For EC keys it is particularly important to avoid leaking the bit length
of the secret scalar.
Key import/export should never leak the bit length of the secret
scalar in the key.
For this reason, on export we use padded BIGNUMs with fixed length,
using the new `ossl_param_bld_push_BN_pad()`.
When importing we also should make sure that, even if short lived,
the newly created BIGNUM is marked with the BN_FLG_CONSTTIME flag as
soon as possible, so that any processing of this BIGNUM might opt for
constant time implementations in the backend.
Setting the BN_FLG_CONSTTIME flag alone is never enough, we also have
to preallocate the BIGNUM internal buffer to a fixed size big enough
that operations performed during the processing never trigger a
realloc which would leak the size of the scalar through memory
accesses.
Fixed length
------------
The order of the large prime subgroup of the curve is our choice for
a fixed public size, as that is generally the upper bound for
generating a private key in EC cryptosystems and should fit all valid
secret scalars.
For padding on export we just use the bit length of the order
converted to bytes (rounding up).
For preallocating the BIGNUM storage we look at the number of "words"
required for the internal representation of the order, and we
preallocate 2 extra "words" in case any of the subsequent processing
might temporarily overflow the order length.
Future work
-----------
To ensure the flag and fixed size preallocation persists upon
`EC_KEY_set_private_key()`, we need to further harden
`EC_KEY_set_private_key()` and `BN_copy()`.
This is done in separate commits.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10631)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10631)
A pair of internal functions related to EC_KEY handling could benefit
from declaring `EC_KEY *` variables as `const`, providing clarity for
callers and readers of the code, in addition to enlisting the compiler
in preventing some mistakes.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10631)
In https://github.com/openssl/openssl/pull/10883, I'd meant to exclude
the perlasm drivers since they aren't opening pipes and do not
particularly need it, but I only noticed x86_64-xlate.pl, so
arm-xlate.pl and ppc-xlate.pl got the change.
That seems to have been fine, so be consistent and also apply the change
to x86_64-xlate.pl. Checking for errors is generally a good idea.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/10930)
Add ref counting and control how we allocate storage for the private key.
We will need this type in following commits where we move the ecx code
to be provider aware.
Reviewed-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10964)
It is better, safer and smaller to let the library routine handle the
strlen(3) call.
Added a note to the documentation suggesting this.
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11019)
Use of the low level ECDSA and EC_KEY_METHOD functions has been informally discouraged for a
long time. We now formally deprecate them.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10960)
Use of the low level ECDH functions has been informally discouraged for a
long time. We now formally deprecate them.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10960)
Added comments and cleared an intermediate result.
KAT tests already exist in evppkey.txt (Search for "KAS_ECC_CDH_PrimitiveTest")
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10838)
If one of the perlasm xlate drivers crashes, OpenSSL's build will
currently swallow the error and silently truncate the output to however
far the driver got. This will hopefully fail to build, but better to
check such things.
Handle this by checking for errors when closing STDOUT (which is a pipe
to the xlate driver).
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10883)
ECDSA signature lengths are calculated using i2d_ECDSA_SIG().
i2d_ECDSA_SIG() was changed in a previous PR to use a custom ASN1 encoder (using WPACKET)
so that the normal ASN1 encoder does not need to be pulled into the provider boundary.
For consistency ECDSA_size() has been changed to also use i2d_ECDSA_SIG() - this can now
be used directly inside the FIPS provider.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/10577)
ECDSA_do_verify() is a function that verifies a ECDSA signature given a hash and a public EC key. The function is supposed to return 1 on valid signature, 0 on invalid signature and -1 on error. Previously, we returned 0 if the key did not have a verify_sig method. This is actually an error case and not an invalid signature. Consequently, this patch updates the return code to -1.
Fixes#8766
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/10693)
This change addresses a potential side-channel vulnerability in
the internals of nistz256 low level operations for armv8.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/9239)
This is only used if configured with
./config -DECP_NISTZ256_REFERENCE_IMPLEMENTATION
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9239)
This commit addresses a potential side-channel vulnerability in the
internals of some elliptic curve low level operations.
The side-channel leakage appears to be tiny, so the severity of this
issue is rather low.
The issue was reported by David Schrammel and Samuel Weiser.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/9239)
Verifications are public, there is no need to clear the used storage before
freeing it.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10475)
EC_POINT_bn2point() rejected BIGNUMs with a zero value.
This behavior indirectly caused failures when converting a point
at infinity through EC_POINT_point2hex() and then back to a point with
EC_POINT_hex2point().
With this change such BIGNUMs are treated like any other and exported to
an octet buffer filled with zero.
It is then EC_POINT_oct2point() (either the default implementation or
the custom one in group->meth->oct2point) to determine if such encoding
maps to a valid point (generally the point at infinity is encoded as
0x00).
Fixes#10258
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10329)
Previous macros suggested that from 3.0, we're only allowed to
deprecate things at a major version. However, there's no policy
stating this, but there is for removal, saying that to remove
something, it must have been deprecated for 5 years, and that removal
can only happen at a major version.
Meanwhile, the semantic versioning rule is that deprecation should
trigger a MINOR version update, which is reflected in the macro names
as of this change.
