(ctx, wrapped, &wrappedlen, secret, &secretlen) <= 0) { t->err = "TEST_ENCAPSULATE_ERROR"; goto err; } ret = pkey_check_fips_approved(ctx, t); if (ret == 0) goto err; t->err = NULL; *outwrapped = wrapped; *outsecret = secret; *outwrappedlen = wrappedlen; *outsecretlen = secretlen; ret = 1; goto end; err: OPENSSL_free(wrapped); OPENSSL_free(secret); end: ctrl2params_free(params, params_n, params_n_allocated); return ret; } static int decapsulate(EVP_TEST *t, EVP_PKEY_CTX *ctx, const char *op, const unsigned char *in, size_t inlen, const unsigned char *expected, size_t expectedlen) { int ret = 1; KEM_DATA *kdata = t->data; size_t outlen = 0; unsigned char *out = NULL; OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; OSSL_PARAM *p = NULL; size_t params_n = 0, params_n_allocated = 0; if (sk_OPENSSL_STRING_num(kdata->init_ctrls) > 0) { if (!ctrl2params(t, kdata->init_ctrls, NULL, params, OSSL_NELEM(params), ¶ms_n)) goto err; p = params; } if (EVP_PKEY_decapsulate_init(ctx, p) <= 0) { t->err = "TEST_DECAPSULATE_INIT_ERROR"; goto err; } if (EVP_PKEY_CTX_set_kem_op(ctx, op) <= 0) { t->err = "TEST_SET_KEM_OP_ERROR"; goto err; } if (EVP_PKEY_decapsulate(ctx, NULL, &outlen, in, inlen) <= 0) { t->err = "TEST_DECAPSULATE_LEN_ERROR"; goto err; } if (!TEST_ptr(out = OPENSSL_malloc(outlen))) { ret = 0; goto err; } if (EVP_PKEY_decapsulate(ctx, out, &outlen, in, inlen) <= 0) { t->err = "TEST_DECAPSULATE_ERROR"; goto err; } if (!TEST_mem_eq(out, outlen, expected, expectedlen)) { t->err = "TEST_SECRET_MISMATCH"; goto err; } t->err = NULL; ret = 1; err: OPENSSL_free(out); ctrl2params_free(params, params_n, params_n_allocated); return ret; } static int kem_test_run(EVP_TEST *t) { int ret = 0; KEM_DATA *kdata = t->data; unsigned char *wrapped = NULL, *secret = NULL; if (kdata->input == NULL) { size_t wrappedlen = 0, secretlen = 0; ret = encapsulate(t, kdata->ctx, kdata->op, &wrapped, &wrappedlen, &secret, &secretlen); if (ret == 0 || t->err != NULL) goto err; ret = decapsulate(t, kdata->ctx, kdata->op, wrapped, wrappedlen, secret, secretlen); } else { ret = decapsulate(t, kdata->ctx, kdata->op, kdata->input, kdata->inputlen, kdata->output, kdata->outputlen); } err: OPENSSL_free(wrapped); OPENSSL_free(secret); return ret; } static const EVP_TEST_METHOD pkey_kem_test_method = { "Kem", kem_test_init, kem_test_cleanup, kem_test_parse, kem_test_run }; /** ** PUBLIC KEY TESTS ** These are all very similar and share much common code. **/ typedef struct pkey_data_st { /* Context for this operation */ EVP_PKEY_CTX *ctx; /* Key operation to perform */ int (*keyopinit) (EVP_PKEY_CTX *ctx, const OSSL_PARAM params[]); int (*keyop) (EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen); /* Input to MAC */ unsigned char *input; size_t input_len; /* Expected output */ unsigned char *output; size_t output_len; STACK_OF(OPENSSL_STRING) *init_controls; /* collection of controls */ STACK_OF(OPENSSL_STRING) *controls; /* collection of controls */ EVP_PKEY *peer; int validate; } PKEY_DATA; /* * Perform public key operation setup: lookup key, allocated ctx and call * the appropriate initialisation function */ static int pkey_test_init(EVP_TEST *t, const char *name, int use_public, int (*keyopinit) (EVP_PKEY_CTX *ctx, const OSSL_PARAM params[]), int (*keyop)(EVP_PKEY_CTX *ctx, unsigned char *sig, size_t *siglen, const unsigned char *tbs, size_t tbslen)) { PKEY_DATA *kdata; EVP_PKEY *pkey = NULL; int rv = 0; if (use_public) rv = find_key(&pkey, name, public_keys); if (rv == 0) rv = find_key(&pkey, name, private_keys); if (rv == 0 || pkey == NULL) { TEST_info("skipping, key '%s' is disabled", name); t->skip = 1; return 1; } if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) { EVP_PKEY_free(pkey); return 0; } kdata->keyopinit = keyopinit; kdata->keyop = keyop; if (!TEST_ptr(kdata->ctx = EVP_PKEY_CTX_new_from_pkey(libctx, pkey, propquery))) { EVP_PKEY_free(pkey); OPENSSL_free(kdata); return 0; } t->data = kdata; kdata->init_controls = sk_OPENSSL_STRING_new_null(); kdata->controls = sk_OPENSSL_STRING_new_null(); return 1; } static void pkey_test_cleanup(EVP_TEST *t) { PKEY_DATA *kdata = t->data; ctrlfree(kdata->init_controls); ctrlfree(kdata->controls); OPENSSL_free(kdata->input); OPENSSL_free(kdata->output); EVP_PKEY_CTX_free(kdata->ctx); } static int pkey_test_ctrl(EVP_TEST *t, EVP_PKEY_CTX *pctx, const char *value) { int rv = 0; char *p, *tmpval; if (!TEST_ptr(tmpval = OPENSSL_strdup(value))) return 0; p = strchr(tmpval, ':'); if (p != NULL) { *p++ = '\0'; rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p); } if (rv == -2) { t->err = "PKEY_CTRL_INVALID"; rv = 1; } else if (p != NULL && rv <= 0) { if (is_digest_disabled(p) || is_cipher_disabled(p)) { TEST_info("skipping, '%s' is disabled", p); t->skip = 1; rv = 1; } else { t->err = "PKEY_CTRL_ERROR"; rv = 1; } } OPENSSL_free(tmpval); return rv > 0; } static int pkey_add_control(EVP_TEST *t, STACK_OF(OPENSSL_STRING) *controls, const char *value) { char *p; if (controls == NULL) return 0; p = strchr(value, ':'); if (p == NULL) return 0; p++; if (is_digest_disabled(p) || is_cipher_disabled(p)) { TEST_info("skipping, '%s' is disabled", p); t->skip = 1; return 1; } return ctrladd(controls, value) > 0; } static int pkey_test_parse(EVP_TEST *t, const char *keyword, const char *value) { PKEY_DATA *kdata = t->data; if (strcmp(keyword, "Input") == 0) return parse_bin(value, &kdata->input, &kdata->input_len); if (strcmp(keyword, "Output") == 0) return parse_bin(value, &kdata->output, &kdata->output_len); if (strcmp(keyword, "CtrlInit") == 0) return ctrladd(kdata->init_controls, value); if (strcmp(keyword, "Ctrl") == 0) return pkey_add_control(t, kdata->controls, value); return 0; } static int pkey_test_run_init(EVP_TEST *t) { PKEY_DATA *data = t->data; int i, ret = 0; OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; OSSL_PARAM *p = NULL; size_t params_n = 0, params_n_allocstart = 0; if (sk_OPENSSL_STRING_num(data->init_controls) > 0) { if (!ctrl2params(t, data->init_controls, NULL, params, OSSL_NELEM(params), ¶ms_n)) goto err; p = params; } if (data->keyopinit(data->ctx, p) <= 0) { t->err = "KEYOP_INIT_ERROR"; goto err; } for (i = 0; i < sk_OPENSSL_STRING_num(data->controls); i++) { char *value = sk_OPENSSL_STRING_value(data->controls, i); if (!pkey_test_ctrl(t, data->ctx, value) || t->err != NULL) goto err; } ret = 1; err: ctrl2params_free(params, params_n, params_n_allocstart); return ret; } static int pkey_test_run(EVP_TEST *t) { PKEY_DATA *expected = t->data; unsigned char *got = NULL; size_t got_len; EVP_PKEY_CTX *copy = NULL; if (!pkey_test_run_init(t)) goto err; if (expected->keyop(expected->ctx, NULL, &got_len, expected->input, expected->input_len) <= 0 || !TEST_ptr(got = OPENSSL_malloc(got_len))) { t->err = "KEYOP_LENGTH_ERROR"; goto err; } if (expected->keyop(expected->ctx, got, &got_len, expected->input, expected->input_len) <= 0) { t->err = "KEYOP_ERROR"; goto err; } if (!memory_err_compare(t, "KEYOP_MISMATCH", expected->output, expected->output_len, got, got_len)) goto err; t->err = NULL; OPENSSL_free(got); got = NULL; /* Repeat the test on a copy. */ if (!TEST_ptr(copy = EVP_PKEY_CTX_dup(expected->ctx))) { t->err = "INTERNAL_ERROR"; goto err; } if (expected->keyop(copy, NULL, &got_len, expected->input, expected->input_len) <= 0 || !TEST_ptr(got = OPENSSL_malloc(got_len))) { t->err = "KEYOP_LENGTH_ERROR"; goto err; } if (expected->keyop(copy, got, &got_len, expected->input, expected->input_len) <= 0) { t->err = "KEYOP_ERROR"; goto err; } if (!memory_err_compare(t, "KEYOP_MISMATCH", expected->output, expected->output_len, got, got_len)) goto err; err: OPENSSL_free(got); EVP_PKEY_CTX_free(copy); return 1; } static int sign_test_init(EVP_TEST *t, const char *name) { return pkey_test_init(t, name, 0, EVP_PKEY_sign_init_ex, EVP_PKEY_sign); } static const EVP_TEST_METHOD psign_test_method = { "Sign", sign_test_init, pkey_test_cleanup, pkey_test_parse, pkey_test_run }; static int verify_recover_test_init(EVP_TEST *t, const char *name) { return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init_ex, EVP_PKEY_verify_recover); } static