This includes a complete rework of how we use TAP::Harness, by adding
a TAP::Parser subclass that allows additional callbacks to be passed
to perform what we need. The TAP::Parser callbacks we add are:
ALL to print all the TAP output to a file (conditionally)
to collect all the TAP output to an array (conditionally)
EOF to print all the collected TAP output (if there is any)
if any subtest failed
To get TAP output to file, the environment variable HARNESS_TAP_COPY
must be defined, with a file name as value. That file will be
overwritten unconditionally.
To get TAP output displayed on failure, the make variable VERBOSE_FAILURE
or VF must be defined with a non-emoty value.
Additionally, the output of test recipe names has been changed to only
display its basename.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9862)
An attack is simple, if the first CMS_recipientInfo is valid but the
second CMS_recipientInfo is chosen ciphertext. If the second
recipientInfo decodes to PKCS #1 v1.5 form plaintext, the correct
encryption key will be replaced by garbage, and the message cannot be
decoded, but if the RSA decryption fails, the correct encryption key is
used and the recipient will not notice the attack.
As a work around for this potential attack the length of the decrypted
key must be equal to the cipher default key length, in case the
certifiate is not given and all recipientInfo are tried out.
The old behaviour can be re-enabled in the CMS code by setting the
CMS_DEBUG_DECRYPT flag.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9777)
Description
-----------
Upon `EC_GROUP_new_from_ecparameters()` check if the parameters match any
of the built-in curves. If that is the case, return a new
`EC_GROUP_new_by_curve_name()` object instead of the explicit parameters
`EC_GROUP`.
This affects all users of `EC_GROUP_new_from_ecparameters()`:
- direct calls to `EC_GROUP_new_from_ecparameters()`
- direct calls to `EC_GROUP_new_from_ecpkparameters()` with an explicit
parameters argument
- ASN.1 parsing of explicit parameters keys (as it eventually
ends up calling `EC_GROUP_new_from_ecpkparameters()`)
A parsed explicit parameter key will still be marked with the
`OPENSSL_EC_EXPLICIT_CURVE` ASN.1 flag on load, so, unless
programmatically forced otherwise, if the key is eventually serialized
the output will still be encoded with explicit parameters, even if
internally it is treated as a named curve `EC_GROUP`.
Before this change, creating any `EC_GROUP` object using
`EC_GROUP_new_from_ecparameters()`, yielded an object associated with
the default generic `EC_METHOD`, but this was never guaranteed in the
documentation.
After this commit, users of the library that intentionally want to
create an `EC_GROUP` object using a specific `EC_METHOD` can still
explicitly call `EC_GROUP_new(foo_method)` and then manually set the
curve parameters using `EC_GROUP_set_*()`.
Motivation
----------
This has obvious performance benefits for the built-in curves with
specialized `EC_METHOD`s and subtle but important security benefits:
- the specialized methods have better security hardening than the
generic implementations
- optional fields in the parameter encoding, like the `cofactor`, cannot
be leveraged by an attacker to force execution of the less secure
code-paths for single point scalar multiplication
- in general, this leads to reducing the attack surface
Check the manuscript at https://arxiv.org/abs/1909.01785 for an in depth
analysis of the issues related to this commit.
It should be noted that `libssl` does not allow to negotiate explicit
parameters (as per RFC 8422), so it is not directly affected by the
consequences of using explicit parameters that this commit fixes.
On the other hand, we detected external applications and users in the
wild that use explicit parameters by default (and sometimes using 0 as
the cofactor value, which is technically not a valid value per the
specification, but is tolerated by parsers for wider compatibility given
that the field is optional).
These external users of `libcrypto` are exposed to these vulnerabilities
and their security will benefit from this commit.
Related commits
---------------
While this commit is beneficial for users using built-in curves and
explicit parameters encoding for serialized keys, commit
b783beeadf (and its equivalents for the
1.0.2, 1.1.0 and 1.1.1 stable branches) fixes the consequences of the
invalid cofactor values more in general also for other curves
(CVE-2019-1547).
The following list covers commits in `master` that are related to the
vulnerabilities presented in the manuscript motivating this commit:
- d2baf88c43 [crypto/rsa] Set the constant-time flag in multi-prime RSA too
- 311e903d84 [crypto/asn1] Fix multiple SCA vulnerabilities during RSA key validation.