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10364)
...in constant time.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10339)
The s390x x448 implementation does not correctly reduce non-canonical
values i.e., u-coordinates >= p = 2^448 - 2^224 - 1.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10339)
ecp_s390x_nistp.c and ecx_meth.c need to include s390x_arch.h.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10317)
Implementations are now spread across several libraries, so the assembler
related defines need to be applied to all affected libraries and modules.
AES_ASM define was missing from libimplementations.a which disabled AESNI
aarch64 changes were made by xkqian.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10180)
An unintended consequence of https://github.com/openssl/openssl/pull/9808
is that when an explicit parameters curve is matched against one of the
well-known builtin curves we automatically inherit also the associated
seed parameter, even if the input parameters excluded such
parameter.
This later affects the serialization of such parsed keys, causing their
input DER encoding and output DER encoding to differ due to the
additional optional field.
This does not cause problems internally but could affect external
applications, as reported in
https://github.com/openssl/openssl/pull/9811#issuecomment-536153288
This commit fixes the issue by conditionally clearing the seed field if
the original input parameters did not include it.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10140)
We put almost everything in these internal static libraries:
libcommon Block building code that can be used by all
our implementations, legacy and non-legacy
alike.
libimplementations All non-legacy algorithm implementations and
only them. All the code that ends up here is
agnostic to the definitions of FIPS_MODE.
liblegacy All legacy implementations.
libnonfips Support code for the algorithm implementations.
Built with FIPS_MODE undefined. Any code that
checks that FIPS_MODE isn't defined must end
up in this library.
libfips Support code for the algorithm implementations.
Built with FIPS_MODE defined. Any code that
checks that FIPS_MODE is defined must end up
in this library.
The FIPS provider module is built from providers/fips/*.c and linked
with libimplementations, libcommon and libfips.
The Legacy provider module is built from providers/legacy/*.c and
linked with liblegacy, libcommon and libcrypto.
If module building is disabled, the object files from liblegacy and
libcommon are added to libcrypto and the Legacy provider becomes a
built-in provider.
The Default provider module is built-in, so it ends up being linked
with libimplementations, libcommon and libnonfips. For libcrypto in
form of static library, the object files from those other libraries
are simply being added to libcrypto.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10088)
Also added blanks lines after declarations in a couple of places.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9916)
Make the include guards consistent by renaming them systematically according
to the naming conventions below
For the public header files (in the 'include/openssl' directory), the guard
names try to match the path specified in the include directives, with
all letters converted to upper case and '/' and '.' replaced by '_'. For the
private header files files, an extra 'OSSL_' is added as prefix.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
Apart from public and internal header files, there is a third type called
local header files, which are located next to source files in the source
directory. Currently, they have different suffixes like
'*_lcl.h', '*_local.h', or '*_int.h'
This commit changes the different suffixes to '*_local.h' uniformly.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
Currently, there are two different directories which contain internal
header files of libcrypto which are meant to be shared internally:
While header files in 'include/internal' are intended to be shared
between libcrypto and libssl, the files in 'crypto/include/internal'
are intended to be shared inside libcrypto only.
To make things complicated, the include search path is set up in such
a way that the directive #include "internal/file.h" could refer to
a file in either of these two directoroes. This makes it necessary
in some cases to add a '_int.h' suffix to some files to resolve this
ambiguity:
#include "internal/file.h" # located in 'include/internal'
#include "internal/file_int.h" # located in 'crypto/include/internal'
This commit moves the private crypto headers from
'crypto/include/internal' to 'include/crypto'
As a result, the include directives become unambiguous
#include "internal/file.h" # located in 'include/internal'
#include "crypto/file.h" # located in 'include/crypto'
hence the superfluous '_int.h' suffixes can be stripped.
The files 'store_int.h' and 'store.h' need to be treated specially;
they are joined into a single file.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
using PCC and KDSA instructions.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10004)
of instruction parameter blocks.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10004)
They now generally conform to the following argument sequence:
script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \
$(PROCESSOR) <output file>
However, in the spirit of being able to use these scripts manually,
they also allow for no argument, or for only the flavour, or for only
the output file. This is done by only using the last argument as
output file if it's a file (it has an extension), and only using the
first argument as flavour if it isn't a file (it doesn't have an
extension).
While we're at it, we make all $xlate calls the same, i.e. the $output
argument is always quoted, and we always die on error when trying to
start $xlate.
There's a perl lesson in this, regarding operator priority...
This will always succeed, even when it fails:
open FOO, "something" || die "ERR: $!";
The reason is that '||' has higher priority than list operators (a
function is essentially a list operator and gobbles up everything
following it that isn't lower priority), and since a non-empty string
is always true, so that ends up being exactly the same as:
open FOO, "something";
This, however, will fail if "something" can't be opened:
open FOO, "something" or die "ERR: $!";
The reason is that 'or' has lower priority that list operators,
i.e. it's performed after the 'open' call.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
Since the arguments are now generated in the build file templates,
they should be removed from the build.info files.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
The output C code was made to use ERR_func_error_string() to see if a
string table was already loaded or not. Since this function returns
NULL always, this check became useless.
