If one of the perlasm xlate drivers crashes, OpenSSL's build will
currently swallow the error and silently truncate the output to however
far the driver got. This will hopefully fail to build, but better to
check such things.
Handle this by checking for errors when closing STDOUT (which is a pipe
to the xlate driver).
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10883)
Implementations are now spread across several libraries, so the assembler
related defines need to be applied to all affected libraries and modules.
AES_ASM define was missing from libimplementations.a which disabled AESNI
aarch64 changes were made by xkqian.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10180)
We put almost everything in these internal static libraries:
libcommon Block building code that can be used by all
our implementations, legacy and non-legacy
alike.
libimplementations All non-legacy algorithm implementations and
only them. All the code that ends up here is
agnostic to the definitions of FIPS_MODE.
liblegacy All legacy implementations.
libnonfips Support code for the algorithm implementations.
Built with FIPS_MODE undefined. Any code that
checks that FIPS_MODE isn't defined must end
up in this library.
libfips Support code for the algorithm implementations.
Built with FIPS_MODE defined. Any code that
checks that FIPS_MODE is defined must end up
in this library.
The FIPS provider module is built from providers/fips/*.c and linked
with libimplementations, libcommon and libfips.
The Legacy provider module is built from providers/legacy/*.c and
linked with liblegacy, libcommon and libcrypto.
If module building is disabled, the object files from liblegacy and
libcommon are added to libcrypto and the Legacy provider becomes a
built-in provider.
The Default provider module is built-in, so it ends up being linked
with libimplementations, libcommon and libnonfips. For libcrypto in
form of static library, the object files from those other libraries
are simply being added to libcrypto.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10088)
Currently, there are two different directories which contain internal
header files of libcrypto which are meant to be shared internally:
While header files in 'include/internal' are intended to be shared
between libcrypto and libssl, the files in 'crypto/include/internal'
are intended to be shared inside libcrypto only.
To make things complicated, the include search path is set up in such
a way that the directive #include "internal/file.h" could refer to
a file in either of these two directoroes. This makes it necessary
in some cases to add a '_int.h' suffix to some files to resolve this
ambiguity:
#include "internal/file.h" # located in 'include/internal'
#include "internal/file_int.h" # located in 'crypto/include/internal'
This commit moves the private crypto headers from
'crypto/include/internal' to 'include/crypto'
As a result, the include directives become unambiguous
#include "internal/file.h" # located in 'include/internal'
#include "crypto/file.h" # located in 'include/crypto'
hence the superfluous '_int.h' suffixes can be stripped.
The files 'store_int.h' and 'store.h' need to be treated specially;
they are joined into a single file.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
They now generally conform to the following argument sequence:
script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \
$(PROCESSOR) <output file>
However, in the spirit of being able to use these scripts manually,
they also allow for no argument, or for only the flavour, or for only
the output file. This is done by only using the last argument as
output file if it's a file (it has an extension), and only using the
first argument as flavour if it isn't a file (it doesn't have an
extension).
While we're at it, we make all $xlate calls the same, i.e. the $output
argument is always quoted, and we always die on error when trying to
start $xlate.
There's a perl lesson in this, regarding operator priority...
This will always succeed, even when it fails:
open FOO, "something" || die "ERR: $!";
The reason is that '||' has higher priority than list operators (a
function is essentially a list operator and gobbles up everything
following it that isn't lower priority), and since a non-empty string
is always true, so that ends up being exactly the same as:
open FOO, "something";
This, however, will fail if "something" can't be opened:
open FOO, "something" or die "ERR: $!";
The reason is that 'or' has lower priority that list operators,
i.e. it's performed after the 'open' call.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
Since the arguments are now generated in the build file templates,
they should be removed from the build.info files.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
If the passed string length is zero, the function computes the string length
from the passed string.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9760)
Use the header file internal/cryptlib.h instead.
Remove checks for OPENSSL_NO_ASM and I386_ONLY
in cryptlib.c, to match the checks in other
places where OPENSSL_ia32cap_P is used and
assumed to be initialized.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/9688)
The EVP_PKEY MAC implementations had a diversity of controls that were
really the same thing. We did reproduce that for the provider based
MACs, but are changing our minds on this. Instead of that, we now use
one parameter name for passing the name of the underlying ciphers or
digests to a MAC implementation, "cipher" and "digest", and one
parameter name for passing the output size of the MAC, "size".
Then we leave it to the EVP_PKEY->EVP_MAC bridge to translate "md"
to "digest", and "digestsize" to "size".
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9667)
Add Cleanups for gcm - based on the changes to ccm.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Patrick Steuer <patrick.steuer@de.ibm.com>
(Merged from https://github.com/openssl/openssl/pull/9280)
The macros are defined in include/openssl/core_names.h and follow the
naming standard OSSL_{OPNAME}_NAME_{ALGONAME}, where {OPNAME} is the
name of the operation (such as MAC) and {ALGONAME} is the name of the
algorithm. Example: OSSL_MAC_NAME_HMAC
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9635)
CRMF, SSKDF, TLS1_PRF and SIV are affected by this.
