Fixes#15531
DES and TDES set this flag which could possibly be used by applications.
The gettable cipher param OSSL_CIPHER_PARAM_HAS_RAND_KEY has been added.
Note that EVP_CIPHER_CTX_rand_key() uses this flag.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15606)
This nicely reduces the number of files considered as fips
provider sources.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15609)
The code to handle the cipher operation was already in the provider.
It just needed a OSSL_PARAM in order to set this into the algorithm.
EVP_CIPHER_CTX_set_flags() has been modified to pass the OSSL_PARAM.
Issue reported by Mark Powers from Acumen.
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15496)
This is necessary to keep compatibility with 1.1.1 implementation
of the CBC, OFB, and CFB mode ciphers.
Fixes#14704
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14811)
As ossl_cipher_generic dosen't support to set key length, and
"openssl speed aes-(128|192|256)-cbc" tests fail. A small fix by
adding OSSL_CIPHER_PARAM_KEYLEN params.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14777)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/14086)
The PROV_R codes can be returned to applications so it is useful
to have some common set of provider reason codes for the applications
or third party providers.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/14086)
To clarify the purpose of these two calls rename them to
EVP_CIPHER_CTX_get_original_iv and EVP_CIPHER_CTX_get_updated_iv.
Also rename the OSSL_CIPHER_PARAM_IV_STATE to OSSL_CIPHER_PARAM_UPDATED_IV
to better align with the function name.
Fixes#13411
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13870)
Skip over special TLS steps for stream ciphers if we haven't been
configured for TLS.
Fixes#12528
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Ben Kaduk <kaduk@mit.edu>
(Merged from https://github.com/openssl/openssl/pull/13774)
The RC4-MD5 ciphersuites were not removing the length of the MAC when
calculating the length of decrypted TLS data. Since RC4 is a streamed
cipher that doesn't use padding we separate out the concepts of fixed
length TLS data to be removed, and TLS padding.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13378)
We previously updated the block ciphers to know how to remove a TLS
MAC when using Encrypt-then-MAC. We also need to do the same for stream
ciphers.
Fixes#13363
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13378)
This change makes the naming more consistent, because three different terms
were used for the same thing. (The term libctx was used by far most often.)
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
The functions that check for the provider being runnable are: new, init, final
and dupctx.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12801)
Some modes (e.g., CBC and OFB) update the effective IV with each
block-cipher invocation, making the "IV" stored in the (historically)
EVP_CIPHER_CTX or (current) PROV_CIPHER_CTX distinct from the initial
IV passed in at cipher initialization time. The latter is stored in
the "oiv" (original IV) field, and has historically been accessible
via the EVP_CIPHER_CTX_original_iv() API. The "effective IV" has
also historically been accessible, via both EVP_CIPHER_CTX_iv()
and EVP_CIPHER_CTX_iv_noconst(), the latter of which allows for
*write* access to the internal cipher state. This is particularly
problematic given that provider-internal cipher state need not, in
general, even be accessible from the same address space as libcrypto,
so these APIs are not sustainable in the long term. However, it still
remains necessary to provide access to the contents of the "IV state"
(e.g., when serializing cipher state for in-kernel TLS); a subsequent
reinitialization of a cipher context using the "IV state" as the
input IV will be able to resume processing of data in a compatible
manner.
This problem was introduced in commit
089cb623be, which effectively caused
all IV queries to return the "original IV", removing access to the
current IV state of the cipher.
These functions for accessing the (even the "original") IV had remained
undocumented for quite some time, presumably due to unease about
exposing the internals of the cipher state in such a manner.
Note that this also as a side effect "fixes" some "bugs" where things
had been referring to the 'iv' field that should have been using the
'oiv' field. It also fixes the EVP_CTRL_GET_IV cipher control,
which was clearly intended to expose the non-original IV, for
use exporting the cipher state into the kernel for kTLS.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
The test added previously used a 16 byte block during the update which does not cause internal buffering in the provider.
Some internal variables related to the buffering were not being cleared in the init, which meant that the second
update would use the buffered data from the first update.
Added test for this scenario with exclusions for ciphers that do not support partial block updates.
Found by guidovranken.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12523)
Fixes#12405Fixes#12377
Calling Init()/Update() and then Init()/Update() again gave a different result when using the same key and iv.
Cipher modes that were using ctx->num were not resetting this value, this includes OFB, CFB & CTR.
The fix is to reset this value during the ciphers einit() and dinit() methods.
Most ciphers go thru a generic method so one line fixes most cases.
Add test for calling EVP_EncryptInit()/EVP_EncryptUpdate() multiple times for all ciphers.
Ciphers should return the same value for both updates.
DES3-WRAP does not since it uses a random in the update.
CCM modes currently also fail on the second update (This also happens in 1_1_1).
Fix memory leak in AES_OCB cipher if EVP_EncryptInit is called multiple times.
Fix AES_SIV cipher dup_ctx and init.
Calling EVP_CIPHER_init multiple times resulted in a memory leak in the siv.
Fixing this leak also showed that the dup ctx was not working for siv mode.
Note: aes_siv_cleanup() can not be used by aes_siv_dupctx() as it clears data
that is required for the decrypt (e.g the tag).
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12413)
The previous commits separated out the TLS CBC padding code in libssl.
Now we can use that code to directly support TLS CBC padding and MAC
removal in provided ciphers.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12288)
Avoid function calls we don't need to do.
In 1.1.1 we have:
aes-128-cbc 572267.80k 681197.08k 715430.74k 720508.59k 722359.64k 723004.07k
Current master:
aes-128-cbc 460663.70k 631125.66k 701283.58k 719794.52k 724732.59k 726668.63k
new:
aes-128-cbc 582057.64k 684288.62k 715721.90k 724856.15k 717578.24k 727176.53k
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11102)
The idea to have all these things in providers/common was viable as
long as the implementations was spread around their main providers.
This is, however, no longer the case, so we move the common blocks
closer to the source that use them.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10564)