Change it to use ERR_reason_error_string() instead, as there's no
reason to believe we will get rid of reason strings, ever.
To top it off, we rebuild all affected C sources.
Fixes#9756
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9756)
Description
-----------
Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any
of the built-in curves. If that is the case, return a new
`EC_GROUP_new_by_curve_name()` object instead of the explicit parameters
`EC_GROUP`.
This affects all users of `EC_GROUP_new_from_ecparameters()`:
- direct calls to `EC_GROUP_new_from_ecparameters()`
- direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit
parameters argument
- ASN.1 parsing of explicit parameters keys (as it eventually
ends up calling `EC_GROUP_new_from_ecpkparameters()`)
A parsed explicit parameter key will still be marked with the
`OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless
programmatically forced otherwise, if the key is eventually serialized
the output will still be encoded with explicit parameters, even if
internally it is treated as a named curve `EC_GROUP`.
Before this change, creating any `EC_GROUP` object using
`EC_GROUP_new_from_ecparameters()`, yielded an object associated with
the default generic `EC_METHOD`, but this was never guaranteed in the
documentation.
After this commit, users of the library that intentionally want to
create an `EC_GROUP` object using a specific `EC_METHOD` can still
explicitly call `EC_GROUP_new(foo_method)` and then manually set the
curve parameters using `EC_GROUP_set_*()`.
Motivation
----------
This has obvious performance benefits for the built-in curves with
specialized `EC_METHOD`s and subtle but important security benefits:
- the specialized methods have better security hardening than the
generic implementations
- optional fields in the parameter encoding, like the `cofactor`, cannot
be leveraged by an attacker to force execution of the less secure
code-paths for single point scalar multiplication
- in general, this leads to reducing the attack surface
Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth
analysis of the issues related to this commit.
It should be noted that `libssl` does not allow to negotiate explicit
parameters (as per RFC 8422), so it is not directly affected by the
consequences of using explicit parameters that this commit fixes.
On the other hand, we detected external applications and users in the
wild that use explicit parameters by default (and sometimes using 0 as
the cofactor value, which is technically not a valid value per the
specification, but is tolerated by parsers for wider compatibility given
that the field is optional).
These external users of `libcrypto` are exposed to these vulnerabilities
and their security will benefit from this commit.
Related commits
---------------
While this commit is beneficial for users using built-in curves and
explicit parameters encoding for serialized keys, commit
b783beeadf (and its equivalents for the
1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the
invalid cofactor values more in general also for other curves
(CVE-2019-1547).
The following list covers commits in `master` that are related to the
vulnerabilities presented in the manuscript motivating this commit:
- d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too
- 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation.
- b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it
- 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats
Note that the PRs that contributed the listed commits also include other
commits providing related testing and documentation, in addition to
links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and
1.1.1 branches.
Responsible Disclosure
----------------------
This and the other issues presented in https://arxiv.org/abs/1909.01785
were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri,
Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the
NISEC group at Tampere University, FINLAND.
The OpenSSL Security Team evaluated the security risk for this
vulnerability as low, and encouraged to propose fixes using public Pull
Requests.
_______________________________________________________________________________
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9808)
Replace flip_endian() by using the little endian specific
BN_bn2lebinpad() and BN_lebin2bn().
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/9511)
BN_bn2bin() is not constant-time and leaks the number of bits in the
processed BIGNUM.
The specialized methods in ecp_nistp224.c, ecp_nistp256.c and
ecp_nistp521.c internally used BN_bn2bin() to convert scalars into the
internal fixed length representation.
This can leak during ECDSA/ECDH key generation or handling the nonce
while generating an ECDSA signature, when using these implementations.
The amount and risk of leaked information useful for a SCA attack
varies for each of the three curves, as it depends mainly on the
ratio between the bitlength of the curve subgroup order (governing the
size of the secret nonce/key) and the limb size for the internal BIGNUM
representation (which depends on the compilation target architecture).
To fix this, we replace BN_bn2bin() with BN_bn2binpad(), bounding the
output length to the width of the internal representation buffer: this
length is public.
Internally the final implementation of both BN_bn2binpad() and
BN_bn2bin() already has masking in place to avoid leaking bn->top
through memory access patterns.
Memory access pattern still leaks bn->dmax, the size of the lazily
allocated buffer for representing the BIGNUM, which is inevitable with
the current BIGNUM architecture: reading past bn->dmax would be an
out-of-bound read.
As such, it's the caller responsibility to ensure that bn->dmax does not
leak secret information, by explicitly expanding the internal BIGNUM
buffer to a public value sufficient to avoid any lazy reallocation
while manipulating it: this is already done at the top level alongside
setting the BN_FLG_CONSTTIME.
Finally, the internal implementation of BN_bn2binpad() indirectly calls
BN_num_bits() via BN_num_bytes(): the current implementation of
BN_num_bits() can leak information to a SCA attacker, and is addressed
in the next commit.
Thanks to David Schrammel and Samuel Weiser for reporting this issue
through responsible disclosure.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/9511)
The cofactor argument to EC_GROUP_set_generator is optional, and SCA mitigations for ECC currently use it. So the library currently falls back to very old SCA-vulnerable code if the cofactor is not present.