This also forces the need to check MAC names, which leads to storing
the names in the created methods, which affects all EVP APIs, not just
EVP_MAC. We will want that kind of information anyway (for example
for 'openssl list')... Consequently, EVP_MAC_name() is re-implemented.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8877)
The code has been modularized so that it can be shared by algorithms.
A fixed size IV is now used instead of being allocated.
The IV is not set into the low level struct now until the update (it uses an
iv_state for this purpose).
Hardware specific methods have been added to a PROV_GCM_HW object.
The S390 code has been changed to just contain methods that can be accessed in
a modular way. There are equivalent generic methods also for the other
platforms.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Patrick Steuer <patrick.steuer@de.ibm.com>
(Merged from https://github.com/openssl/openssl/pull/9231)
Custom aes ciphers will be placed into multiple new files
(instead of the monolithic setup used in the e_aes.c legacy code)
so it makes sense to have a header for the platform specific
code that needs to be shared between files.
modes_lcl.h has also moved to modes_int.h to allow sharing with the
provider source.
Code that will be common to AEAD ciphers has also been added. These
will be used by seperate PR's for GCM, CCM & OCB.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9301)
SIV mode is accessible via EVP. There should be no reason to make the low
level SIV functions from the modes directory part of the public API. Since
these functions do not exist in 1.1.1 we are still able to make this change.
This also reduces the list of newly added undocumented symbols from
issue #9095.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9232)
The old rule in Configure was that if the asm source had a file name
with 'ghash-' as part of the name, GHASH_ASM should be defined. Since
none of the aarch64 asm files has such a name, that macro shouldn't
have been defined.
Fixes#9173
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9178)
These ciphers were already provider aware, and were available from the
default provider. We move them into the FIPS provider too.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9038)
Return error if the output tag buffer size doesn't match
the tag size exactly. This prevents the caller from
using that portion of the tag buffer that remains
uninitialized after an otherwise succesfull call to
CRYPTO_ccm128_tag.
Bug found by OSS-Fuzz.
Fix suggested by Kurt Roeckx.
Signed-off-by: Guido Vranken <guidovranken@gmail.com>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8810)
Limit the number of AES blocks in a data unit to 2^20 or less.
This corresponds to the mandates in IEEE Std 1619-2018 and NIST SP 800-38E.
Note: that this is a change from IEEE Std 1619-2007 which only recommended
this limit.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/8627)
EVP_MAC_ctrl is documented to return 0 or -1 on failure. Numerous places
were not getting this check correct.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/8584)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8281)
The add/double shortcut in ecp_nistz256-x86_64.pl left one instruction
point that did not unwind, and the "slow" path in AES_cbc_encrypt was
not annotated correctly. For the latter, add
.cfi_{remember,restore}_state support to perlasm.
Next, fill in a bunch of functions that are missing no-op .cfi_startproc
and .cfi_endproc blocks. libunwind cannot unwind those stack frames
otherwise.
Finally, work around a bug in libunwind by not encoding rflags. (rflags
isn't a callee-saved register, so there's not much need to annotate it
anyway.)
These were found as part of ABI testing work in BoringSSL.
Reviewed-by: Richard Levitte <levitte@openssl.org>
GH: #8109
"Windows friendliness" means a) flipping .thumb and .text directives,
b) always generate Thumb-2 code when asked(*); c) Windows-specific
references to external OPENSSL_armcap_P.
(*) so far *some* modules were compiled as .code 32 even if Thumb-2
was targeted. It works at hardware level because processor can alternate
between the modes with no overhead. But clang --target=arm-windows's
builtin assembler just refuses to compile .code 32...
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8252)
It was an ugly hack to avoid certain problems that are no more.
Also added GENERATE lines for perlasm scripts that didn't have that
explicitly.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8125)
Convert CMAC APIs to EVP_MAC APIs
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7891)
Based originally on github.com/dfoxfranke/libaes_siv
This creates an SIV128 mode that uses EVP interfaces for the CBC, CTR
and CMAC code to reduce complexity at the cost of perfomance. The
expected use is for short inputs, not TLS-sized records.
Add multiple AAD input capacity in the EVP tests.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/3540)
Upon a call to CRYPTO_ocb128_setiv, either directly on an OCB_CTX or
indirectly with EVP_CTRL_AEAD_SET_IVLEN, reset the nonce-dependent
variables in the OCB_CTX.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/6420)
As it turns out originally published results were skewed by "turbo"
mode. VM apparently remains oblivious to dynamic frequency scaling,
and reports that processor operates at "base" frequency at all times.
While actual frequency gets increased under load.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6406)
On contemporary platforms assembly GHASH processes multiple blocks
faster than one by one. For TLS payloads shorter than 16 bytes, e.g.
alerts, it's possible to reduce hashing operation to single call.
And for block lengths not divisible by 16 - fold two final calls to
one. Improvement is most noticeable with "reptoline", because call to
assembly GHASH is indirect.
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6312)
In `aes_wrap_cipher()`, the minimal out buff length is `(inlen - 8)`.
Since it calls `CRYPTO_128_unwrap_pad()` underneath, it makes sense to
reduce the minimal out length in `CRYPTO_128_unwrap_pad()` to align to
its caller.
Signed-off-by: Yihong Wang <yh.wang@ibm.com>
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6266)