- b783beeadf [crypto/ec] for ECC parameters with NULL or zero cofactor, compute it
- 724339ff44 Fix SCA vulnerability when using PVK and MSBLOB key formats
Note that the PRs that contributed the listed commits also include other
commits providing related testing and documentation, in addition to
links to PRs and commits backporting the fixes to the 1.0.2, 1.1.0 and
1.1.1 branches.
Responsible Disclosure
----------------------
This and the other issues presented in https://arxiv.org/abs/1909.01785
were reported by Cesar Pereida García, Sohaib ul Hassan, Nicola Tuveri,
Iaroslav Gridin, Alejandro Cabrera Aldaya and Billy Bob Brumley from the
NISEC group at Tampere University, FINLAND.
The OpenSSL Security Team evaluated the security risk for this
vulnerability as low, and encouraged to propose fixes using public Pull
Requests.
_______________________________________________________________________________
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9808)
Improve handling of low entropy at start up from /dev/urandom by waiting for
a read(2) call on /dev/random to succeed. Once one such call has succeeded,
a shared memory segment is created and persisted as an indicator to other
processes that /dev/urandom is properly seeded.
This does not fully prevent against attacks weakening the entropy source.
An attacker who has control of the machine early in its boot sequence
could create the shared memory segment preventing detection of low entropy
conditions. However, this is no worse than the current situation.
An attacker would also be capable of removing the shared memory segment
and causing seeding to reoccur resulting in a denial of service attack.
This is partially mitigated by keeping the shared memory alive for the
duration of the process's existence. Thus, an attacker would not only need
to have called call shmctl(2) with the IPC_RMID command but the system
must subsequently enter a state where no instances of libcrypto exist in
any process. Even one long running process will prevent this attack.
The System V shared memory calls used here go back at least as far as
Linux kernel 2.0. Linux kernels 4.8 and later, don't have a reliable way
to detect that /dev/urandom has been properly seeded, so a failure is raised
for this case (i.e. the getentropy(2) call has already failed).
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/9595)
BN_generate_prime_ex no longer avoids factors 3..17863 in p-1
when not computing safe primes.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9309)
The macro TLS_MD_MASTER_SECRET_CONST is supposed to hold the ascii string
"extended master secret". On EBCDIC machines it actually contained the
value "extecded master secret"
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9430)
Public function OSSL_PROVIDER_available() takes a library context and
a provider name, and returns 1 if it's available for use, i.e. if it's
possible to fetch implementations from it, otherwise 0.
Internal function ossl_provider_activated() returns 1 if the given
OSSL_PROVIDER is activated, otherwise 0.
To make this possible, the activation of fallbacks got refactored out
to a separate function, which ended up simplifying the code.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9398)
This avoids leaking bit 0 of the private key.
Reviewed-by: Viktor Dukhovni <viktor@openssl.org>
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/9363)
Change SYSerr to have the function name; remove SYS_F_xxx defines
Add a test and documentation.
Use get_last_socket_err, which removes some ifdef's in OpenSSL code.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9072)
They were only used for recursive ASN1 parsing.
Even if the internal memory-debugging facility remains,
this simplification seems worthwhile.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9342)
Previous commits added the EVP_KEYEXCH type for representing key exchange
algorithms. They also added various functions for fetching and using them,
so we document all of those functions.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9266)
Deprecate all xxx_F_ defines.
Removed some places that tested for a specific function.
Use empty field for the function names in output.
Update documentation.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9058)
CLA: trivial
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/9288)
We only export functions, not global, so remove the config option
and some of the #ifdef stuff.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9285)
Because of that we can remove OPENSSL_UNISTD and some other
macros from e_os2.h and opensslconf.h
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9204)
CLA: trivial
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/9275)
SM2 certificate signing request can be created and signed by OpenSSL
now, both in library and apps.
Documentation and test cases are added.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9085)
The existing code used PKCS5 specifications.
SP800-132 adds the following additional constraints for:
- the range of the key length.
- the minimum iteration count (1000 recommended).
- salt length (at least 128 bits).