const EVP_TEST_METHOD pverify_recover_test_method = { "VerifyRecover", verify_recover_test_init, pkey_test_cleanup, pkey_test_parse, pkey_test_run }; static int decrypt_test_init(EVP_TEST *t, const char *name) { return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init_ex, EVP_PKEY_decrypt); } static const EVP_TEST_METHOD pdecrypt_test_method = { "Decrypt", decrypt_test_init, pkey_test_cleanup, pkey_test_parse, pkey_test_run }; static int verify_test_init(EVP_TEST *t, const char *name) { return pkey_test_init(t, name, 1, EVP_PKEY_verify_init_ex, NULL); } static int verify_test_run(EVP_TEST *t) { PKEY_DATA *kdata = t->data; if (!pkey_test_run_init(t)) goto err; if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len, kdata->input, kdata->input_len) <= 0) t->err = "VERIFY_ERROR"; err: return 1; } static const EVP_TEST_METHOD pverify_test_method = { "Verify", verify_test_init, pkey_test_cleanup, pkey_test_parse, verify_test_run }; static int pderive_test_init(EVP_TEST *t, const char *name) { return pkey_test_init(t, name, 0, EVP_PKEY_derive_init_ex, 0); } static int pderive_test_parse(EVP_TEST *t, const char *keyword, const char *value) { PKEY_DATA *kdata = t->data; int validate = 0; if (strcmp(keyword, "PeerKeyValidate") == 0) validate = 1; if (validate || strcmp(keyword, "PeerKey") == 0) { EVP_PKEY *peer = NULL; kdata->validate = validate; if (find_key(&peer, value, public_keys) == 0) return -1; kdata->peer = peer; return 1; } if (strcmp(keyword, "SharedSecret") == 0) return parse_bin(value, &kdata->output, &kdata->output_len); if (strcmp(keyword, "Ctrl") == 0) return pkey_add_control(t, kdata->controls, value); if (strcmp(keyword, "CtrlInit") == 0) return ctrladd(kdata->init_controls, value); return 0; } static int pderive_test_run(EVP_TEST *t) { EVP_PKEY_CTX *dctx = NULL; PKEY_DATA *expected = t->data; unsigned char *got = NULL; size_t got_len; if (!pkey_test_run_init(t)) goto err; t->err = NULL; if (EVP_PKEY_derive_set_peer_ex(expected->ctx, expected->peer, expected->validate) <= 0) { t->err = "DERIVE_SET_PEER_ERROR"; goto err; } if (!TEST_ptr(dctx = EVP_PKEY_CTX_dup(expected->ctx))) { t->err = "DERIVE_ERROR"; goto err; } if (EVP_PKEY_derive(dctx, NULL, &got_len) <= 0 || !TEST_size_t_ne(got_len, 0)) { t->err = "DERIVE_ERROR"; goto err; } if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { t->err = "DERIVE_ERROR"; goto err; } if (EVP_PKEY_derive(dctx, got, &got_len) <= 0) { t->err = "DERIVE_ERROR"; goto err; } if (!memory_err_compare(t, "SHARED_SECRET_MISMATCH", expected->output, expected->output_len, got, got_len)) goto err; t->err = NULL; err: OPENSSL_free(got); EVP_PKEY_CTX_free(dctx); return 1; } static const EVP_TEST_METHOD pderive_test_method = { "Derive", pderive_test_init, pkey_test_cleanup, pderive_test_parse, pderive_test_run }; /** ** PBE TESTS **/ typedef enum pbe_type_enum { PBE_TYPE_INVALID = 0, PBE_TYPE_SCRYPT, PBE_TYPE_PBKDF2, PBE_TYPE_PKCS12 } PBE_TYPE; typedef struct pbe_data_st { PBE_TYPE pbe_type; /* scrypt parameters */ uint64_t N, r, p, maxmem; /* PKCS#12 parameters */ int id, iter; const EVP_MD *md; /* password */ unsigned char *pass; size_t pass_len; /* salt */ unsigned char *salt; size_t salt_len; /* Expected output */ unsigned char *key; size_t key_len; } PBE_DATA; #ifndef OPENSSL_NO_SCRYPT /* Parse unsigned decimal 64 bit integer value */ static int parse_uint64(const char *value, uint64_t *pr) { const char *p = value; if (!TEST_true(*p)) { TEST_info("Invalid empty integer value"); return -1; } for (*pr = 0; *p; ) { if (*pr > UINT64_MAX / 10) { TEST_error("Integer overflow in string %s", value); return -1; } *pr *= 10; if (!TEST_true(isdigit((unsigned char)*p))) { TEST_error("Invalid character in string %s", value); return -1; } *pr += *p - '0'; p++; } return 1; } static int scrypt_test_parse(EVP_TEST *t, const char *keyword, const char *value) { PBE_DATA *pdata = t->data; if (strcmp(keyword, "N") == 0) return parse_uint64(value, &pdata->N); if (strcmp(keyword, "p") == 0) return parse_uint64(value, &pdata->p); if (strcmp(keyword, "r") == 0) return parse_uint64(value, &pdata->r); if (strcmp(keyword, "maxmem") == 0) return parse_uint64(value, &pdata->maxmem); return 0; } #endif static int pbkdf2_test_parse(EVP_TEST *t, const char *keyword, const char *value) { PBE_DATA *pdata = t->data; if (strcmp(keyword, "iter") == 0) { pdata->iter = atoi(value); if (pdata->iter <= 0) return -1; return 1; } if (strcmp(keyword, "MD") == 0) { pdata->md = EVP_get_digestbyname(value); if (pdata->md == NULL) return -1; return 1; } return 0; } static int pkcs12_test_parse(EVP_TEST *t, const char *keyword, const char *value) { PBE_DATA *pdata = t->data; if (strcmp(keyword, "id") == 0) { pdata->id = atoi(value); if (pdata->id <= 0) return -1; return 1; } return pbkdf2_test_parse(t, keyword, value); } static int pbe_test_init(EVP_TEST *t, const char *alg) { PBE_DATA *pdat; PBE_TYPE pbe_type = PBE_TYPE_INVALID; if (is_kdf_disabled(alg)) { TEST_info("skipping, '%s' is disabled", alg); t->skip = 1; return 1; } if (strcmp(alg, "scrypt") == 0) { pbe_type = PBE_TYPE_SCRYPT; } else if (strcmp(alg, "pbkdf2") == 0) { pbe_type = PBE_TYPE_PBKDF2; } else if (strcmp(alg, "pkcs12") == 0) { pbe_type = PBE_TYPE_PKCS12; } else { TEST_error("Unknown pbe algorithm %s", alg); return 0; } if (!TEST_ptr(pdat = OPENSSL_zalloc(sizeof(*pdat)))) return 0; pdat->pbe_type = pbe_type; t->data = pdat; return 1; } static void pbe_test_cleanup(EVP_TEST *t) { PBE_DATA *pdat = t->data; OPENSSL_free(pdat->pass); OPENSSL_free(pdat->salt); OPENSSL_free(pdat->key); } static int pbe_test_parse(EVP_TEST *t, const char *keyword, const char *value) { PBE_DATA *pdata = t->data; if (strcmp(keyword, "Password") == 0) return parse_bin(value, &pdata->pass, &pdata->pass_len); if (strcmp(keyword, "Salt") == 0) return parse_bin(value, &pdata->salt, &pdata->salt_len); if (strcmp(keyword, "Key") == 0) return parse_bin(value, &pdata->key, &pdata->key_len); if (pdata->pbe_type == PBE_TYPE_PBKDF2) return pbkdf2_test_parse(t, keyword, value); else if (pdata->pbe_type == PBE_TYPE_PKCS12) return pkcs12_test_parse(t, keyword, value); #ifndef OPENSSL_NO_SCRYPT else if (pdata->pbe_type == PBE_TYPE_SCRYPT) return scrypt_test_parse(t, keyword, value); #endif return 0; } static int pbe_test_run(EVP_TEST *t) { PBE_DATA *expected = t->data; unsigned char *key; EVP_MD *fetched_digest = NULL; OSSL_LIB_CTX *save_libctx; save_libctx = OSSL_LIB_CTX_set0_default(libctx); if (!TEST_ptr(key = OPENSSL_malloc(expected->key_len))) { t->err = "INTERNAL_ERROR"; goto err; } if (expected->pbe_type == PBE_TYPE_PBKDF2) { if (PKCS5_PBKDF2_HMAC((char *)expected->pass, expected->pass_len, expected->salt, expected->salt_len, expected->iter, expected->md, expected->key_len, key) == 0) { t->err = "PBKDF2_ERROR"; goto err; } #ifndef OPENSSL_NO_SCRYPT } else if (expected->pbe_type == PBE_TYPE_SCRYPT) { if (EVP_PBE_scrypt((const char *)expected->pass, expected->pass_len, expected->salt, expected->salt_len, expected->N, expected->r, expected->p, expected->maxmem, key, expected->key_len) == 0) { t->err = "SCRYPT_ERROR"; goto err; } #endif } else if (expected->pbe_type == PBE_TYPE_PKCS12) { fetched_digest = EVP_MD_fetch(libctx, EVP_MD_get0_name(expected->md), propquery); if (fetched_digest == NULL) { t->err = "PKCS12_ERROR"; goto err; } if (PKCS12_key_gen_uni(expected->pass, expected->pass_len, expected->salt, expected->salt_len, expected->id, expected->iter, expected->key_len, key, fetched_digest) == 0) { t->err = "PKCS12_ERROR"; goto err; } } if (!memory_err_compare(t, "KEY_MISMATCH", expected->key, expected->key_len, key, expected->key_len)) goto err; t->err = NULL; err: EVP_MD_free(fetched_digest); OPENSSL_free(key); OSSL_LIB_CTX_set0_default(save_libctx); return 1; } static const EVP_TEST_METHOD pbe_test_method = { "PBE", pbe_test_init, pbe_test_cleanup, pbe_test_parse, pbe_test_run }; /** ** BASE64 TESTS **/ typedef enum { BASE64_CANONICAL_ENCODING = 0, BASE64_VALID_ENCODING = 1, BASE64_INVALID_ENCODING = 2 } base64_encoding_type; typedef struct encode_data_st { /* Input to encoding */ unsigned char *input; size_t input_len; /* Expected output */ unsigned char *output; size_t output_len; base64_encoding_type encoding; } ENCODE_DATA; static int encode_test_init(EVP_TEST *t, const char *encoding) { ENCODE_DATA *edata; if (!TEST_ptr(edata = OPENSSL_zalloc(sizeof(*edata)))) return 0; if (strcmp(encoding, "canonical") == 0) { edata->encoding = BASE64_CANONICAL_ENCODING; } else if (strcmp(encoding, "valid") == 0) { edata->encoding = BASE64_VALID_ENCODING; } else if (strcmp(encoding, "invalid") == 0) { edata->encoding = BASE64_INVALID_ENCODING; if (!TEST_ptr(t->expected_err = OPENSSL_strdup("DECODE_ERROR"))) goto err; } else { TEST_error("Bad encoding: %s." " Should be one of {canonical, valid, invalid}", encoding); goto err; } t->data = edata; return 1; err: OPENSSL_free(edata); return 0; } static void encode_test_cleanup(EVP_TEST *t) { ENCODE_DATA *edata = t->data; OPENSSL_free(edata->input); OPENSSL_free(edata->output); memset(edata, 0, sizeof(*edata)); } static int encode_test_parse(EVP_TEST *t, const char *keyword, const char *value) { ENCODE_DATA *edata = t->data; if (strcmp(keyword, "Input") == 0) return parse_bin(value, &edata->input, &edata->input_len); if (strcmp(keyword, "Output") == 0) return parse_bin(value, &edata->output, &edata->output_len); return 0; } static int encode_test_run(EVP_TEST *t) { ENCODE_DATA *expected = t->data; unsigned char *encode_out = NULL, *decode_out = NULL; int output_len, chunk_len; EVP_ENCODE_CTX *decode_ctx = NULL, *encode_ctx = NULL; size_t input_len, donelen; if (!TEST_ptr(decode_ctx = EVP_ENCODE_CTX_new())) { t->err = "INTERNAL_ERROR"; goto err; } if (expected->encoding == BASE64_CANONICAL_ENCODING) { if (!TEST_ptr(encode_ctx = EVP_ENCODE_CTX_new()) || !TEST_ptr(encode_out = OPENSSL_malloc(EVP_ENCODE_LENGTH(expected->input_len)))) goto err; EVP_EncodeInit(encode_ctx); input_len = expected->input_len; donelen = 0; output_len = 0; do { size_t current_len = (size_t) data_chunk_size; if (data_chunk_size == 0 || (size_t) data_chunk_size > input_len) current_len = input_len; if (!TEST_true(EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len, expected->input + donelen, current_len))) goto err; donelen += current_len; input_len -= current_len; output_len += chunk_len; } while (input_len > 0); EVP_EncodeFinal(encode_ctx, encode_out + output_len, &chunk_len); output_len += chunk_len; if (!memory_err_compare(t, "BAD_ENCODING", expected->output, expected->output_len, encode_out, output_len)) goto err; } if (!TEST_ptr(decode_out = OPENSSL_malloc(EVP_DECODE_LENGTH(expected->output_len)))) goto err; output_len = 0; EVP_DecodeInit(decode_ctx); input_len = expected->output_len; donelen = 0; do { size_t current_len = (size_t) data_chunk_size; if (data_chunk_size == 0 || (size_t) data_chunk_size > input_len) current_len = input_len; if (EVP_DecodeUpdate(decode_ctx, decode_out + output_len, &chunk_len, expected->output + donelen, current_len) < 0) { t->err = "DECODE_ERROR"; goto err; } donelen += current_len; input_len -= current_len; output_len += chunk_len; } while (input_len > 0); if (EVP_DecodeFinal(decode_ctx, decode_out + output_len, &chunk_len) != 1) { t->err = "DECODE_ERROR"; goto err; } output_len += chunk_len; if (expected->encoding != BASE64_INVALID_ENCODING && !memory_err_compare(t, "BAD_DECODING", expected->input, expected->input_len, decode_out, output_len)) { t->err = "BAD_DECODING"; goto err; } t->err = NULL; err: OPENSSL_free(encode_out); OPENSSL_free(decode_out); EVP_ENCODE_CTX_free(decode_ctx); EVP_ENCODE_CTX_free(encode_ctx); return 1; } static const EVP_TEST_METHOD encode_test_method = { "Encoding", encode_test_init, encode_test_cleanup, encode_test_parse, encode_test_run, }; /** ** RAND TESTS **/ #define MAX_RAND_REPEATS 15 typedef struct rand_data_pass_st { unsigned char *entropy; unsigned char *reseed_entropy; unsigned char *nonce; unsigned char *pers; unsigned char *reseed_addin; unsigned char *addinA; unsigned char *addinB; unsigned char *pr_entropyA; unsigned char *pr_entropyB; unsigned char *output; size_t entropy_len, nonce_len, pers_len, addinA_len, addinB_len, pr_entropyA_len, pr_entropyB_len, output_len, reseed_entropy_len, reseed_addin_len; } RAND_DATA_PASS; typedef struct rand_data_st { /* Context for this operation */ EVP_RAND_CTX *ctx; EVP_RAND_CTX *parent; int n; int prediction_resistance; int use_df; unsigned int generate_bits; char *cipher; char *digest; STACK_OF(OPENSSL_STRING) *init_controls; /* collection of controls */ /* Expected output */ RAND_DATA_PASS data[MAX_RAND_REPEATS]; } RAND_DATA; static int rand_test_init(EVP_TEST *t, const char *name) { RAND_DATA *rdata; EVP_RAND *rand; OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; unsigned int strength = 256; if (!TEST_ptr(rdata = OPENSSL_zalloc(sizeof(*rdata)))) return 0; /* TEST-RAND is available in the FIPS provider but not with "fips=yes" */ rand = EVP_RAND_fetch(libctx, "TEST-RAND", "-fips"); if (rand == NULL) goto err; rdata->parent = EVP_RAND_CTX_new(rand, NULL); EVP_RAND_free(rand); if (rdata->parent == NULL) goto err; *params = OSSL_PARAM_construct_uint(OSSL_RAND_PARAM_STRENGTH, &strength); if (!EVP_RAND_CTX_set_params(rdata->parent, params)) goto err; rand = EVP_RAND_fetch(libctx, name, propquery); if (rand == NULL) goto err; rdata->ctx = EVP_RAND_CTX_new(rand, rdata->parent); EVP_RAND_free(rand); if (rdata->ctx == NULL) goto err; rdata->init_controls = sk_OPENSSL_STRING_new_null(); rdata->n = -1; t->data = rdata; return 1; err: EVP_RAND_CTX_free(rdata->parent); OPENSSL_free(rdata); return 0; } static void rand_test_cleanup(EVP_TEST *t) { RAND_DATA *rdata = t->data; int i; ctrlfree(rdata->init_controls); OPENSSL_free(rdata->cipher); OPENSSL_free(rdata->digest); for (i = 0; i <= rdata->n; i++) { OPENSSL_free(rdata->data[i].entropy); OPENSSL_free(rdata->data[i].reseed_entropy); OPENSSL_free(rdata->data[i].nonce); OPENSSL_free(rdata->data[i].pers); OPENSSL_free(rdata->data[i].reseed_addin); OPENSSL_free(rdata->data[i].addinA); OPENSSL_free(rdata->data[i].addinB); OPENSSL_free(rdata->data[i].pr_entropyA); OPENSSL_free(rdata->data[i].pr_entropyB); OPENSSL_free(rdata->data[i].output); } EVP_RAND_CTX_free(rdata->ctx); EVP_RAND_CTX_free(rdata->parent); } static int rand_test_parse(EVP_TEST *t, const char *keyword, const char *value) { RAND_DATA *rdata = t->data; RAND_DATA_PASS *item; const char *p; int n; if ((p = strchr(keyword, '.')) != NULL) { n = atoi(++p); if (n >= MAX_RAND_REPEATS) return 0; if (n > rdata->n) rdata->n = n; item = rdata->data + n; if (HAS_PREFIX(keyword, "Entropy.")) return parse_bin(value, &item->entropy, &item->entropy_len); if (HAS_PREFIX(keyword, "ReseedEntropy.")) return parse_bin(value, &item->reseed_entropy, &item->reseed_entropy_len); if (HAS_PREFIX(keyword, "Nonce.")) return parse_bin(value, &item->nonce, &item->nonce_len); if (HAS_PREFIX(keyword, "PersonalisationString.")) return parse_bin(value, &item->pers, &item->pers_len); if (HAS_PREFIX(keyword, "ReseedAdditionalInput.")) return parse_bin(value, &item->reseed_addin, &item->reseed_addin_len); if (HAS_PREFIX(keyword, "AdditionalInputA.")) return parse_bin(value, &item->addinA, &item->addinA_len); if (HAS_PREFIX(keyword, "AdditionalInputB.")) return parse_bin(value, &item->addinB, &item->addinB_len); if (HAS_PREFIX(keyword, "EntropyPredictionResistanceA.")) return parse_bin(value, &item->pr_entropyA, &item->pr_entropyA_len); if (HAS_PREFIX(keyword, "EntropyPredictionResistanceB.")) return parse_bin(value, &item->pr_entropyB, &item->pr_entropyB_len); if (HAS_PREFIX(keyword, "Output.")) return parse_bin(value, &item->output, &item->output_len); } else { if (strcmp(keyword, "Cipher") == 0) return TEST_ptr(rdata->cipher = OPENSSL_strdup(value)); if (strcmp(keyword, "Digest") == 0) return TEST_ptr(rdata->digest = OPENSSL_strdup(value)); if (strcmp(keyword, "DerivationFunction") == 0) { rdata->use_df = atoi(value) != 0; return 1; } if (strcmp(keyword, "GenerateBits") == 0) { if ((n = atoi(value)) <= 0 || n % 8 != 0) return 0; rdata->generate_bits = (unsigned int)n; return 1; } if (strcmp(keyword, "PredictionResistance") == 