The removed override was: OPENSSL_ia32cap=~0x200000200000000
which disables AESNI codepaths and PCLMULQDQ (useful for ghash).
It is unclear why this was done, but it probably just hides bugs.
[extended tests]
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16693)
This change adds optional support for
- Armv8.3-A Pointer Authentication (PAuth) and
- Armv8.5-A Branch Target Identification (BTI)
features to the perl scripts.
Both features can be enabled with additional compiler flags.
Unless any of these are enabled explicitly there is no code change at
all.
The extensions are briefly described below. Please read the appropriate
chapters of the Arm Architecture Reference Manual for the complete
specification.
Scope
-----
This change only affects generated assembly code.
Armv8.3-A Pointer Authentication
--------------------------------
Pointer Authentication extension supports the authentication of the
contents of registers before they are used for indirect branching
or load.
PAuth provides a probabilistic method to detect corruption of register
values. PAuth signing instructions generate a Pointer Authentication
Code (PAC) based on the value of a register, a seed and a key.
The generated PAC is inserted into the original value in the register.
A PAuth authentication instruction recomputes the PAC, and if it matches
the PAC in the register, restores its original value. In case of a
mismatch, an architecturally unmapped address is generated instead.
With PAuth, mitigation against ROP (Return-oriented Programming) attacks
can be implemented. This is achieved by signing the contents of the
link-register (LR) before it is pushed to stack. Once LR is popped,
it is authenticated. This way a stack corruption which overwrites the
LR on the stack is detectable.
The PAuth extension adds several new instructions, some of which are not
recognized by older hardware. To support a single codebase for both pre
Armv8.3-A targets and newer ones, only NOP-space instructions are added
by this patch. These instructions are treated as NOPs on hardware
which does not support Armv8.3-A. Furthermore, this patch only considers
cases where LR is saved to the stack and then restored before branching
to its content. There are cases in the code where LR is pushed to stack
but it is not used later. We do not address these cases as they are not
affected by PAuth.
There are two keys available to sign an instruction address: A and B.
PACIASP and PACIBSP only differ in the used keys: A and B, respectively.
The keys are typically managed by the operating system.
To enable generating code for PAuth compile with
-mbranch-protection=<mode>:
- standard or pac-ret: add PACIASP and AUTIASP, also enables BTI
(read below)
- pac-ret+b-key: add PACIBSP and AUTIBSP
Armv8.5-A Branch Target Identification
--------------------------------------
Branch Target Identification features some new instructions which
protect the execution of instructions on guarded pages which are not
intended branch targets.
If Armv8.5-A is supported by the hardware, execution of an instruction
changes the value of PSTATE.BTYPE field. If an indirect branch
lands on a guarded page the target instruction must be one of the
BTI <jc> flavors, or in case of a direct call or jump it can be any
other instruction. If the target instruction is not compatible with the
value of PSTATE.BTYPE a Branch Target Exception is generated.
In short, indirect jumps are compatible with BTI <j> and <jc> while
indirect calls are compatible with BTI <c> and <jc>. Please refer to the
specification for the details.
Armv8.3-A PACIASP and PACIBSP are implicit branch target
identification instructions which are equivalent with BTI c or BTI jc
depending on system register configuration.
BTI is used to mitigate JOP (Jump-oriented Programming) attacks by
limiting the set of instructions which can be jumped to.
BTI requires active linker support to mark the pages with BTI-enabled
code as guarded. For ELF64 files BTI compatibility is recorded in the
.note.gnu.property section. For a shared object or static binary it is
required that all linked units support BTI. This means that even a
single assembly file without the required note section turns-off BTI
for the whole binary or shared object.
The new BTI instructions are treated as NOPs on hardware which does
not support Armv8.5-A or on pages which are not guarded.
To insert this new and optional instruction compile with
-mbranch-protection=standard (also enables PAuth) or +bti.
When targeting a guarded page from a non-guarded page, weaker
compatibility restrictions apply to maintain compatibility between
legacy and new code. For detailed rules please refer to the Arm ARM.