These additional constraints may cause errors (in scrypt, and
some PKCS5 related test vectors). To disable the new
constraints use the new ctrl string "pkcs5".
For backwards compatability, the checks are only enabled by
default for fips mode.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8868)
Making the default cipher strings a function gives the library more
control over the defaults. Potentially allowing a change in the
future as ciphers become deprecated or dangerous.
Also allows third party distributors to change the defaults for their
installations.
Reviewed-by: Paul Yang <yang.yang@baishancloud.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8686)
This has been long overdue.
Note that this does not join the X509 and X509V3 error modules, that
will be too many macro changes at this stage.
Fixes#8919
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8925)
OpenSSL_version(OPENSSL_DIR) gives you a nicely formatted string for
display, but if all you really want is the directory itself, you were
forced to parsed the string.
This introduces a new function to get diverse configuration data from
the library, OPENSSL_info(). This works the same way as
OpenSSL_version(), but has its own series of types, currently
including:
OPENSSL_INFO_CONFIG_DIR returns OPENSSLDIR
OPENSSL_INFO_ENGINES_DIR returns ENGINESDIR
OPENSSL_INFO_MODULES_DIR returns MODULESDIR
OPENSSL_INFO_DSO_EXTENSION returns DSO_EXTENSION
OPENSSL_INFO_DIR_FILENAME_SEPARATOR returns directory/filename separator
OPENSSL_INFO_LIST_SEPARATOR returns list separator
For scripting purposes, this also adds the command 'openssl info'.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8709)
These undocumented functions were never integrated into the EVP layer
and implement the AES Infinite Garble Extension (IGE) mode and AES
Bi-directional IGE mode. These modes were never formally standardised
and usage of these functions is believed to be very small. In particular
AES_bi_ige_encrypt() has a known bug. It accepts 2 AES keys, but only
one is ever used. The security implications are believed to be minimal,
but this issue was never fixed for backwards compatibility reasons.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8710)
Refer to NIST SP 800-90C section 5.4 "Prediction Resistance.l"
This requires the seed sources to be approved as entropy sources, after
which they should be considered live sources as per section 5.3.2 "Live
Entropy Source Availability."
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/8647)
Limit the number of AES blocks in a data unit to 2^20 or less.
This corresponds to the mandates in IEEE Std 1619-2018 and NIST SP 800-38E.
Note: that this is a change from IEEE Std 1619-2007 which only recommended
this limit.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/8627)
Removing the option entirely would break builds unnecessarily, so
let's make it deprecated.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8632)
The output format now matches coreutils *dgst tools.
[ edited to remove trailing white space ]
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8578)
Properties are a sequence of comma separated name=value pairs. A name
without a corresponding value is assumed to be a Boolean and have the
true value 'yes'. Values are either strings or numbers. Strings can be
quoted either _"_ or _'_ or unquoted (with restrictions). There are no
escape characters inside strings. Number are either decimal digits or
'0x' followed by hexidecimal digits. Numbers are represented internally
as signed sixty four bit values.
Queries on properties are a sequence comma separated conditional tests.
These take the form of name=value (equality test), name!=value (inequality
test) or name (Boolean test for truth). Queries can be parsed, compared
against a definition or merged pairwise.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8224)
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8254)
The original 1.1.1 design was to use SSL_CB_HANDSHAKE_START and
SSL_CB_HANDSHAKE_DONE to signal start/end of a post-handshake message
exchange in TLSv1.3. Unfortunately experience has shown that this confuses
some applications who mistake it for a TLSv1.2 renegotiation. This means
that KeyUpdate messages are not handled properly.
This commit removes the use of SSL_CB_HANDSHAKE_START and
SSL_CB_HANDSHAKE_DONE to signal the start/end of a post-handshake
message exchange. Individual post-handshake messages are still signalled in
the normal way.
This is a potentially breaking change if there are any applications already
written that expect to see these TLSv1.3 events. However, without it,
KeyUpdate is not currently usable for many applications.
Fixes#8069
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8096)
Changed PKEY/KDF API to call the new API.
Added wrappers for PKCS5_PBKDF2_HMAC() and EVP_PBE_scrypt() to call the new EVP KDF APIs.
Documentation updated.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6674)