0) { rdata->prediction_resistance = atoi(value) != 0; return 1; } if (strcmp(keyword, "CtrlInit") == 0) return ctrladd(rdata->init_controls, value); } return 0; } static int rand_test_run(EVP_TEST *t) { RAND_DATA *expected = t->data; RAND_DATA_PASS *item; unsigned char *got; size_t got_len = expected->generate_bits / 8; OSSL_PARAM params[8], *p = params; int i = -1, ret = 0; unsigned int strength; unsigned char *z; size_t params_n = 0, params_allocated_n = 0; if (!TEST_ptr(got = OPENSSL_malloc(got_len))) return 0; if (sk_OPENSSL_STRING_num(expected->init_controls) > 0) { if (!ctrl2params(t, expected->init_controls, NULL, params, OSSL_NELEM(params), ¶ms_n)) goto err; } p = params + params_n; *p++ = OSSL_PARAM_construct_int(OSSL_DRBG_PARAM_USE_DF, &expected->use_df); if (expected->cipher != NULL) *p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_CIPHER, expected->cipher, 0); if (expected->digest != NULL) *p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_DIGEST, expected->digest, 0); *p++ = OSSL_PARAM_construct_utf8_string(OSSL_DRBG_PARAM_MAC, "HMAC", 0); *p = OSSL_PARAM_construct_end(); if (!EVP_RAND_CTX_set_params(expected->ctx, params)) { if (t->expect_unapproved == 0) { t->err = "EVP_RAND_CTX_set_params"; ret = 1; } goto err; } ctrl2params_free(params, params_n, params_allocated_n); params_n = 0; strength = EVP_RAND_get_strength(expected->ctx); for (i = 0; i <= expected->n; i++) { item = expected->data + i; p = params; z = item->entropy != NULL ? item->entropy : (unsigned char *)""; *p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_ENTROPY, z, item->entropy_len); z = item->nonce != NULL ? item->nonce : (unsigned char *)""; *p++ = OSSL_PARAM_construct_octet_string(OSSL_RAND_PARAM_TEST_NONCE, z, item->nonce_len); *p = OSSL_PARAM_construct_end(); if (!TEST_true(EVP_RAND_instantiate(expected->parent, strength, 0, NULL, 0, params))) goto err; z = item->pers != NULL ? item->pers : (unsigned char *)""; if (!TEST_true(EVP_RAND_instantiate (expected->ctx, strength, expected->prediction_resistance, z, item->pers_len, NULL))) goto err; if (item->reseed_entropy != NULL) { params[0] = OSSL_PARAM_construct_octet_string (OSSL_RAND_PARAM_TEST_ENTROPY, item->reseed_entropy, item->reseed_entropy_len); params[1] = OSSL_PARAM_construct_end(); if (!TEST_true(EVP_RAND_CTX_set_params(expected->parent, params))) goto err; if (!TEST_true(EVP_RAND_reseed (expected->ctx, expected->prediction_resistance, NULL, 0, item->reseed_addin, item->reseed_addin_len))) goto err; } if (item->pr_entropyA != NULL) { params[0] = OSSL_PARAM_construct_octet_string (OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyA, item->pr_entropyA_len); params[1] = OSSL_PARAM_construct_end(); if (!TEST_true(EVP_RAND_CTX_set_params(expected->parent, params))) goto err; } if (!TEST_true(EVP_RAND_generate (expected->ctx, got, got_len, strength, expected->prediction_resistance, item->addinA, item->addinA_len))) goto err; if (item->pr_entropyB != NULL) { params[0] = OSSL_PARAM_construct_octet_string (OSSL_RAND_PARAM_TEST_ENTROPY, item->pr_entropyB, item->pr_entropyB_len); params[1] = OSSL_PARAM_construct_end(); if (!TEST_true(EVP_RAND_CTX_set_params(expected->parent, params))) goto err; } if (!TEST_true(EVP_RAND_generate (expected->ctx, got, got_len, strength, expected->prediction_resistance, item->addinB, item->addinB_len))) goto err; if (!TEST_mem_eq(got, got_len, item->output, item->output_len)) goto err; if (!rand_check_fips_approved(expected->ctx, t)) goto err; if (!TEST_true(EVP_RAND_uninstantiate(expected->ctx)) || !TEST_true(EVP_RAND_uninstantiate(expected->parent)) || !TEST_true(EVP_RAND_verify_zeroization(expected->ctx)) || !TEST_int_eq(EVP_RAND_get_state(expected->ctx), EVP_RAND_STATE_UNINITIALISED)) goto err; } t->err = NULL; ret = 1; err: if (ret == 0 && i >= 0) TEST_info("Error in test case %d of %d\n", i, expected->n + 1); OPENSSL_free(got); ctrl2params_free(params, params_n, params_allocated_n); return ret; } static const EVP_TEST_METHOD rand_test_method = { "RAND", rand_test_init, rand_test_cleanup, rand_test_parse, rand_test_run }; /** ** KDF TESTS **/ typedef struct kdf_data_st { /* Context for this operation */ EVP_KDF_CTX *ctx; /* Expected output */ unsigned char *output; size_t output_len; OSSL_PARAM params[20]; OSSL_PARAM *p; STACK_OF(OPENSSL_STRING) *init_controls; /* collection of controls */ } KDF_DATA; /* * Perform public key operation setup: lookup key, allocated ctx and call * the appropriate initialisation function */ static int kdf_test_init(EVP_TEST *t, const char *name) { KDF_DATA *kdata; EVP_KDF *kdf; if (is_kdf_disabled(name)) { TEST_info("skipping, '%s' is disabled", name); t->skip = 1; return 1; } if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) return 0; kdata->p = kdata->params; *kdata->p = OSSL_PARAM_construct_end(); kdf = EVP_KDF_fetch(libctx, name, propquery); if (kdf == NULL) { OPENSSL_free(kdata); return 0; } kdata->ctx = EVP_KDF_CTX_new(kdf); EVP_KDF_free(kdf); if (kdata->ctx == NULL) { OPENSSL_free(kdata); return 0; } t->data = kdata; kdata->init_controls = sk_OPENSSL_STRING_new_null(); return 1; } static void kdf_test_cleanup(EVP_TEST *t) { KDF_DATA *kdata = t->data; OSSL_PARAM *p; ctrlfree(kdata->init_controls); for (p = kdata->params; p->key != NULL; p++) OPENSSL_free(p->data); OPENSSL_free(kdata->output); EVP_KDF_CTX_free(kdata->ctx); } static int kdf_test_ctrl(EVP_TEST *t, EVP_KDF_CTX *kctx, const char *value) { KDF_DATA *kdata = t->data; int rv; char *p, *name; const OSSL_PARAM *defs = EVP_KDF_settable_ctx_params(EVP_KDF_CTX_kdf(kctx)); if (!TEST_ptr(name = OPENSSL_strdup(value))) return 0; p = strchr(name, ':'); if (p == NULL) p = ""; else *p++ = '\0'; if (strcmp(name, "r") == 0 && OSSL_PARAM_locate_const(defs, name) == NULL) { TEST_info("skipping, setting 'r' is unsupported"); t->skip = 1; goto end; } if (strcmp(name, "lanes") == 0 && OSSL_PARAM_locate_const(defs, name) == NULL) { TEST_info("skipping, setting 'lanes' is unsupported"); t->skip = 1; goto end; } if (strcmp(name, "iter") == 0 && OSSL_PARAM_locate_const(defs, name) == NULL) { TEST_info("skipping, setting 'iter' is unsupported"); t->skip = 1; goto end; } if (strcmp(name, "memcost") == 0 && OSSL_PARAM_locate_const(defs, name) == NULL) { TEST_info("skipping, setting 'memcost' is unsupported"); t->skip = 1; goto end; } if (strcmp(name, "secret") == 0 && OSSL_PARAM_locate_const(defs, name) == NULL) { TEST_info("skipping, setting 'secret' is unsupported"); t->skip = 1; goto end; } if (strcmp(name, "pass") == 0 && OSSL_PARAM_locate_const(defs, name) == NULL) { TEST_info("skipping, setting 'pass' is unsupported"); t->skip = 1; goto end; } if (strcmp(name, "ad") == 0 && OSSL_PARAM_locate_const(defs, name) == NULL) { TEST_info("skipping, setting 'ad' is unsupported"); t->skip = 1; goto end; } rv = OSSL_PARAM_allocate_from_text(kdata->p, defs, name, p, strlen(p), NULL); *++kdata->p = OSSL_PARAM_construct_end(); if (!rv) { t->err = "KDF_PARAM_ERROR"; OPENSSL_free(name); return 0; } if (strcmp(name, "digest") == 0) { if (is_digest_disabled(p)) { TEST_info("skipping, '%s' is disabled", p); t->skip = 1; } goto end; } if ((strcmp(name, "cipher") == 0 || strcmp(name, "cekalg") == 0) && is_cipher_disabled(p)) { TEST_info("skipping, '%s' is disabled", p); t->skip = 1; goto end; } if ((strcmp(name, "mac") == 0) && is_mac_disabled(p)) { TEST_info("skipping, '%s' is disabled", p); t->skip = 1; } end: OPENSSL_free(name); return 1; } static int kdf_test_parse(EVP_TEST *t, const char *keyword, const char *value) { KDF_DATA *kdata = t->data; if (strcmp(keyword, "Output") == 0) return parse_bin(value, &kdata->output, &kdata->output_len); if (strcmp(keyword, "CtrlInit") == 0) return ctrladd(kdata->init_controls, value); if (HAS_PREFIX(keyword, "Ctrl")) return kdf_test_ctrl(t, kdata->ctx, value); return 0; } static int kdf_test_run(EVP_TEST *t) { int ret = 1; KDF_DATA *expected = t->data; unsigned char *got = NULL; size_t got_len = expected->output_len; EVP_KDF_CTX *ctx; OSSL_PARAM params[2] = { OSSL_PARAM_END, OSSL_PARAM_END }; size_t params_n = 0, params_allocated_n = 0; if (sk_OPENSSL_STRING_num(expected->init_controls) > 0) { if (!ctrl2params(t, expected->init_controls, NULL, params, OSSL_NELEM(params), ¶ms_n)) goto err; if (!EVP_KDF_CTX_set_params(expected->ctx, params)) { t->err = "KDF_CTRL_ERROR"; goto err; } } if (!EVP_KDF_CTX_set_params(expected->ctx, expected->params)) { t->err = "KDF_CTRL_ERROR"; goto err; } if (!TEST_ptr(got = OPENSSL_malloc(got_len == 0 ? 