We do the same thing for the "get1" version. In reality this has broader
use than just TLS (it can also be used in CMS), and "encodedpoint" only
makes sense when you are talking about EC based algorithms.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/13105)
This change makes the naming more consistent, because three different terms
were used for the same thing. (The term libctx was used by far most often.)
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
Many of the new types introduced by OpenSSL 3.0 have an OSSL_ prefix,
e.g., OSSL_CALLBACK, OSSL_PARAM, OSSL_ALGORITHM, OSSL_SERIALIZER.
The OPENSSL_CTX type stands out a little by using a different prefix.
For consistency reasons, this type is renamed to OSSL_LIB_CTX.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
These were previously added as an internal API. But since the CMS code
needs them, other code might do too.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13088)
There is quite a large amount of algorithm specific CMS code sitting in
the algorithm directories. However, this seems to break layering.
Algorithms really have no business knowing anything about CMS. Really it
should be the other way around. Where there is algorithm specific CMS code
it is the CMS layer that should know how to handle different algorithms.
Therefore we move this code into the CMS layer.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13088)
The temporary copy that's made didn't have a lock, which could end up
with a crash. We now handle locks a bit better, and take extra care to
lock it and keep track of which lock is used where and which lock is
thrown away.
Fixes#12876
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12978)
We've had explicit checks for when to fall back to legacy code for
operations that use an EVP_PKEY. Unfortunately, the checks were
radically different in different spots, so we refactor that into a
macro that gets used everywhere.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13043)
Automatically rename all instances of _with_libctx() to _ex() as per
our coding style.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12970)
Also adds error output tests on loading key files with unsupported algorithms to 30-test_evp.t
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/13023)
Fixes#12635
As discussed in the issue, supporting the set0-like semantics long-term is not necessarily desirable, although necessary for short-term compatibility concerns. So I've deprecated the original method and added an equivalent that is explicitly labelled as set1.
I tried to audit existing usages of the (now-deprecated) API and update them to use set1 if that appeared to align with their expectations.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12917)
This also deprecates the function, as it is not necessary any more,
and should fall out of use.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12920)
ECX_KEY was not meant for public consumption, it was only to be
accessed indirectly via EVP routines. However, we still need internal
access for our decoders.
This partially reverts 7c664b1f1bFixes#12880
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12956)
This is required before the RAND/DRBG framework can be made user mutable.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12904)
This adds the convenience function EVP_PKEY_typenames_do_all(), which
does the same as EVP_KEYMGMT_names_do_all(), but without having to
expose all the internal ways to find out if the internal EVP_PKEY key
is legacy or provider-native.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12873)
SP800-56Br2 requires support for the RSA primitives for RSASVE generate and recover.
As these are simple KEM operations another operation type has been added that can support future extensions.
Added public functions EVP_PKEY_encapsulate_init(), EVP_PKEY_encapsulate(), EVP_PKEY_decapsulate_init() and EVP_PKEY_decapsulate()
Added EVP_KEM_* functions.
Added OSSL_FUNC_kem_* dispatch functions
Added EVP_PKEY_CTX_set_kem_op() so that different types of KEM can be added in the future. This value must currently be set to
"RSASVE" after EVP_PKEY_encapsulate_init() & EVP_PKEY_decapsulate_init() as there is no default value.
This allows the existing RSA key types, keymanagers, and encoders to be used with the encapsulation operations.
The design of the public API's resulted from contributions from @romen & @levitte.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12750)
In OpenSSL 1.1.1 doing an HMAC operation with (say) SHA1 would produce
output like this:
HMAC-SHA1(README.md)= 553154e4c0109ddc320bb495735906ad7135c2f1
Prior to this change master would instead display this like so:
SHA1(README.md)= 553154e4c0109ddc320bb495735906ad7135c2f1
The problem is that dgst was using EVP_PKEY_asn1_get0_info() to get
the algorithm name from the EVP_PKEY. This doesn't work with provider
based keys. Instead we introduce a new EVP_PKEY_get0_first_alg_name()
function, and an equivalent EVP_KEYMGMT_get0_first_name() function.
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/12850)
Prior to OpenSSL 3.0 calling EVP_DigestInit_ex() on an mdctx previously
initialised with EVP_DigestSignInit() would retain information about the
key, and re-initialise for another sign operation. To emulate that we
redirect calls to EVP_DigestInit() to EVP_DigestSignInit_ex() if
appropriate.