Compiler support
----------------
Compiler support requires understanding '-mbranch-protection=<mode>'
and emitting the appropriate feature macros (__ARM_FEATURE_BTI_DEFAULT
and __ARM_FEATURE_PAC_DEFAULT). The current state is the following:
-------------------------------------------------------
| Compiler | -mbranch-protection | Feature macros |
+----------+---------------------+--------------------+
| clang | 9.0.0 | 11.0.0 |
+----------+---------------------+--------------------+
| gcc | 9 | expected in 10.1+ |
-------------------------------------------------------
Available Platforms
------------------
Arm Fast Model and QEMU support both extensions.
https://developer.arm.com/tools-and-software/simulation-models/fast-modelshttps://www.qemu.org/
Implementation Notes
--------------------
This change adds BTI landing pads even to assembly functions which are
likely to be directly called only. In these cases, landing pads might
be superfluous depending on what code the linker generates.
Code size and performance impact for these cases would be negligible.
Interaction with C code
-----------------------
Pointer Authentication is a per-frame protection while Branch Target
Identification can be turned on and off only for all code pages of a
whole shared object or static binary. Because of these properties if
C/C++ code is compiled without any of the above features but assembly
files support any of them unconditionally there is no incompatibility
between the two.
Useful Links
------------
To fully understand the details of both PAuth and BTI it is advised to
read the related chapters of the Arm Architecture Reference Manual
(Arm ARM):
https://developer.arm.com/documentation/ddi0487/latest/
Additional materials:
"Providing protection for complex software"
https://developer.arm.com/architectures/learn-the-architecture/providing-protection-for-complex-software
Arm Compiler Reference Guide Version 6.14: -mbranch-protection
https://developer.arm.com/documentation/101754/0614/armclang-Reference/armclang-Command-line-Options/-mbranch-protection?lang=en
Arm C Language Extensions (ACLE)
https://developer.arm.com/docs/101028/latest
Addional Notes
--------------
This patch is a copy of the work done by Tamas Petz in boringssl. It
contains the changes from the following commits:
aarch64: support BTI and pointer authentication in assembly
Change-Id: I4335f92e2ccc8e209c7d68a0a79f1acdf3aeb791
URL: https://boringssl-review.googlesource.com/c/boringssl/+/42084
aarch64: Improve conditional compilation
Change-Id: I14902a64e5f403c2b6a117bc9f5fb1a4f4611ebf
URL: https://boringssl-review.googlesource.com/c/boringssl/+/43524
aarch64: Fix name of gnu property note section
Change-Id: I6c432d1c852129e9c273f6469a8b60e3983671ec
URL: https://boringssl-review.googlesource.com/c/boringssl/+/44024
Change-Id: I2d95ebc5e4aeb5610d3b226f9754ee80cf74a9af
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16674)
This avoids a crash in e.g. `openssl chacha20` as reported by
Steffen Nurpmeso on openssl-users.
Resolves: #16713
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16714)
Some of the functions are being called on NULL bio with the
expectation that such call will not raise an error.
Fixes#16681
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/16686)
The GCM mode of the SM4 algorithm is specifieded by RFC8998.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Reviewed-by: Paul Yang <kaishen.yy@antfin.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16491)
int EVP_PKEY_keygen_init(EVP_PKEY_CTX *ctx);
So it should not mention it in the man page description.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16675)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16671)
These are an attempt to cover off on older OS versions that the main CIs
do not cover.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16669)
With the OBJ_ thread locking in place, these documentation changes are not
required.
This reverts commit 0218bcdd3f.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15713)
This is done using a single global lock. The premise for this is that new
objects will most frequently be added at start up and never added subsequently.
Thus, the locking will be for read most of the time.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15713)
This is done using a single global lock. The premise for this is that new
objects will most frequently be added at start up and never added subsequently.
Thus, the locking will be for read most of the time.
This does, however, introduce the overhead of taking an uncontested read lock
when accessing the object database.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15713)
CLA: trivial
I assume this has been an error in the initial ios conf file. In order to build for ios the shared engine library, needs to be disabled because iOS doesn't have the concept of shared libraries. But instead of only disabling `dynamic-engine` (or like in this commit disabled the `shared`) option the previous config did disable `engine` and with that the `static-engine` compilation as well. This restores the `static-engine` option being enabled by default, but keeping compilation going on iOS.
Cheers!
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/16659)
This is the length of the tag they use and should be considered an upper bound
on their strength.
This lowers their security strength to level 0.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16652)
The header is already included by <windows.h> for WinSDK 8 or later.
Actually this causes problem for WinSDK 7.1 (defaults for VS2010) that
it does not have this header while SRW Locks do exist for Windows 7.
CLA: trivial
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16603)