the only function that uses it) because it would trip up an assertion in
bn_div_words() when first invoked. This also adds BN_div_word() testing to
bntest.
Submitted by: Nils Larsch
Reviewed by: Geoff Thorpe
key-generation and prime-checking functions. Rather than explicitly passing
callback functions and caller-defined context data for the callbacks, a new
structure BN_GENCB is defined that encapsulates this; a pointer to the
structure is passed to all such functions instead.
This wrapper structure allows the encapsulation of "old" and "new" style
callbacks - "new" callbacks return a boolean result on the understanding
that returning FALSE should terminate keygen/primality processing. The
BN_GENCB abstraction will allow future callback modifications without
needing to break binary compatibility nor change the API function
prototypes. The new API functions have been given names ending in "_ex" and
the old functions are implemented as wrappers to the new ones. The
OPENSSL_NO_DEPRECATED symbol has been introduced so that, if defined,
declaration of the older functions will be skipped. NB: Some
openssl-internal code will stick with the older callbacks for now, so
appropriate "#undef" logic will be put in place - this is in case the user
is *building* openssl (rather than *including* its headers) with this
symbol defined.
There is another change in the new _ex functions; the key-generation
functions do not return key structures but operate on structures passed by
the caller, the return value is a boolean. This will allow for a smoother
transition to having key-generation as "virtual function" in the various
***_METHOD tables.
The 'OPENSSL_NO_SUN_DIV' default is still subject to change,
so I didn't bother to finish the CHANGES entry yet.
Submitted by: Douglas Stebila <douglas.stebila@sun.com>, Sheueling Chang <sheueling.chang@sun.com>
(CHANGES entry by Bodo Moeller)
and make all files the depend on it include it without prefixing it
with openssl/.
This means that all Makefiles will have $(TOP) as one of the include
directories.
sure they are available in opensslconf.h, by giving them names starting
with "OPENSSL_" to avoid conflicts with other packages and by making
sure e_os2.h will cover all platform-specific cases together with
opensslconf.h.
I've checked fairly well that nothing breaks with this (apart from
external software that will adapt if they have used something like
NO_KRB5), but I can't guarantee it completely, so a review of this
change would be a good thing.
One problem that looked like a problem in bn_recp.c at first turned
out to be a BN_mul bug. An example is given in bn_recp.c; finding
the bug responsible for this is left as an exercise.
The bn_cmp_part_words bug was only caught in the BN_mod_mul() test,
not in the BN_mul() test, so apparently the choice of parameters in
some cases is bad.
But even if this is avoided, there are still segmentation violations
(during one of the BN_free()s at the end of test_kron
in some cases, in other cases during BN_kronecker, or
later in BN_sqrt; choosing a different exponentiation
algorithm in bntest.c appears to influence when the SIGSEGV
takes place).
so we have to reduce the random numbers used in test_mont.
Before this change, test_mont failed in [debug-]solaris-sparcv9-gcc
configurations ("Montgomery multiplication test failed!" because
the multiplication result obtained with Montgomery multiplication
differed from the result obtained by BN_mod_mul).
Substituing the old version of bn_gcd.c (BN_mod_inverse) did not avoid
the problem.
The strange thing is that it I did not observe any problems
when using debug-solaris-sparcv8-gcc and solaris-sparcv9-cc,
as well as when compiling OpenSSL 0.9.6 in the solaric-sparcv9-gcc
configuration on the same system.
two functions that did expansion on in parameters (BN_mul() and
BN_sqr()). The problem was solved by making bn_dup_expand() which is
a mix of bn_expand2() and BN_dup().
X is 5120 on 32-bit and 151552 on 64-bit architectures and I varies
from 0 to 4. As result the test was *unreasonably* slow and virtually
impossible to complete on 64-bit architectures (e.g. IRIX bc couldn't
even swallow such long lines).