This PR allows EC_GROUP_set_generator to compute the cofactor for all curves of cryptographic interest. Steering scalar multiplication to more SCA-robust code.
This issue affects persisted private keys in explicit parameter form, where the (optional) cofactor field is zero or absent.
It also affects curves not built-in to the library, but constructed programatically with explicit parameters, then calling EC_GROUP_set_generator with a nonsensical value (NULL, zero).
The very old scalar multiplication code is known to be vulnerable to local uarch attacks, outside of the OpenSSL threat model. New results suggest the code path is also vulnerable to traditional wall clock timing attacks.
CVE-2019-1547
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9827)
This function re-implements EVP_MD_meth_free(), but has a name that
isn't encumbered by legacy EVP_MD construction functionality.
We also refactor most of EVP_MD_meth_new() into an internal
evp_md_new() that's used when creating fetched methods.
EVP_MD_meth_new() and EVP_MD_meth_free() are rewritten in terms of
evp_md_new() and EVP_MD_free(). This means that at any time, we can
deprecate all the EVP_MD_meth_ functions with no harmful consequence.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9758)
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9607)
for NIST P-256, P-384 and P-521 using KDSA instruction.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9348)
which are already enabled for ECDH.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9348)
for NIST P-256, P-384 and P-521 using PCC instruction.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9348)
When creating a BN_CTX, make sure we store it in the right variable!
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/9546)
Adds simple utility functions to allow both the default and fips providers to
encode and decode DSA-Sig-Value and ECDSA-Sig-Value (DSA_SIG and ECDSA_SIG
structures) to/from ASN.1 DER without requiring those providers to have a
dependency on the asn1 module.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9111)
CLA: trivial
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/9288)
SM2 certificate signing request can be created and signed by OpenSSL
now, both in library and apps.
Documentation and test cases are added.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9085)
Once there are buildable fips tests, some tests that are data driven
from files will need to be modified to exclude non approved curves in
fips mode.
These changes were tested by temporarily adding #define FIPS_MODE 1 to
all the modified source files.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9081)
After avoiding OPENSSL_memcmp for EC curve comparison, there are no remaining
uses in the source code. The function is only defined in an internal header
and thus should be safe to remove for 3.0.0.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/9207)
X963 KDF is used for CMS ec keyagree Recipient Info.
The X963 KDF that is used by CMS EC Key Agreement has been moved
into a EVP_KDF object. This KDF is almost identical to the the SSKDF
hash variant, so it has been implemented inside the SSKDF code with
its own method table.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8902)
The rep parameter takes an int in C, but the assembly implementation
looks at the upper bits. While it's unlikely to happen here, where all
calls pass a constant, in other scenarios x86_64 compilers will leave
arbitrary values in the upper half.
Fix this by making the C prototype match the assembly. (This aspect of
the calling convention implies smaller-than-word arguments in assembly
functions should be avoided. There are far fewer things to test if
everything consistently takes word-sized arguments.)
This was found as part of ABI testing work in BoringSSL.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/8108)
This happens in ec_key_simple_check_key and EC_GROUP_check.
Since the the group order is not a secret scalar, it is
unnecessary to use coordinate blinding.
Fixes: #8731
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8734)
This fixes the "verifying the alias" case.
Actually, while working on it, I realized that conceptually we were
testing the 2 different behaviours of `EC_GROUP_check_named_curve()` at
the same time, and actually not in the proper way.
I think it's fair to assume that overwriting the curve name for an
existing group with `NID_undef` could lead to the unexpected behaviour
we were observing and working around.
Thus I decided to separate the lookup test in a dedicated simpler test
that does what the documentation of `EC_GROUP_check_named_curve()`
suggests: the lookup functionality is meant to find a name for a group
generated with explicit parameters.
In case an alternative alias is returned by the lookup instead of the
expected nid, to avoid doing comparisons between `EC_GROUP`s with
different `EC_METHOD`s, the workaround is to retrieve the `ECPARAMETERS`
of the "alias group" and create a new explicit parameters group to use
in `EC_GROUP_cmp()`.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8555)
The secret point R can be recovered from S using the equation R = S - P.
The X and Z coordinates should be sufficient for that.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8504)
The function felem_diff_128_64 in ecp_nistp521.c substracts the number |in|
from |out| mod p. In order to avoid underflow it first adds 32p mod p
(which is equivalent to 0 mod p) to |out|. The comments and variable naming
suggest that the original author intended to add 64p mod p. In fact it
has been shown that with certain unusual co-ordinates it is possible to
cause an underflow in this function when only adding 32p mod p while
performing a point double operation. By changing this to 64p mod p the
underflow is avoided.
It turns out to be quite difficult to construct points that satisfy the
underflow criteria although this has been done and the underflow
demonstrated. However none of these points are actually on the curve.
Finding points that satisfy the underflow criteria and are also *on* the
curve is considered significantly more difficult. For this reason we do
not believe that this issue is currently practically exploitable and
therefore no CVE has been assigned.
This only impacts builds using the enable-ec_nistp_64_gcc_128 Configure
option.