1 : got_len))) { t->err = "INTERNAL_ERROR"; goto err; } /* FIPS(3.0.0): can't dup KDF contexts #17572 */ if (fips_provider_version_gt(libctx, 3, 0, 0) && (ctx = EVP_KDF_CTX_dup(expected->ctx)) != NULL) { EVP_KDF_CTX_free(expected->ctx); expected->ctx = ctx; } if (EVP_KDF_derive(expected->ctx, got, got_len, NULL) <= 0) { t->err = "KDF_DERIVE_ERROR"; goto err; } if (!kdf_check_fips_approved(expected->ctx, t)) { ret = 0; goto err; } if (!memory_err_compare(t, "KDF_MISMATCH", expected->output, expected->output_len, got, got_len)) goto err; t->err = NULL; err: ctrl2params_free(params, params_n, params_allocated_n); OPENSSL_free(got); return ret; } static const EVP_TEST_METHOD kdf_test_method = { "KDF", kdf_test_init, kdf_test_cleanup, kdf_test_parse, kdf_test_run }; /** ** PKEY KDF TESTS **/ typedef struct pkey_kdf_data_st { /* Context for this operation */ EVP_PKEY_CTX *ctx; /* Expected output */ unsigned char *output; size_t output_len; } PKEY_KDF_DATA; /* * Perform public key operation setup: lookup key, allocated ctx and call * the appropriate initialisation function */ static int pkey_kdf_test_init(EVP_TEST *t, const char *name) { PKEY_KDF_DATA *kdata = NULL; if (is_kdf_disabled(name)) { TEST_info("skipping, '%s' is disabled", name); t->skip = 1; return 1; } if (!TEST_ptr(kdata = OPENSSL_zalloc(sizeof(*kdata)))) return 0; kdata->ctx = EVP_PKEY_CTX_new_from_name(libctx, name, propquery); if (kdata->ctx == NULL || EVP_PKEY_derive_init(kdata->ctx) <= 0) goto err; t->data = kdata; return 1; err: EVP_PKEY_CTX_free(kdata->ctx); OPENSSL_free(kdata); return 0; } static void pkey_kdf_test_cleanup(EVP_TEST *t) { PKEY_KDF_DATA *kdata = t->data; OPENSSL_free(kdata->output); EVP_PKEY_CTX_free(kdata->ctx); } static int pkey_kdf_test_parse(EVP_TEST *t, const char *keyword, const char *value) { PKEY_KDF_DATA *kdata = t->data; if (strcmp(keyword, "Output") == 0) return parse_bin(value, &kdata->output, &kdata->output_len); if (HAS_PREFIX(keyword, "Ctrl")) return pkey_test_ctrl(t, kdata->ctx, value); return 0; } static int pkey_kdf_test_run(EVP_TEST *t) { PKEY_KDF_DATA *expected = t->data; unsigned char *got = NULL; size_t got_len = 0; if (fips_provider_version_eq(libctx, 3, 0, 0)) { /* FIPS(3.0.0): can't deal with oversized output buffers #18533 */ got_len = expected->output_len; } else { /* Find out the KDF output size */ if (EVP_PKEY_derive(expected->ctx, NULL, &got_len) <= 0) { t->err = "INTERNAL_ERROR"; goto err; } /* * We may get an absurd output size, which signals that anything goes. * If not, we specify a too big buffer for the output, to test that * EVP_PKEY_derive() can cope with it. */ if (got_len == SIZE_MAX || got_len == 0) got_len = expected->output_len; else got_len = expected->output_len * 2; } if (!TEST_ptr(got = OPENSSL_malloc(got_len == 0 ? 1 : got_len))) { t->err = "INTERNAL_ERROR"; goto err; } if (EVP_PKEY_derive(expected->ctx, got, &got_len) <= 0) { t->err = "KDF_DERIVE_ERROR"; goto err; } if (!TEST_mem_eq(expected->output, expected->output_len, got, got_len)) { t->err = "KDF_MISMATCH"; goto err; } t->err = NULL; err: OPENSSL_free(got); return 1; } static const EVP_TEST_METHOD pkey_kdf_test_method = { "PKEYKDF", pkey_kdf_test_init, pkey_kdf_test_cleanup, pkey_kdf_test_parse, pkey_kdf_test_run }; /** ** KEYPAIR TESTS **/ typedef struct keypair_test_data_st { EVP_PKEY *privk; EVP_PKEY *pubk; } KEYPAIR_TEST_DATA; static int keypair_test_init(EVP_TEST *t, const char *pair) { KEYPAIR_TEST_DATA *data; int rv = 0; EVP_PKEY *pk = NULL, *pubk = NULL; char *pub, *priv = NULL; /* Split private and public names. */ if (!TEST_ptr(priv = OPENSSL_strdup(pair)) || !TEST_ptr(pub = strchr(priv, ':'))) { t->err = "PARSING_ERROR"; goto end; } *pub++ = '\0'; if (!TEST_true(find_key(&pk, priv, private_keys))) { TEST_info("Can't find private key: %s", priv); t->err = "MISSING_PRIVATE_KEY"; goto end; } if (!TEST_true(find_key(&pubk, pub, public_keys))) { TEST_info("Can't find public key: %s", pub); t->err = "MISSING_PUBLIC_KEY"; goto end; } if (pk == NULL && pubk == NULL) { /* Both keys are listed but unsupported: skip this test */ t->skip = 1; rv = 1; goto end; } if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data)))) goto end; data->privk = pk; data->pubk = pubk; t->data = data; rv = 1; t->err = NULL; end: OPENSSL_free(priv); return rv; } static void keypair_test_cleanup(EVP_TEST *t) { OPENSSL_free(t->data); t->data = NULL; } /* * For tests that do not accept any custom keywords. */ static int void_test_parse(EVP_TEST *t, const char *keyword, const char *value) { return 0; } static int keypair_test_run(EVP_TEST *t) { int rv = 0; const KEYPAIR_TEST_DATA *pair = t->data; if (pair->privk == NULL || pair->pubk == NULL) { /* * this can only happen if only one of the keys is not set * which means that one of them was unsupported while the * other isn't: hence a key type mismatch. */ t->err = "KEYPAIR_TYPE_MISMATCH"; rv = 1; goto end; } if ((rv = EVP_PKEY_eq(pair->privk, pair->pubk)) != 1) { if (0 == rv) { t->err = "KEYPAIR_MISMATCH"; } else if (-1 == rv) { t->err = "KEYPAIR_TYPE_MISMATCH"; } else if (-2 == rv) { t->err = "UNSUPPORTED_KEY_COMPARISON"; } else { TEST_error("Unexpected error in key comparison"); rv = 0; goto end; } rv = 1; goto end; } rv = 1; t->err = NULL; end: return rv; } static const EVP_TEST_METHOD keypair_test_method = { "PrivPubKeyPair", keypair_test_init, keypair_test_cleanup, void_test_parse, keypair_test_run }; /** ** KEYGEN TEST **/ typedef struct keygen_test_data_st { EVP_PKEY_CTX *genctx; /* Keygen context to use */ char *keyname; /* Key name to store key or NULL */ } KEYGEN_TEST_DATA; static int keygen_test_init(EVP_TEST *t, const char *alg) { KEYGEN_TEST_DATA *data; EVP_PKEY_CTX *genctx; int nid = OBJ_sn2nid(alg); if (nid == NID_undef) { nid = OBJ_ln2nid(alg); if (nid == NID_undef) return 0; } if (is_pkey_disabled(alg)) { t->skip = 1; return 1; } if (!TEST_ptr(genctx = EVP_PKEY_CTX_new_from_name(libctx, alg, propquery))) goto err; if (EVP_PKEY_keygen_init(genctx) <= 0) { t->err = "KEYGEN_INIT_ERROR"; goto err; } if (!TEST_ptr(data = OPENSSL_malloc(sizeof(*data)))) goto err; data->genctx = genctx; data->keyname = NULL; t->data = data; t->err = NULL; return 1; err: EVP_PKEY_CTX_free(genctx); return 0; } static void keygen_test_cleanup(EVP_TEST *t) { KEYGEN_TEST_DATA *keygen = t->data; EVP_PKEY_CTX_free(keygen->genctx); OPENSSL_free(keygen->keyname); OPENSSL_free(t->data); t->data = NULL; } static int keygen_test_parse(EVP_TEST *t, const char *keyword, const char *value) { KEYGEN_TEST_DATA *keygen = t->data; if (strcmp(keyword, "KeyName") == 0) return TEST_ptr(keygen->keyname = OPENSSL_strdup(value)); if (strcmp(keyword, "Ctrl") == 0) return pkey_test_ctrl(t, keygen->genctx, value); return 0; } static int keygen_test_run(EVP_TEST *t) { KEYGEN_TEST_DATA *keygen = t->data; EVP_PKEY *pkey = NULL; int rv = 1; if (EVP_PKEY_keygen(keygen->genctx, &pkey) <= 0) { t->err = "KEYGEN_GENERATE_ERROR"; goto err; } if (!evp_pkey_is_provided(pkey)) { TEST_info("Warning: legacy key generated %s", keygen->keyname); goto err; } if (keygen->keyname != NULL) { KEY_LIST *key; rv = 0; if (find_key(NULL, keygen->keyname, private_keys)) { TEST_info("Duplicate key %s", keygen->keyname); goto err; } if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key)))) goto err; key->name = keygen->keyname; keygen->keyname = NULL; key->key = pkey; key->next = private_keys; private_keys = key; rv = 1; } else { EVP_PKEY_free(pkey); } t->err = NULL; err: return rv; } static const EVP_TEST_METHOD keygen_test_method = { "KeyGen", keygen_test_init, keygen_test_cleanup, keygen_test_parse, keygen_test_run, }; /** ** DIGEST SIGN+VERIFY TESTS **/ typedef struct { int is_verify; /* Set to 1 if