If those private key serializer were given a key structure with just
the public key material, they crashed, because they tried to
de-reference NULL. This adds better checking.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12679)
Just like d2i_PrivateKey() / d2i_PrivateKey_ex(), there's a need to
associate an EVP_PKEY extracted from a PUBKEY to a library context and
a property query string. Without it, a provider-native EVP_PKEY can
only fetch necessary internal algorithms from the default library
context, even though an application specific context should be used.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12671)
In the FIPS provider, calling EC_GROUP_cmp() with NULL for the BN_CTX
argument is forbidden. Since that's what ec_match() does, it simply
cannot work in the FIPS provider. Therefore, we allocate a BN_CTX
with the library context asssociated with one of the input keys
(doesn't matter which) and use that.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12677)
The RSA key could be a public key, and yet, rsa_todata() always tries
to add the private parts as well. The resulting parameters will look
a bit odd, such as a zero |d|, resulting in an invalid key.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12676)
ECC keys with non-NIST group names aren't supported when running with
the FIPS provider.
Keys with such groups that are included in evp_test stanza files
aren't even possible to decode if provider side decoders are used,
since those depend on available EVP_KEYMGMT implementations and what
they support.
Those keys could only be decoded because the legacy decoders were
used.
To make these tests future proof, we separate out the stanzas having
keys with NIST approved group names into separate files, and adjust
the file lists in test/recipes/30-test_evp.t aaccordingly.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12672)
There are some EC keys that can't be exported to provider keymgmt,
because the keymgmt implementation doesn't support certain forms of EC
keys. This could lead to a crash caused by dereferencing a NULL
pointer, so we need to cover that case by returning an error instead.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12610)
Fixes#12640
The X942-KDF is now indepedent of the CMS code (since it no longer uses CMS_SharedInfo_encode).
Any code related to EVP_PKEY_DH_KDF_X9_42 needs to not be wrapped by !defined(OPENSSL_NO_CMS).
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12642)
The calls are unlikely to fail but better checking their return than not.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12648)
Fixes#12589
The 'type' parameter needed to be propagated to the ffc params during keygen,
so that the simple validation of params done during keygen can handle legacy keys for the default provider.
The fips provider ignores this change and only allows fips186-4 approved sizes.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/12623)
A miscellaneous '\' was accidently added to set FIPSKEY=$(FIPSKEY) which was causing some
external CI build loops to not produce test results.
It looks like it was accidently copied from the unix variant which requires the '\'.
Thanks to Wolfgang Beck for tracking down the issue.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12661)
We check that EVP_default_properties_is_fips_enabled() is working even
before other function calls have auto-loaded the config file.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12567)
A config file can change the global default properties. Therefore we
must ensure that the config file is loaded before reading or amending
them.
Fixes#12565
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12567)
If an attempt is made to load a provider and it fails, the fall-back mechanism
should be disabled to prevent the user getting some weird happening. E.g. a
failure to load the FIPS provider should not allow the default to load as a
fall-back.
The OSSL_PROVIDER_try_load() call has been added, to allow a provider to be
loaded without disabling the fall-back mechanism if it fails.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12625)
This KDF is defined in RFC7292 in appendix B. It is widely used in PKCS#12
and should be provided.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12624)
gcc 10 seems to think of assigning to an (unsigned) char
array as a stringop and demands additional space for a
terminating '\0':
In function 'ssl3_generate_key_block',
inlined from 'ssl3_setup_key_block' at ssl/s3_enc.c:304:11:
ssl/s3_enc.c:51:20: error: writing 1 byte into a region of size 0
[-Werror=stringop-overflow=]
51 | buf[j] = c;
| ~~~~~~~^~~
ssl/s3_enc.c: In function 'ssl3_setup_key_block':
ssl/s3_enc.c:23:19: note: at offset 16 to object 'buf' with size 16
declared here
23 | unsigned char buf[16], smd[SHA_DIGEST_LENGTH];
| ^~~
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12632)
Also, document its unusual semantics of resetting the
cipher list (but preserving other configuration).
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/7274)
RSA keys in the 'base' provider are different from a fips provider RSA key (since they have different object structures).
To use a fips provider key in the base serializer the key needs to be exported.
The fix was suggested by @levitte.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12162)
The S390x hardware-accelerated cipher implementations keep their IV
state in an internal structure tied to the underlying implementation.
However, the provider itself needs to be able to expose the IV state
to libcrypto when processing the "iv-state" parameter. In the absence
of a S390x hardware-specific get_ctx_params() implementation, be sure
to copy the IV state from the hw-specific structure back to the
generic PROV_CIPHER_CTX object after each cipher operation in order to
synchronize the internal and fetchable state.
[extended tests]
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Use EVP_CIPHER_CTX_get_iv_state() in cipher_test_enc() rather than
the deprecated EVP_CIPHER_CTX_iv().
[extended tests]
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Use EVP_CIPHER_CTX_get_iv() to implement EVP_CIPHER_set_asn1_iv(),
rather than the deprecated EVP_CIPHER_CTX_original_iv().
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in evp.h.
These macros are internal-only, used to implement legacy libcrypto
EVP ciphers, with no real provider involvement. Accordingly, just use the
EVP_CIPHER_CTX storage directly and don't try to reach into a provider-side
context.
This does necessitate including evp_local.h in several more files.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_rc2.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_xcbc_d.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_sm4.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_des3.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_des.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_camellia.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_aria.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_aes_cbc_hmac_sha256.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_aes_cbc_hmac_sha1.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_aes.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
It is superseded by EVP_CIPHER_CTX_get_iv(), is only present on master,
and had only a couple of in-tree callers that are easy to convert.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Including the ones that were added in commit
83b0634702 with a note that they "may go
away" and are now deprecated.
Remove the missingcrypto.txt entries for the now-deprecated functions.
[extended tests]
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
The current check for iv_gen and iv_gen_rand only lets you fetch
the IV for the case when it was set internally. It might also make
sense to fetch the IV if one was set at cipher-context creation time,
so switch to checking the iv_state, which should be enough to ensure
that there is valid data in the context to be copied out.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Test that EVP_CIPHER_CTX_get_iv() returns the same IV that was
given at initialization time, and that EVP_CIPHER_CTX_get_iv_state()
returns the expected value after performing an encryption operation
(which will differ from the previous value for CBC and OFB modes),
for various modes of AES.
Do this both for the implicit fetch and explicit fetch paths,
at the cost of a slightly more complicated switch statement.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
The EVP_CIPHER_CTX_iv() family of functions are incompatible with
the libcrypto/provider separation, since the implied API contract
(they are undocumented) involves a pointer into the active cipher
context structure. However, the active IV data in a provider-side
context need not even be in the same address space as libcrypto,
so a replacement API is needed.
The existing functions for accessing the (even the "original") IV had
remained undocumented for quite some time, presumably due to unease
about exposing the internals of the cipher state in such a manner.
Provide more maintainable new APIs for accessing the initial ("oiv") and
current-state ("iv") IV data, that copy the value into a caller-provided
array, eliminating the need to provide a pointer into the internal
cipher context, which accordingly no longer provides the ability to
write to the internal cipher state.
Unfortunately, in order to maintain API compatibility with OpenSSL
1.1.1, the old functionality is still available, but is marked as
deprecated for future removal. This would entail removing the "octet
pointer" parameter access, leaving only the "octet string" parameter
type.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)