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/12850)
SP800-56br2 requires seperate KAT's (fips self tests) to be tested for both encryption and decryption
using the RSA primitive (i.e. no padding). This is specified in FIPS140-2 IG D.9
A copy of the methods EVP_PKEY_encrypt_init(), EVP_PKEY_encrypt(), EVP_PKEY_decrypt_init(), EVP_PKEY_decrypt()
are now in the fips module.
Removed the #ifdef FIPS_MODULE in evp_pkey_ctx_free_old_ops().
Added corruption test
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12835)
Instead of sometimes, and sometimes not reporting an error in the
caller of EVP_XXX_fetch(), where the error may or may not be very
accurate, it's now centralised to the inner EVP fetch functionality.
It's made in such a way that it can determine if an error occured
because the algorithm in question is not there, or if something else
went wrong, and will report EVP_R_UNSUPPORTED_ALGORITHM for the
former, and EVP_R_FETCH_FAILED for the latter.
This helps our own test/evp_test.c when it tries to figure out why an
EVP_PKEY it tried to load failed to do so.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12857)
This is purely to allow exporting without having to repeatedly specify
the keymgmt and keydata from the EVP_PKEY.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12853)
If we initialise an EVP_MD_CTX with a legacy MD, and then reuse the same
EVP_MD_CTX with a provided MD then we end up leaking the md_data.
We need to ensure we free the md_data if we change to a provided MD.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12779)
PEM_write_bio_PrivateKey_traditional() didn't handle provider-native
keys very well. Originally, it would simply use the corresponding
encoder, which is likely to output modern PEM (not "traditional").
PEM_write_bio_PrivateKey_traditional() is now changed to try and get a
legacy copy of the input EVP_PKEY, and use that copy for traditional
output, if it has such support.
Internally, evp_pkey_copy_downgraded() is added, to be used when
evp_pkey_downgrade() is too intrusive for what it's needed for.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12738)
Add the AuthEnvelopedData as defined in RFC 5083 with AES-GCM
parameter as defined in RFC 5084.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/8024)
Those functions were located in the EC files, but is really broader
than that, even thought currently only used for SM2. They should
therefore be in a more central location, which was also indicated by
diverse TODOs.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12789)
Setting a hash function was reserved for signature operations.
However, it turns out that SM2 uses a hash function for encryption and
decryption as well.
Therefore, EVP_PKEY_CTX_md() must be called with an expanded operation
type combination that includes EVP_PKEY_OP_TYPE_CRYPT when used in a
generic way.
For SM2, test/recipes/30-test_evp_data/evppkey_sm2.txt is expanded to
test decryption both with an implicit and an explicit digest.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12789)
They get called "delayed parameters" because they may make it to the
implementation at a later time than when they're given.
This currently only covers the distinguished ID, as that's the only
EVP_PKEY operation parameter so far that has been possible to give
before the operation has been initialized.
This includes a re-implementation of EVP_PKEY_CTX_set1_id(),
EVP_PKEY_CTX_get1_id(), and EVP_PKEY_CTX_get1_id_len().
Also, the more rigorous controls of keytype and optype are restored.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12789)
There are places that add an ERR_R_MALLOC_FAILURE record when any of
EVP_PKEY_CTX_new*() return NULL, which is 1) inaccurate, and 2)
shadows the more accurate error record generated when trying to create
the EVP_PKEY_CTX.
Reviewed-by: Paul Yang <kaishen.yy@antfin.com>
(Merged from https://github.com/openssl/openssl/pull/12785)
As long as there are internal legacy keys for EVP_PKEY, we need to preserve
the EVP_PKEY numeric identity when generating a key, and when creating the
EVP_PKEY_CTX.
For added consistency, the EVP_PKEY_CTX contructor tries a little
harder to find a EVP_PKEY_METHOD. Otherwise, we may run into
situations where the EVP_PKEY_CTX ends up having no associated methods
at all.
Reviewed-by: Paul Yang <kaishen.yy@antfin.com>
(Merged from https://github.com/openssl/openssl/pull/12785)
On failure by EVP_PKEY_CTX_new_from_name(), this function reported
ERR_R_MALLOC_FAILURE. However, that's not necessarily true, as it can
fail because the algorithm isn't present.
Either way, EVP_PKEY_CTX_new_from_name() records more accurate errors
on its own, and one of them - EVP_R_FETCH_FAILED - is significant for
test/evp_test.c.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12587)
EVP_PKEY2PKCS8() relies on the presence of an EVP_PKEY_ASN1_METHOD,
which requires "downgrading" the EVP_PKEY to have a legacy internal
key.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12587)
From this point on, this engine must be specifically specified.