With thanks to Bo-Yin Yang, Billy Brumley and Dr Liu for their significant
help in investigating this issue.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8405)
Currently SM2 shares the ameth with EC, so the current default digest
algorithm returned is SHA256. This fixes the default digest algorithm of
SM2 to SM3, which is the only valid digest algorithm for SM2 signature.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8186)
The real cause for this change is that test/ec_internal_test.c
includes ec_lcl.h, and including curve448/curve448_lcl.h from there
doesn't work so well with compilers who always do inclusions relative
to the C file being compiled.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8334)
(cherry picked from commit f408e2a352)
The add/double shortcut in ecp_nistz256-x86_64.pl left one instruction
point that did not unwind, and the "slow" path in AES_cbc_encrypt was
not annotated correctly. For the latter, add
.cfi_{remember,restore}_state support to perlasm.
Next, fill in a bunch of functions that are missing no-op .cfi_startproc
and .cfi_endproc blocks. libunwind cannot unwind those stack frames
otherwise.
Finally, work around a bug in libunwind by not encoding rflags. (rflags
isn't a callee-saved register, so there's not much need to annotate it
anyway.)
These were found as part of ABI testing work in BoringSSL.
Reviewed-by: Richard Levitte <levitte@openssl.org>
GH: #8109
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8254)
"Windows friendliness" means a) unified PIC-ification, unified across
all platforms; b) unified commantary delimiter; c) explicit ldur/stur,
as Visual Studio assembler can't automatically encode ldr/str as
ldur/stur when needed.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8256)
"Windows friendliness" means a) flipping .thumb and .text directives,
b) always generate Thumb-2 code when asked(*); c) Windows-specific
references to external OPENSSL_armcap_P.
(*) so far *some* modules were compiled as .code 32 even if Thumb-2
was targeted. It works at hardware level because processor can alternate
between the modes with no overhead. But clang --target=arm-windows's
builtin assembler just refuses to compile .code 32...
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8252)
New function to return internal pointer for field.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8195)
ARMv8.3 adds pointer authentication extension, which in this case allows
to ensure that, when offloaded to stack, return address is same at return
as at entry to the subroutine. The new instructions are nops on processors
that don't implement the extension, so that the vetification is backward
compatible.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8205)
Trim trailing whitespace. It doesn't match OpenSSL coding standards,
AFAICT, and it can cause problems with git tooling.
Trailing whitespace remains in test data and external source.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8092)
It was an ugly hack to avoid certain problems that are no more.
Also added GENERATE lines for perlasm scripts that didn't have that
explicitly.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8125)
CLA: trivial
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8016)
Check that s is less than the order before attempting to verify the
signature as per RFC8032 5.2.7
Fixes#7706
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/7748)
Previously, the API version limit was indicated with a numeric version
number. This was "natural" in the pre-3.0.0 because the version was
this simple number.
With 3.0.0, the version is divided into three separate numbers, and
it's only the major number that counts, but we still need to be able
to support pre-3.0.0 version limits.
Therefore, we allow OPENSSL_API_COMPAT to be defined with a pre-3.0.0
style numeric version number or with a simple major number, i.e. can
be defined like this for any application:
-D OPENSSL_API_COMPAT=0x10100000L
-D OPENSSL_API_COMPAT=3
Since the pre-3.0.0 numerical version numbers are high, it's easy to
distinguish between a simple major number and a pre-3.0.0 numerical
version number and to thereby support both forms at the same time.
Internally, we define the following macros depending on the value of
OPENSSL_API_COMPAT:
OPENSSL_API_0_9_8
OPENSSL_API_1_0_0
OPENSSL_API_1_1_0
OPENSSL_API_3
They indicate that functions marked for deprecation in the
corresponding major release shall not be built if defined.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7724)
This is in preparation for a switch to MAJOR.MINOR.PATCH versioning
and calling the next major version 3.0.0.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7724)
Check that s is less than the order before attempting to verify the
signature as per RFC8032 5.1.7
Fixes#7693
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7697)
ASN1_PKEY_CTRL_DEFAULT_MD_NID is documented to return 2 for a mandatory
digest algorithm, when the key can't support any others. That isn't true
here, so return 1 instead.
Partially fixes#7348
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7408)
Preallocate an extra limb for some of the big numbers to avoid a reallocation
that can potentially provide a side channel.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/7486)
Signed-off-by: Antoine Salon <asalon@vmware.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/7345)
Replace ECDH_KDF_X9_62() with internal ecdh_KDF_X9_63()
Signed-off-by: Antoine Salon <asalon@vmware.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/7345)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7121)
`RSA_free()` and friends are called in case of error from
`RSA_new_method(ENGINE *e)` (or the respective equivalent functions).
For the rest of the description I'll talk about `RSA_*`, but the same
applies for the equivalent `DSA_free()`, `DH_free()`, `EC_KEY_free()`.
If `RSA_new_method()` fails because the engine does not implement the
required method, when `RSA_free(RSA *r)` is called,
`r->meth == NULL` and a segfault happens while checking if
`r->meth->finish` is defined.
This commit fixes this issue by ensuring that `r->meth` is not NULL
before dereferencing it to check for `r->meth->finish`.
Fixes#7102 .