verifying */ int is_oneshot; /* Set to 1 for one shot operation */ const EVP_MD *md; /* Digest to use */ EVP_MD_CTX *ctx; /* Digest context */ EVP_PKEY_CTX *pctx; STACK_OF(EVP_TEST_BUFFER) *input; /* Input data: streaming */ unsigned char *osin; /* Input data if one shot */ size_t osin_len; /* Input length data if one shot */ unsigned char *output; /* Expected output */ size_t output_len; /* Expected output length */ int deterministic_noncetype; EVP_PKEY *key; STACK_OF(OPENSSL_STRING) *init_controls; /* collection of controls */ STACK_OF(OPENSSL_STRING) *controls; /* Collection of controls */ } DIGESTSIGN_DATA; static int digestsigver_test_init(EVP_TEST *t, const char *alg, int is_verify, int is_oneshot) { const EVP_MD *md = NULL; DIGESTSIGN_DATA *mdat; if (strcmp(alg, "NULL") != 0) { if (is_digest_disabled(alg)) { t->skip = 1; return 1; } md = EVP_get_digestbyname(alg); if (md == NULL) return 0; } if (!TEST_ptr(mdat = OPENSSL_zalloc(sizeof(*mdat)))) return 0; mdat->init_controls = sk_OPENSSL_STRING_new_null(); mdat->controls = sk_OPENSSL_STRING_new_null(); mdat->md = md; if (!TEST_ptr(mdat->ctx = EVP_MD_CTX_new())) { OPENSSL_free(mdat); return 0; } mdat->is_verify = is_verify; mdat->is_oneshot = is_oneshot; t->data = mdat; return 1; } static int digestsign_test_init(EVP_TEST *t, const char *alg) { return digestsigver_test_init(t, alg, 0, 0); } static void digestsigver_test_cleanup(EVP_TEST *t) { DIGESTSIGN_DATA *mdata = t->data; ctrlfree(mdata->init_controls); ctrlfree(mdata->controls); EVP_MD_CTX_free(mdata->ctx); sk_EVP_TEST_BUFFER_pop_free(mdata->input, evp_test_buffer_free); OPENSSL_free(mdata->osin); OPENSSL_free(mdata->output); OPENSSL_free(mdata); t->data = NULL; } static int digestsigver_test_parse(EVP_TEST *t, const char *keyword, const char *value) { DIGESTSIGN_DATA *mdata = t->data; if (strcmp(keyword, "Key") == 0) { EVP_PKEY *pkey = NULL; int rv = 0; if (mdata->is_verify) rv = find_key(&pkey, value, public_keys); if (rv == 0) rv = find_key(&pkey, value, private_keys); if (rv == 0 || pkey == NULL) { t->skip = 1; return 1; } mdata->key = pkey; return 1; } if (strcmp(keyword, "Input") == 0) { if (mdata->is_oneshot) return parse_bin(value, &mdata->osin, &mdata->osin_len); return evp_test_buffer_append(value, data_chunk_size, &mdata->input); } if (strcmp(keyword, "Output") == 0) return parse_bin(value, &mdata->output, &mdata->output_len); if (!mdata->is_oneshot && data_chunk_size == 0) { if (strcmp(keyword, "Count") == 0) return evp_test_buffer_set_count(value, mdata->input); if (strcmp(keyword, "Ncopy") == 0) return evp_test_buffer_ncopy(value, mdata->input); } if (strcmp(keyword, "Ctrl") == 0) return pkey_add_control(t, mdata->controls, value); if (strcmp(keyword, "CtrlInit") == 0) return ctrladd(mdata->init_controls, value); if (strcmp(keyword, "NonceType") == 0) { if (strcmp(value, "deterministic") == 0) mdata->deterministic_noncetype = 1; return 1; } return 0; } static int check_deterministic_noncetype(EVP_TEST *t, DIGESTSIGN_DATA *mdata) { if (mdata->deterministic_noncetype == 1) { OSSL_PARAM params[2]; unsigned int nonce_type = 1; params[0] = OSSL_PARAM_construct_uint(OSSL_SIGNATURE_PARAM_NONCE_TYPE, &nonce_type); params[1] = OSSL_PARAM_construct_end(); if (!EVP_PKEY_CTX_set_params(mdata->pctx, params)) t->err = "EVP_PKEY_CTX_set_params_ERROR"; else if (!EVP_PKEY_CTX_get_params(mdata->pctx, params)) t->err = "EVP_PKEY_CTX_get_params_ERROR"; else if (!OSSL_PARAM_modified(¶ms[0])) t->err = "nonce_type_not_modified_ERROR"; else if (nonce_type != 1) t->err = "nonce_type_value_ERROR"; } return t->err == NULL; } static int signverify_init(EVP_TEST *t, DIGESTSIGN_DATA *data) { const char *name = data->md == NULL ? NULL : EVP_MD_get0_name(data->md); OSSL_PARAM params[5]; OSSL_PARAM *p = NULL; int i, ret = 0; size_t params_n = 0, params_allocated_n = 0; if (sk_OPENSSL_STRING_num(data->init_controls) > 0) { if (!ctrl2params(t, data->init_controls, NULL, params, OSSL_NELEM(params), ¶ms_n)) goto err; p = params; } if (data->is_verify) { if (!EVP_DigestVerifyInit_ex(data->ctx, &data->pctx, name, libctx, NULL, data->key, p)) { t->err = "DIGESTVERIFYINIT_ERROR"; goto err; } } else { if (!EVP_DigestSignInit_ex(data->ctx, &data->pctx, name, libctx, NULL, data->key, p)) { t->err = "DIGESTSIGNINIT_ERROR"; goto err; } } for (i = 0; i < sk_OPENSSL_STRING_num(data->controls); i++) { char *value = sk_OPENSSL_STRING_value(data->controls, i); if (!pkey_test_ctrl(t, data->pctx, value) || t->err != NULL) goto err; } ret = 1; err: ctrl2params_free(params, params_n, params_allocated_n); return ret; } static int digestsign_update_fn(void *ctx, const unsigned char *buf, size_t buflen) { return EVP_DigestSignUpdate(ctx, buf, buflen); } static int digestsign_test_run(EVP_TEST *t) { int i; DIGESTSIGN_DATA *expected = t->data; unsigned char *got = NULL; size_t got_len; if (!signverify_init(t, expected)) goto err; if (!check_deterministic_noncetype(t, expected)) goto err; for (i = 0; i < sk_OPENSSL_STRING_num(expected->controls); i++) { char *value = sk_OPENSSL_STRING_value(expected->controls, i); if (!pkey_test_ctrl(t, expected->pctx, value) || t->err != NULL) return 0; } if (!evp_test_buffer_do(expected->input, digestsign_update_fn, expected->ctx)) { t->err = "DIGESTUPDATE_ERROR"; goto err; } if (!EVP_DigestSignFinal(expected->ctx, NULL, &got_len)) { t->err = "DIGESTSIGNFINAL_LENGTH_ERROR"; goto err; } if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { t->err = "MALLOC_FAILURE"; goto err; } got_len *= 2; if (!EVP_DigestSignFinal(expected->ctx, got, &got_len)) { t->err = "DIGESTSIGNFINAL_ERROR"; goto err; } if (!memory_err_compare(t, "SIGNATURE_MISMATCH", expected->output, expected->output_len, got, got_len)) goto err; t->err = NULL; err: OPENSSL_free(got); return 1; } static const EVP_TEST_METHOD digestsign_test_method = { "DigestSign", digestsign_test_init, digestsigver_test_cleanup, digestsigver_test_parse, digestsign_test_run }; static int digestverify_test_init(EVP_TEST *t, const char *alg) { return digestsigver_test_init(t, alg, 1, 0); } static int digestverify_update_fn(void *ctx, const unsigned char *buf, size_t buflen) { return EVP_DigestVerifyUpdate(ctx, buf, buflen); } static int digestverify_test_run(EVP_TEST *t) { DIGESTSIGN_DATA *mdata = t->data; if (!signverify_init(t, mdata)) return 1; if (!evp_test_buffer_do(mdata->input, digestverify_update_fn, mdata->ctx)) { t->err = "DIGESTUPDATE_ERROR"; return 1; } if (EVP_DigestVerifyFinal(mdata->ctx, mdata->output, mdata->output_len) <= 0) t->err = "VERIFY_ERROR"; return 1; } static const EVP_TEST_METHOD digestverify_test_method = { "DigestVerify", digestverify_test_init, digestsigver_test_cleanup, digestsigver_test_parse, digestverify_test_run }; static int oneshot_digestsign_test_init(EVP_TEST *t, const char *alg) { return digestsigver_test_init(t, alg, 0, 1); } static int oneshot_digestsign_test_run(EVP_TEST *t) { DIGESTSIGN_DATA *expected = t->data; unsigned char *got = NULL; size_t got_len; if (!signverify_init(t, expected)) goto err; if (!EVP_DigestSign(expected->ctx, NULL, &got_len, expected->osin, expected->osin_len)) { t->err = "DIGESTSIGN_LENGTH_ERROR"; goto err; } if (!TEST_ptr(got = OPENSSL_malloc(got_len))) { t->err = "MALLOC_FAILURE"; goto err; } got_len *= 2; if (!EVP_DigestSign(expected->ctx, got, &got_len, expected->osin, expected->osin_len)) { t->err = "DIGESTSIGN_ERROR"; goto err; } if (!memory_err_compare(t, "SIGNATURE_MISMATCH", expected->output, expected->output_len, got, got_len)) goto err; t->err = NULL; err: OPENSSL_free(got); return 1; } static const EVP_TEST_METHOD oneshot_digestsign_test_method = { "OneShotDigestSign", oneshot_digestsign_test_init, digestsigver_test_cleanup, digestsigver_test_parse, oneshot_digestsign_test_run }; static int oneshot_digestverify_test_init(EVP_TEST *t, const char *alg) { return digestsigver_test_init(t, alg, 1, 1); } static int oneshot_digestverify_test_run(EVP_TEST *t) { DIGESTSIGN_DATA *mdata = t->data; if (!signverify_init(t, mdata)) return 1; if (EVP_DigestVerify(mdata->ctx, mdata->output, mdata->output_len, mdata->osin, mdata->osin_len) <= 