To replace the internal EMBEDDED hack with something unique for the
new module, functions to create application specific OSSL_STORE_INFO
types were added.
Furthermore, the following function had to be exported:
ossl_do_blob_header()
ossl_do_PVK_header()
asn1_d2i_read_bio()
Finally, evp_pkcs82pkey_int() has become public under a new name,
EVP_PKCS82PKEY_with_libctx()
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12587)
We leave it up to the EVP_MAC implemenations what to do with an update
where the data length is 0. In the TLS HMAC implemenation this is still
signficant.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12732)
We reuse concepts such as PROV_CIPHER, and make use of some common code
in provider_util.c
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
Now that the all the legacy PKEY MAC bridge code has been moved to the
providers we no longer need the old bridge and it can be removed.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
The previous commits added support for HMAC, SIPHASH and Poly1305 into
the provider MAC bridge. We now extend that for CMAC too.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
The previous commits added support for HMAC and SIPHASH into the provider
MAC bridge. We now extend that for Poly1305 too.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
Some signature algorithms don't need a default digest, so don't fail if
we don't have one.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
The previous commits added support for HMAC into the provider MAC bridge.
We now extend that for SIPHASH too.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
Fixes some issues with EVP_MD_CTX_* functions when doing EVP_DigestSign*
and EVP_DigestVerify* functions.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
Previously it was a macro. We now make it into a function that is params
aware.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12637)
This was added for backward compatability.
Added EC_GROUP_new_from_params() that supports explicit curve parameters.
This fixes the 15-test_genec.t TODO.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12604)
There are some EC keys that can't be exported to provider keymgmt,
because the keymgmt implementation doesn't support certain forms of EC
keys. This could lead to a crash caused by dereferencing a NULL
pointer, so we need to cover that case by returning an error instead.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12610)
A config file can change the global default properties. Therefore we
must ensure that the config file is loaded before reading or amending
them.
Fixes#12565
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12567)
Use EVP_CIPHER_CTX_get_iv() to implement EVP_CIPHER_set_asn1_iv(),
rather than the deprecated EVP_CIPHER_CTX_original_iv().
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in evp.h.
These macros are internal-only, used to implement legacy libcrypto
EVP ciphers, with no real provider involvement. Accordingly, just use the
EVP_CIPHER_CTX storage directly and don't try to reach into a provider-side
context.
This does necessitate including evp_local.h in several more files.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_rc2.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_xcbc_d.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_sm4.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_des3.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_des.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_camellia.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_aria.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_aes_cbc_hmac_sha256.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_aes_cbc_hmac_sha1.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in e_aes.c.
For the legacy implementations, there's no need to use an
in-provider storage for the IV, when the crypto operations
themselves will be performed outside of the provider.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
It is superseded by EVP_CIPHER_CTX_get_iv(), is only present on master,
and had only a couple of in-tree callers that are easy to convert.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
The EVP_CIPHER_CTX_iv() family of functions are incompatible with
the libcrypto/provider separation, since the implied API contract
(they are undocumented) involves a pointer into the active cipher
context structure. However, the active IV data in a provider-side
context need not even be in the same address space as libcrypto,
so a replacement API is needed.
The existing functions for accessing the (even the "original") IV had
remained undocumented for quite some time, presumably due to unease
about exposing the internals of the cipher state in such a manner.
Provide more maintainable new APIs for accessing the initial ("oiv") and
current-state ("iv") IV data, that copy the value into a caller-provided
array, eliminating the need to provide a pointer into the internal
cipher context, which accordingly no longer provides the ability to
write to the internal cipher state.
Unfortunately, in order to maintain API compatibility with OpenSSL
1.1.1, the old functionality is still available, but is marked as
deprecated for future removal. This would entail removing the "octet
pointer" parameter access, leaving only the "octet string" parameter
type.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Some modes (e.g., CBC and OFB) update the effective IV with each
block-cipher invocation, making the "IV" stored in the (historically)
EVP_CIPHER_CTX or (current) PROV_CIPHER_CTX distinct from the initial
IV passed in at cipher initialization time. The latter is stored in
the "oiv" (original IV) field, and has historically been accessible
via the EVP_CIPHER_CTX_original_iv() API. The "effective IV" has
also historically been accessible, via both EVP_CIPHER_CTX_iv()
and EVP_CIPHER_CTX_iv_noconst(), the latter of which allows for
*write* access to the internal cipher state. This is particularly
problematic given that provider-internal cipher state need not, in
general, even be accessible from the same address space as libcrypto,
so these APIs are not sustainable in the long term. However, it still
remains necessary to provide access to the contents of the "IV state"
(e.g., when serializing cipher state for in-kernel TLS); a subsequent
reinitialization of a cipher context using the "IV state" as the
input IV will be able to resume processing of data in a compatible
manner.