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7121)
Previously you had to supply "null" as the digest to use EdDSA. This changes
things so that any digest is ignored.
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6901)
The EFD database does not state that the "ladd-2002-it-3" algorithm
assumes X1 != 0.
Consequently the current implementation, based on it, fails to compute
correctly if the affine x coordinate of the scalar multiplication input
point is 0.
We replace this implementation using the alternative algorithm based on
Eq. (9) and (10) from the same paper, which being derived from the
additive relation of (6) does not incur in this problem, but costs one
extra field multiplication.
The EFD entry for this algorithm is at
https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-4
and the code to implement it was generated with tooling.
Regression tests add one positive test for each named curve that has
such a point. The `SharedSecret` was generated independently from the
OpenSSL codebase with sage.
This bug was originally reported by Dmitry Belyavsky on the
openssl-users maling list:
https://mta.openssl.org/pipermail/openssl-users/2018-August/008540.html
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7000)
Fixes#6800
Replaces #5418
This commit reverts commit 7876dbffce and moves the check for a
zero-length input down the callstack into sha3_update().
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/6838)
Some EC functions exist in *_GFp and *_GF2m forms, in spite of the
implementations between the two curve types being identical. This
commit provides equivalent generic functions with the *_GFp and *_GF2m
forms just calling the generic functions.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6815)
This commit leverages the Montgomery ladder scaffold introduced in #6690
(alongside a specialized Lopez-Dahab ladder for binary curves) to
provide a specialized differential addition-and-double implementation to
speedup prime curves, while keeping all the features of
`ec_scalar_mul_ladder` against SCA attacks.
The arithmetic in ladder_pre, ladder_step and ladder_post is auto
generated with tooling, from the following formulae:
- `ladder_pre`: Formula 3 for doubling from Izu-Takagi "A fast parallel
elliptic curve multiplication resistant against side channel attacks",
as described at
https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
- `ladder_step`: differential addition-and-doubling Eq. (8) and (10)
from Izu-Takagi "A fast parallel elliptic curve multiplication
resistant against side channel attacks", as described at
https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-ladd-2002-it-3
- `ladder_post`: y-coordinate recovery using Eq. (8) from Brier-Joye
"Weierstrass Elliptic Curves and Side-Channel Attacks", modified to
work in projective coordinates.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6772)
ecp_nistz256_set_from_affine is called when application attempts to use
custom generator, i.e. rarely. Even though it was wrong, it didn't
affect point operations, they were just not as fast as expected.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6738)
The ecp_nistz256_scatter_w7 function is called when application
attempts to use custom generator, i.e. rarely. Even though non-x86_64
versions were wrong, it didn't affect point operations, they were just
not as fast as expected.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6738)
Originally suggested solution for "Return Of the Hidden Number Problem"
is arguably too expensive. While it has marginal impact on slower
curves, none to ~6%, optimized implementations suffer real penalties.
Most notably sign with P-256 went more than 2 times[!] slower. Instead,
just implement constant-time BN_mod_add_quick.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/6664)
By default `ec_scalar_mul_ladder` (which uses the Lopez-Dahab ladder
implementation) is used only for (k * Generator) or (k * VariablePoint).
ECDSA verification uses (a * Generator + b * VariablePoint): this commit
forces the use of `ec_scalar_mul_ladder` also for the ECDSA verification
path, while using the default wNAF implementation for any other case.
With this commit `ec_scalar_mul_ladder` loses the static attribute, and
is added to ec_lcl.h so EC_METHODs can directly use it.
While working on a new custom EC_POINTs_mul implementation, I realized
that many checks (e.g. all the points being compatible with the given
EC_GROUP, creating a temporary BN_CTX if `ctx == NULL`, check for the
corner case `scalar == NULL && num == 0`) were duplicated again and
again in every single implementation (and actually some
implementations lacked some of the tests).
I thought that it makes way more sense for those checks that are
independent from the actual implementation and should always be done, to
be moved in the EC_POINTs_mul wrapper: so this commit also includes
these changes.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
This commit uses the new ladder scaffold to implement a specialized
ladder step based on differential addition-and-doubling in mixed
Lopez-Dahab projective coordinates, modified to independently blind the
operands.
The arithmetic in `ladder_pre`, `ladder_step` and `ladder_post` is
auto generated with tooling:
- see, e.g., "Guide to ECC" Alg 3.40 for reference about the
`ladder_pre` implementation;
- see https://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3
for the differential addition-and-doubling formulas implemented in
`ladder_step`;
- see, e.g., "Fast Multiplication on Elliptic Curves over GF(2**m)
without Precomputation" (Lopez and Dahab, CHES 1999) Appendix Alg Mxy
for the `ladder_post` implementation to recover the `(x,y)` result in
affine coordinates.
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
for specialized Montgomery ladder implementations
PR #6009 and #6070 replaced the default EC point multiplication path for
prime and binary curves with a unified Montgomery ladder implementation
with various timing attack defenses (for the common paths when a secret
scalar is feed to the point multiplication).
The newly introduced default implementation directly used
EC_POINT_add/dbl in the main loop.