0) t->err = "VERIFY_ERROR"; return 1; } static const EVP_TEST_METHOD oneshot_digestverify_test_method = { "OneShotDigestVerify", oneshot_digestverify_test_init, digestsigver_test_cleanup, digestsigver_test_parse, oneshot_digestverify_test_run }; /** ** PARSING AND DISPATCH **/ static const EVP_TEST_METHOD *evp_test_list[] = { &rand_test_method, &cipher_test_method, &digest_test_method, &digestsign_test_method, &digestverify_test_method, &encode_test_method, &kdf_test_method, &pkey_kdf_test_method, &keypair_test_method, &keygen_test_method, &mac_test_method, &oneshot_digestsign_test_method, &oneshot_digestverify_test_method, &pbe_test_method, &pdecrypt_test_method, &pderive_test_method, &psign_test_method, &pverify_recover_test_method, &pverify_test_method, &pkey_kem_test_method, NULL }; static const EVP_TEST_METHOD *find_test(const char *name) { const EVP_TEST_METHOD **tt; for (tt = evp_test_list; *tt; tt++) { if (strcmp(name, (*tt)->name) == 0) return *tt; } return NULL; } static void clear_test(EVP_TEST *t) { test_clearstanza(&t->s); ERR_clear_error(); if (t->data != NULL) { if (t->meth != NULL) t->meth->cleanup(t); OPENSSL_free(t->data); t->data = NULL; } OPENSSL_free(t->expected_err); t->expected_err = NULL; OPENSSL_free(t->reason); t->reason = NULL; /* Text literal. */ t->err = NULL; t->skip = 0; t->meth = NULL; t->expect_unapproved = 0; #if !defined(OPENSSL_NO_DEFAULT_THREAD_POOL) OSSL_set_max_threads(libctx, 0); #endif } /* Check for errors in the test structure; return 1 if okay, else 0. */ static int check_test_error(EVP_TEST *t) { unsigned long err; const char *reason; if (t->err == NULL && t->expected_err == NULL) return 1; if (t->err != NULL && t->expected_err == NULL) { if (t->aux_err != NULL) { TEST_info("%s:%d: Source of above error (%s); unexpected error %s", t->s.test_file, t->s.start, t->aux_err, t->err); } else { TEST_info("%s:%d: Source of above error; unexpected error %s", t->s.test_file, t->s.start, t->err); } return 0; } if (t->err == NULL && t->expected_err != NULL) { TEST_info("%s:%d: Succeeded but was expecting %s", t->s.test_file, t->s.start, t->expected_err); return 0; } if (strcmp(t->err, t->expected_err) != 0) { TEST_info("%s:%d: Expected %s got %s", t->s.test_file, t->s.start, t->expected_err, t->err); return 0; } if (t->reason == NULL) return 1; if (t->reason == NULL) { TEST_info("%s:%d: Test is missing function or reason code", t->s.test_file, t->s.start); return 0; } err = ERR_peek_error(); if (err == 0) { TEST_info("%s:%d: Expected error \"%s\" not set", t->s.test_file, t->s.start, t->reason); return 0; } reason = ERR_reason_error_string(err); if (reason == NULL) { TEST_info("%s:%d: Expected error \"%s\", no strings available." " Assuming ok.", t->s.test_file, t->s.start, t->reason); return 1; } if (strcmp(reason, t->reason) == 0) return 1; TEST_info("%s:%d: Expected error \"%s\", got \"%s\"", t->s.test_file, t->s.start, t->reason, reason); return 0; } /* Run a parsed test. Log a message and return 0 on error. */ static int run_test(EVP_TEST *t) { if (t->meth == NULL) return 1; t->s.numtests++; if (t->skip) { t->s.numskip++; } else { /* run the test */ if (t->err == NULL && t->meth->run_test(t) != 1) { TEST_info("%s:%d %s error", t->s.test_file, t->s.start, t->meth->name); return 0; } if (!check_test_error(t)) { TEST_openssl_errors(); t->s.errors++; } } /* clean it up */ return 1; } static int find_key(EVP_PKEY **ppk, const char *name, KEY_LIST *lst) { for (; lst != NULL; lst = lst->next) { if (strcmp(lst->name, name) == 0) { if (ppk != NULL) *ppk = lst->key; return 1; } } return 0; } static void free_key_list(KEY_LIST *lst) { while (lst != NULL) { KEY_LIST *next = lst->next; EVP_PKEY_free(lst->key); OPENSSL_free(lst->name); OPENSSL_free(lst); lst = next; } } /* * Is the key type an unsupported algorithm? */ static int key_unsupported(void) { long err = ERR_peek_last_error(); int lib = ERR_GET_LIB(err); long reason = ERR_GET_REASON(err); if ((lib == ERR_LIB_EVP && reason == EVP_R_UNSUPPORTED_ALGORITHM) || (lib == ERR_LIB_EVP && reason == EVP_R_DECODE_ERROR) || reason == ERR_R_UNSUPPORTED) { ERR_clear_error(); return 1; } #ifndef OPENSSL_NO_EC /* * If EC support is enabled we should catch also EC_R_UNKNOWN_GROUP as an * hint to an unsupported algorithm/curve (e.g. if binary EC support is * disabled). */ if (lib == ERR_LIB_EC && (reason == EC_R_UNKNOWN_GROUP || reason == EC_R_INVALID_CURVE)) { ERR_clear_error(); return 1; } #endif /* OPENSSL_NO_EC */ return 0; } /* NULL out the value from |pp| but return it. This "steals" a pointer. */ static char *take_value(PAIR *pp) { char *p = pp->value; pp->value = NULL; return p; } #if !defined(OPENSSL_NO_FIPS_SECURITYCHECKS) static int securitycheck_enabled(void) { static int enabled = -1; if (enabled == -1) { if (OSSL_PROVIDER_available(libctx, "fips")) { OSSL_PARAM params[2]; OSSL_PROVIDER *prov = NULL; int check = 1; prov = OSSL_PROVIDER_load(libctx, "fips"); if (prov != NULL) { params[0] = OSSL_PARAM_construct_int(OSSL_PROV_PARAM_SECURITY_CHECKS, &check); params[1] = OSSL_PARAM_construct_end(); OSSL_PROVIDER_get_params(prov, params); OSSL_PROVIDER_unload(prov); } enabled = check; return enabled; } enabled = 0; } return enabled; } #endif /* * Return 1 if one of the providers named in the string is available. * The provider names are separated with whitespace. * NOTE: destructive function, it inserts '\0' after each provider name. */ static int prov_available(char *providers) { char *p; int more = 1; while (more) { for (; isspace((unsigned char)(*providers)); providers++) continue; if (*providers == '\0') break; /* End of the road */ for (p = providers; *p != '\0' && !isspace((unsigned char)(*p)); p++) continue; if (*p == '\0') more = 0; else *p = '\0'; if (OSSL_PROVIDER_available(libctx, providers)) return 1; /* Found one */ } return 0; } /* Read and parse one test. Return 0 if failure, 1 if okay. */ static int parse(EVP_TEST *t) { KEY_LIST *key, **klist; EVP_PKEY *pkey; PAIR *pp; int i, j, skipped = 0; fips_indicator_callback_unapproved_count = 0; top: do { if (BIO_eof(t->s.fp)) return EOF; clear_test(t); if (!test_readstanza(&t->s)) return 0; } while (t->s.numpairs == 0); pp = &t->s.pairs[0]; /* Are we adding a key? */ klist = NULL; pkey = NULL; start: if (strcmp(pp->key, "PrivateKey") == 0) { pkey = PEM_read_bio_PrivateKey_ex(t->s.key, NULL, 0, NULL, libctx, NULL); if (pkey == NULL && !key_unsupported()) { EVP_PKEY_free(pkey); TEST_info("Can't read private key %s", pp->value); TEST_openssl_errors(); return 0; } klist = &private_keys; } else if (strcmp(pp->key, "PublicKey") == 0) { pkey = PEM_read_bio_PUBKEY_ex(t->s.key, NULL, 0, NULL, libctx, NULL); if (pkey == NULL && !key_unsupported()) { EVP_PKEY_free(pkey); TEST_info("Can't read public key %s", pp->value); TEST_openssl_errors(); return 0; } klist = &public_keys; } else if (strcmp(pp->key, "PrivateKeyRaw") == 0 || strcmp(pp->key, "PublicKeyRaw") == 0) { char *strnid = NULL, *keydata = NULL; unsigned char *keybin; size_t keylen; int nid; if (strcmp(pp->key, "PrivateKeyRaw") == 0) klist = &private_keys; else klist = &public_keys; strnid = strchr(pp->value, ':'); if (strnid != NULL) { *strnid++ = '\0'; keydata = strchr(strnid, ':'); if (keydata != NULL) *keydata++ = '\0'; } if (keydata == NULL) { TEST_info("Failed to parse %s value", pp->key); return 0; } nid = OBJ_txt2nid(strnid); if (nid == NID_undef) { TEST_info("Unrecognised algorithm NID"); return 0; } if (!parse_bin(keydata, &keybin, &keylen)) { TEST_info("Failed to create binary key"); return 0; } if (klist == &private_keys) pkey = EVP_PKEY_new_raw_private_key_ex(libctx, strnid, NULL, keybin, keylen); else pkey = EVP_PKEY_new_raw_public_key_ex(libctx, strnid, NULL, keybin, keylen); if (pkey == NULL && !key_unsupported()) { TEST_info("Can't read %s data", pp->key); OPENSSL_free(keybin); TEST_openssl_errors(); return 0; } OPENSSL_free(keybin); } else if (strcmp(pp->key, "Availablein") == 0) { if (!prov_available(pp->value)) { TEST_info("skipping, '%s' provider not available: %s:%d", pp->value, t->s.test_file, t->s.start); t->skip = 1; return 