This problem was introduced in commit
089cb623be, which effectively caused
all IV queries to return the "original IV", removing access to the
current IV state of the cipher.
These functions for accessing the (even the "original") IV had remained
undocumented for quite some time, presumably due to unease about
exposing the internals of the cipher state in such a manner.
Note that this also as a side effect "fixes" some "bugs" where things
had been referring to the 'iv' field that should have been using the
'oiv' field. It also fixes the EVP_CTRL_GET_IV cipher control,
which was clearly intended to expose the non-original IV, for
use exporting the cipher state into the kernel for kTLS.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Similiar to ecdh this supports the legacy kdf inside the provider dh key exchange.
The supporting EVP_PKEY_CTX macros have been changed into mehtods and moved into dh_ctrl.c
New kdfs such as SSKDF should be done as a seperate pass after doing the derive.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12575)
The KDF bridge is now done provider side so the old EVP_PKEY_METHODS for
this are no longer required.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12573)
Some KDF implementations were available before the current EVP_KDF API.
They were used via EVP_PKEY_derive. There exists a bridge between the old
API and the EVP_KDF API however this bridge itself uses a legacy
EVP_PKEY_METHOD. This commit implements a provider side bridge without
having to use any legacy code.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12573)
The default and legacy providers currently return 1 for status and self test checks.
Added test to show the 3 different stages the self test can be run (for installation, loading and on demand).
For the fips provider:
- If the on demand self test fails, then any subsequent fetches should also fail. To implement this the
cached algorithms are flushed on failure.
- getting the self test callback in the fips provider is a bit complicated since the callback hangs off the core
libctx (as it is set by the application) not the actual fips library context. Also the callback can be set at
any time not just during the OSSL_provider_init() so it is calculated each time before doing any self test.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11752)
-Added EVP_SignFinal_with_libctx() and EVP_VerifyFinal_with_libctx()
-Renamed EVP_DigestSignInit_ex() and EVP_DigestVerifyInit_with_libctx() to
EVP_DigestSignInit_with_libctx() and EVP_DigestVerifyInit_with_libctx()
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11884)
Changed many tests so they also test fips (and removed 'availablein = default' from some tests).
Seperated the monolithic evppkey.txt file into smaller maintainable groups.
Changed the availablein option so it must be first - this then skips the entire test before any fetching happens.
Changed the code so that all the OPENSSL_NO_XXXX tests are done in code via methods such as is_cipher_disabled(alg),
before the fetch happens.
Added missing libctx's found by adding a libctx to test_evp.
Broke up large data files for cipher, kdf's and mac's into smaller pieces so they no longer need 'AvailableIn = default'
Added missing algorithm aliases for cipher/digests to the providers.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12236)
The RAND_DRBG API did not fit well into the new provider concept as
implemented by EVP_RAND and EVP_RAND_CTX. The main reason is that the
RAND_DRBG API is a mixture of 'front end' and 'back end' API calls
and some of its API calls are rather low-level. This holds in particular
for the callback mechanism (RAND_DRBG_set_callbacks()) and the RAND_DRBG
type changing mechanism (RAND_DRBG_set()).
Adding a compatibility layer to continue supporting the RAND_DRBG API as
a legacy API for a regular deprecation period turned out to come at the
price of complicating the new provider API unnecessarily. Since the
RAND_DRBG API exists only since version 1.1.1, it was decided by the OMC
to drop it entirely.
Other related changes:
Use RNG instead of DRBG in EVP_RAND documentation. The documentation was
using DRBG in places where it should have been RNG or CSRNG.
Move the RAND_DRBG(7) documentation to EVP_RAND(7).
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/12509)
Trust the returned value from EVP_PKEY_get_default_digest_name()! It
mimics exactly the values that EVP_PKEY_get_default_digest_nid() is
supposed to return, and that value should simply be passed unchanged.
Callers depend on it.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12586)