The scaffolding introduced by this commit allows EC_METHODs to define a
specialized `ladder_step` function to improve performances by taking
advantage of efficient formulas for differential addition-and-doubling
and different coordinate systems.
- `ladder_pre` is executed before the main loop of the ladder: by
default it copies the input point P into S, and doubles it into R.
Specialized implementations could, e.g., use this hook to transition
to different coordinate systems before copying and doubling;
- `ladder_step` is the core of the Montgomery ladder loop: by default it
computes `S := R+S; R := 2R;`, but specific implementations could,
e.g., implement a more efficient formula for differential
addition-and-doubling;
- `ladder_post` is executed after the Montgomery ladder loop: by default
it's a noop, but specialized implementations could, e.g., use this
hook to transition back from the coordinate system used for optimizing
the differential addition-and-doubling or recover the y coordinate of
the result point.
This commit also renames `ec_mul_consttime` to `ec_scalar_mul_ladder`,
as it better corresponds to what this function does: nothing can be
truly said about the constant-timeness of the overall execution of this
function, given that the underlying operations are not necessarily
constant-time themselves.
What this implementation ensures is that the same fixed sequence of
operations is executed for each scalar multiplication (for a given
EC_GROUP), with no dependency on the value of the input scalar.
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
Run `make update ERROR_REBUILD=-rebuild` to remove some stale error
codes for SM2 (which is now using its own submodule for error codes,
i.e., `SM2_*`).
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6690)
Move base 2^64 code to own #if section. It was nested in base 2^51 section,
which arguably might have been tricky to follow.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6699)
Base 2^64 addition/subtraction and final reduction failed to treat
partially reduced values correctly.
Thanks to Wycheproof Project for vectors and Paul Kehrer for report.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6699)
Internal submodules of libcrypto may require non-public functions from
the EC submodule.
In preparation to use `ec_group_do_inverse_ord()` (from #6116) inside
the SM2 submodule to apply a SCA mitigation on the modular inversion,
this commit moves the `ec_group_do_inverse_ord()` prototype declaration
from the EC-local `crypto/ec/ec_lcl.h` header to the
`crypto/include/internal/ec_int.h` inter-module private header.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6521)
BN_CTX_end() does not handle NULL input, so we must manually check
before calling from the cleanup handler.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6502)
Fix prototype warnings triggered by -Wstrict-prototypes when configuring
with `enable-ec_nistp_64_gcc_128`
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/6556)
This extends the recently added ECDSA signature blinding to blind DSA too.
This is based on side channel attacks demonstrated by Keegan Ryan (NCC
Group) for ECDSA which are likely to be able to be applied to DSA.
Normally, as in ECDSA, during signing the signer calculates:
s:= k^-1 * (m + r * priv_key) mod order
In ECDSA, the addition operation above provides a sufficient signal for a
flush+reload attack to derive the private key given sufficient signature
operations.
As a mitigation (based on a suggestion from Keegan) we add blinding to
the operation so that:
s := k^-1 * blind^-1 (blind * m + blind * r * priv_key) mod order
Since this attack is a localhost side channel only no CVE is assigned.
This commit also tweaks the previous ECDSA blinding so that blinding is
only removed at the last possible step.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6522)
This commit implements coordinate blinding, i.e., it randomizes the
representative of an elliptic curve point in its equivalence class, for
prime curves implemented through EC_GFp_simple_method,
EC_GFp_mont_method, and EC_GFp_nist_method.
This commit is derived from the patch
https://marc.info/?l=openssl-dev&m=131194808413635 by Billy Brumley.
Coordinate blinding is a generally useful side-channel countermeasure
and is (mostly) free. The function itself takes a few field
multiplicationss, but is usually only necessary at the beginning of a
scalar multiplication (as implemented in the patch). When used this way,
it makes the values that variables take (i.e., field elements in an
algorithm state) unpredictable.
For instance, this mitigates chosen EC point side-channel attacks for
settings such as ECDH and EC private key decryption, for the
aforementioned curves.
For EC_METHODs using different coordinate representations this commit
does nothing, but the corresponding coordinate blinding function can be
easily added in the future to extend these changes to such curves.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Billy Brumley <bbrumley@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6501)
Use EVP_PKEY_set_alias_type to access
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6443)
Keegan Ryan (NCC Group) has demonstrated a side channel attack on an
ECDSA signature operation. During signing the signer calculates:
s:= k^-1 * (m + r * priv_key) mod order
The addition operation above provides a sufficient signal for a
flush+reload attack to derive the private key given sufficient signature
operations.
As a mitigation (based on a suggestion from Keegan) we add blinding to
the operation so that:
s := k^-1 * blind^-1 (blind * m + blind * r * priv_key) mod order
Since this attack is a localhost side channel only no CVE is assigned.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Only applies to algorithms that support it. Both raw private and public
keys can be obtained for X25519, Ed25519, X448, Ed448. Raw private keys
only can be obtained for HMAC, Poly1305 and SipHash
Fixes#6259
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6394)
Found by coverity. This is an artifact left over from the original
decaf import which generated the source code for different curves. For
curve 448 this is dead.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6373)
Return immediately upon discovery of bad message digest.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6298)
This reverts commit a6f5b11634.