0; } skipped++; pp++; goto start; } else if (strcmp(pp->key, "FIPSversion") == 0) { if (prov_available("fips")) { j = fips_provider_version_match(libctx, pp->value); if (j < 0) { TEST_info("Line %d: error matching FIPS versions\n", t->s.curr); return 0; } else if (j == 0) { TEST_info("skipping, FIPS provider incompatible version: %s:%d", t->s.test_file, t->s.start); t->skip = 1; return 0; } } else { TEST_info("skipping, FIPS provider not active: %s:%d", t->s.test_file, t->s.start); t->skip = 1; return 0; } skipped++; pp++; goto start; } /* If we have a key add to list */ if (klist != NULL) { if (find_key(NULL, pp->value, *klist)) { TEST_info("Duplicate key %s", pp->value); return 0; } if (!TEST_ptr(key = OPENSSL_malloc(sizeof(*key)))) return 0; key->name = take_value(pp); key->key = pkey; key->next = *klist; *klist = key; /* Go back and start a new stanza. */ if ((t->s.numpairs - skipped) != 1) TEST_info("Line %d: missing blank line\n", t->s.curr); goto top; } /* Find the test, based on first keyword. */ if (!TEST_ptr(t->meth = find_test(pp->key))) return 0; if (!t->meth->init(t, pp->value)) { TEST_error("unknown %s: %s\n", pp->key, pp->value); return 0; } if (t->skip == 1) { /* TEST_info("skipping %s %s", pp->key, pp->value); */ return 0; } for (pp++, i = 1; i < (t->s.numpairs - skipped); pp++, i++) { if (strcmp(pp->key, "Securitycheck") == 0) { #if defined(OPENSSL_NO_FIPS_SECURITYCHECKS) #else if (!securitycheck_enabled()) #endif { TEST_info("skipping, Securitycheck is disabled: %s:%d", t->s.test_file, t->s.start); t->skip = 1; return 0; } } else if (strcmp(pp->key, "Availablein") == 0) { TEST_info("Line %d: 'Availablein' should be the first option", t->s.curr); return 0; } else if (strcmp(pp->key, "Result") == 0) { if (t->expected_err != NULL) { TEST_info("Line %d: multiple result lines", t->s.curr); return 0; } t->expected_err = take_value(pp); } else if (strcmp(pp->key, "Function") == 0) { /* Ignore old line. */ } else if (strcmp(pp->key, "Reason") == 0) { if (t->reason != NULL) { TEST_info("Line %d: multiple reason lines", t->s.curr); return 0; } t->reason = take_value(pp); } else if (strcmp(pp->key, "Threads") == 0) { if (OSSL_set_max_threads(libctx, atoi(pp->value)) == 0) { TEST_info("skipping, '%s' threads not available: %s:%d", pp->value, t->s.test_file, t->s.start); t->skip = 1; } } else if (strcmp(pp->key, "Unapproved") == 0) { t->expect_unapproved = 1; } else { /* Must be test specific line: try to parse it */ int rv = t->meth->parse(t, pp->key, pp->value); if (rv == 0) { TEST_info("Line %d: unknown keyword %s", t->s.curr, pp->key); return 0; } if (rv < 0) { TEST_info("Line %d: error processing keyword %s = %s\n", t->s.curr, pp->key, pp->value); return 0; } if (t->skip) return 0; } } return 1; } static int run_file_tests(int i) { EVP_TEST *t; const char *testfile = test_get_argument(i); int c; if (!TEST_ptr(t = OPENSSL_zalloc(sizeof(*t)))) return 0; if (!test_start_file(&t->s, testfile)) { OPENSSL_free(t); return 0; } OSSL_INDICATOR_set_callback(libctx, fips_indicator_cb); while (!BIO_eof(t->s.fp)) { c = parse(t); if (t->skip) { t->s.numskip++; continue; } if (c == 0 || !run_test(t)) { t->s.errors++; break; } } test_end_file(&t->s); clear_test(t); free_key_list(public_keys); free_key_list(private_keys); BIO_free(t->s.key); c = t->s.errors; OPENSSL_free(t); return c == 0; } const OPTIONS *test_get_options(void) { static const OPTIONS test_options[] = { OPT_TEST_OPTIONS_WITH_EXTRA_USAGE("[file...]\n"), { "config", OPT_CONFIG_FILE, '<', "The configuration file to use for the libctx" }, { "process", OPT_IN_PLACE, 's', "Mode for data processing by cipher tests [in_place/both], both by default"}, { "provider", OPT_PROVIDER_NAME, 's', "The provider to load (when no configuration file, the default value is 'default')" }, { "propquery", OPT_PROV_PROPQUERY, 's', "Property query used when fetching algorithms" }, { "chunk", OPT_DATA_CHUNK, 'N', "Size of data chunks to be processed, 0 for default size"}, { OPT_HELP_STR, 1, '-', "file\tFile to run tests on.\n" }, { NULL } }; return test_options; } int setup_tests(void) { size_t n; char *config_file = NULL; char *provider_name = NULL; OPTION_CHOICE o; while ((o = opt_next()) != OPT_EOF) { switch (o) { case OPT_CONFIG_FILE: config_file = opt_arg(); break; case OPT_IN_PLACE: if ((process_mode_in_place = evp_test_process_mode(opt_arg())) == -1) case OPT_DATA_CHUNK: if (!opt_int(opt_arg(), &data_chunk_size)) return 0; break; case OPT_PROVIDER_NAME: provider_name = opt_arg(); break; case OPT_PROV_PROPQUERY: propquery = opt_arg(); break; case OPT_TEST_CASES: break; default: case OPT_ERR: return 0; } } /* * Load the provider via configuration into the created library context. * Load the 'null' provider into the default library context to ensure that * the tests do not fallback to using the default provider. */ if (config_file == NULL && provider_name == NULL) provider_name = "default"; if (!test_get_libctx(&libctx, &prov_null, config_file, &libprov, provider_name)) return 0; n = test_get_argument_count(); if (n == 0) return 0; ADD_ALL_TESTS(run_file_tests, n); return 1; } void cleanup_tests(void) { OSSL_PROVIDER_unload(libprov); OSSL_PROVIDER_unload(prov_null); OSSL_LIB_CTX_free(libctx); } static int is_digest_disabled(const char *name) { #ifdef OPENSSL_NO_BLAKE2 if (HAS_CASE_PREFIX(name, "BLAKE")) return 1; #endif #ifdef OPENSSL_NO_MD2 if (OPENSSL_strcasecmp(name, "MD2") == 0) return 1; #endif #ifdef OPENSSL_NO_MDC2 if (OPENSSL_strcasecmp(name, "MDC2") == 0) return 1; #endif #ifdef OPENSSL_NO_MD4 if (OPENSSL_strcasecmp(name, "MD4") == 0) return 1; #endif #ifdef OPENSSL_NO_MD5 if (OPENSSL_strcasecmp(name, "MD5") == 0) return 1; #endif #ifdef OPENSSL_NO_RMD160 if (OPENSSL_strcasecmp(name, "RIPEMD160") == 0) return 1; #endif #ifdef OPENSSL_NO_SM3 if (OPENSSL_strcasecmp(name, "SM3") == 0) return 1; #endif #ifdef OPENSSL_NO_WHIRLPOOL if (OPENSSL_strcasecmp(name, "WHIRLPOOL") == 0) return 1; #endif return 0; } static int is_pkey_disabled(const char *name) { #ifdef OPENSSL_NO_EC if (HAS_CASE_PREFIX(name, "EC")) return 1; #endif #ifdef OPENSSL_NO_DH if (HAS_CASE_PREFIX(name, "DH")) return 1; #endif #ifdef OPENSSL_NO_DSA if (HAS_CASE_PREFIX(name, "DSA")) return 1; #endif return 0; } static int is_mac_disabled(const char *name) { #ifdef OPENSSL_NO_BLAKE2 if (HAS_CASE_PREFIX(name, "BLAKE2BMAC") || HAS_CASE_PREFIX(name, "BLAKE2SMAC")) return 1; #endif #ifdef OPENSSL_NO_CMAC if (HAS_CASE_PREFIX(name, "CMAC")) return 1; #endif #ifdef OPENSSL_NO_POLY1305 if (HAS_CASE_PREFIX(name, "Poly1305")) return 1; #endif #ifdef OPENSSL_NO_SIPHASH if (HAS_CASE_PREFIX(name, "SipHash")) return 1; #endif return 0; } static int is_kdf_disabled(const char *name) { #ifdef OPENSSL_NO_SCRYPT if (HAS_CASE_SUFFIX(name, "SCRYPT")) return 1; #endif #ifdef OPENSSL_NO_ARGON2 if (HAS_CASE_SUFFIX(name, "ARGON2")) return 1; #endif return 0; } static int is_cipher_disabled(const char *name) { #ifdef OPENSSL_NO_ARIA if (HAS_CASE_PREFIX(name, "ARIA")) return 1; #endif #ifdef OPENSSL_NO_BF if (HAS_CASE_PREFIX(name, "BF")) return 1; #endif #ifdef OPENSSL_NO_CAMELLIA if (HAS_CASE_PREFIX(name, "CAMELLIA")) return 1; #endif #ifdef OPENSSL_NO_CAST if (HAS_CASE_PREFIX(name, "CAST")) return 1; #endif #ifdef OPENSSL_NO_CHACHA if (HAS_CASE_PREFIX(name, "CHACHA")) return 1; #endif #ifdef OPENSSL_NO_POLY1305 if (HAS_CASE_SUFFIX(name, "Poly1305")) return 1; #endif #ifdef OPENSSL_NO_DES if (HAS_CASE_PREFIX(name, "DES")) return 1; if (HAS_CASE_SUFFIX(name, "3DESwrap")) return 1; #endif #ifdef OPENSSL_NO_OCB if (HAS_CASE_SUFFIX(name, "OCB")) return 1; #endif #ifdef OPENSSL_NO_IDEA if (HAS_CASE_PREFIX(name, "IDEA")) return 1; #endif #ifdef OPENSSL_NO_RC2 if (HAS_CASE_PREFIX(name, "RC2")) return 1; #endif #ifdef OPENSSL_NO_RC4 if (HAS_CASE_PREFIX(name, "RC4")) return 1; #endif #ifdef OPENSSL_NO_RC5 if (HAS_CASE_PREFIX(name, "RC5")) return 1; #endif #ifdef OPENSSL_NO_SEED if (HAS_CASE_PREFIX(name, "SEED")) return 1; #endif #ifdef OPENSSL_NO_SIV if (HAS_CASE_SUFFIX(name, "SIV")) return 1; #endif #ifdef OPENSSL_NO_SM4 if (HAS_CASE_PREFIX(name, "SM4")) return 1; #endif return 0; }