The EVP_PKEY_sign() function is intended for pre-hashed input which is
not supported by our EdDSA implementation.
See the discussion in PR 5880
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6284)
We check that the curve name associated with the point is the same as that
for the curve.
Fixes#6302
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6323)
Per SEC 1, the curve coefficients must be padded up to size. See C.2's
definition of Curve, C.1's definition of FieldElement, and 2.3.5's definition
of how to encode the field elements in http://www.secg.org/sec1-v2.pdf.
This comes up for P-521, where b needs a leading zero.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6314)
Using the ca application to sign certificates with EdDSA failed because it
is not possible to set the digest to "null". This adds the capability and
updates the documentation accordingly.
Fixes#6201
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6286)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6070)
* EC_POINT_mul is now responsible for constant time point multiplication
(for single fixed or variable point multiplication, when the scalar is
in the range [0,group_order), so we need to strip the nonce padding
from ECDSA.
* Entry added to CHANGES
* Updated EC_POINT_mul documentation
- Integrate existing EC_POINT_mul and EC_POINTs_mul entries in the
manpage to reflect the shift in constant-time expectations when
performing a single fixed or variable point multiplication;
- Add documentation to ec_method_st to reflect the updated "contract"
between callers and implementations of ec_method_st.mul.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6070)
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Co-authored-by: Cesar Pereida Garcia <cesar.pereidagarcia@tut.fi>
Co-authored-by: Sohaib ul Hassan <soh.19.hassan@gmail.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6009)
Adding support for these operations for the EdDSA implementations
makes pkeyutl usable for signing/verifying for these algorithms.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5880)
felem_neg does not produce an output within the tight bounds suitable
for felem_contract. This affects build configurations which set
enable-ec_nistp_64_gcc_128.
point_double and point_add, in the non-z*_is_zero cases, tolerate and
fix up the wider bounds, so this only affects point_add calls where the
other point is infinity. Thus it only affects the final addition in
arbitrary-point multiplication, giving the wrong y-coordinate. This is a
no-op for ECDH and ECDSA, which only use the x-coordinate of
arbitrary-point operations.
Note: ecp_nistp521.c has the same issue in that the documented
preconditions are violated by the test case. I have not addressed this
in this PR. ecp_nistp521.c does not immediately produce the wrong
answer; felem_contract there appears to be a bit more tolerant than its
documented preconditions. However, I haven't checked the point_add
property above holds. ecp_nistp521.c should either get this same fix, to
be conservative, or have the bounds analysis and comments reworked for
the wider bounds.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5779)
Some platforms, cough-DJGPP, fail to compile claiming that requested
alignment is greater than maximum possible. Supposedly original
alignment was result of an attempt to utilize AVX2...
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5708)
In particular, x and y may be NULL, as used in ecdsa_ossl.c. Make use of
this in ecdh_ossl.c as well, to save an otherwise unnecessary temporary.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5532)
Without actually using EVP_PKEY_FLAG_AUTOARGLEN
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4793)
Unlike "upstream", Android NDK's arm64 gcc [but not clang] performs
64x64=128-bit multiplications with library calls, which appears to
have devastating impact on performance. [The condition is reduced to
__ANDROID__ [&& !__clang__], because x86_64 has corresponding
assembly module.]
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5589)
Debugging asserts had implicit casts that triggered the warnings.
However, instead of making the casts explicit it's more appropriate
to perform checks that ensure that implicit casts were safe.
ec/curve448/scalar.c: size_t-fy scalar_decode_short.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5494)
This adds all of the relevant EVP plumbing required to make
X448 and Ed448 work.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/5481)
Why is it redundant? We're looking at carry from addition of small,
11-bit number to 256-bit one. And carry would mean only one thing,
resulting first limb being small number and remaing ones - zeros.
Hence adding 38 to first limb can't carry.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5476)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5449)
As it turns out gcc -pedantic doesn't seem to consider __uint128_t
as non-standard, unlike __int128 that is.
Fix even MSVC warnings in curve25519.c.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5449)
SPARC condition in __SIZEOF_INT128__==16 is rather performance thing
than portability. Even though compiler advertises int128 capability,
corresponding operations are inefficient, because they are not
directly backed by instruction set.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/5449)
Currently it's limited to 64-bit platforms only as minimum radix
expected in assembly is 2^51.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/5408)
3 least significant bits of the input scalar are explicitly cleared,
hence swap variable has fixed value [of zero] upon exit from the loop.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/5408)
The original curve448 code was templated to allow for a 25519
implementation. We've just imported the 448 stuff - but a remnant of
the original templated approach remained. This just simplifies that.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
We removed various platform specific optimisation files in an earlier
commit. The vector code was related to that and therefore is no longer
required. It may be resurrected at a later point if we reintroduce the
opimtisations.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
Instead we should use the standard OpenSSL constant time routines.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
We already have a constant_time_select() function so, to avoid
confusion/clashing we shouldn't have a second one.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)
Remove all architecture specific files except for the reference arch_32
version. These files provide archicture specific performance optimisation.
However they have not been integrated yet. In order to avoid review issues
they are removed for now. They may be reintroduced at a later time.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/5105)