The 'rand_generate' method is not well suited for being used with
weak entropy sources in the 'get_entropy' callback, because the
caller needs to provide a preallocated buffer without knowing
how much bytes are actually needed to collect the required entropy.
Instead we use the 'rand_get_seed' and 'rand_clear_seed' methods
which were exactly designed for this purpose: it's the callee who
allocates and fills the buffer, and finally cleans it up again.
The 'rand_get_seed' and 'rand_clear_seed' methods are currently
optional for a provided random generator. We could fall back to
using 'rand_generate' if those methods are not implemented.
However, imo it would be better to simply make them an officially
documented requirement for seed sources.
Fixes#22332
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/22394)
The FIPS 140-3 DSA and ECDSA tests need to be known answer tests which means
the entropy needs to be cooked. This permits this.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/19510)
Since OPENSSL_malloc() and friends report ERR_R_MALLOC_FAILURE, and
at least handle the file name and line number they are called from,
there's no need to report ERR_R_MALLOC_FAILURE where they are called
directly, or when SSLfatal() and RLAYERfatal() is used, the reason
`ERR_R_MALLOC_FAILURE` is changed to `ERR_R_CRYPTO_LIB`.
There were a number of places where `ERR_R_MALLOC_FAILURE` was reported
even though it was a function from a different sub-system that was
called. Those places are changed to report ERR_R_{lib}_LIB, where
{lib} is the name of that sub-system.
Some of them are tricky to get right, as we have a lot of functions
that belong in the ASN1 sub-system, and all the `sk_` calls or from
the CRYPTO sub-system.
Some extra adaptation was necessary where there were custom OPENSSL_malloc()
wrappers, and some bugs are fixed alongside these changes.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19301)
Makes life easier for callers.
Fixes Coverity 1503326
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18799)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15974)
For functions that exist in 1.1.1 provide a simple aliases via #define.
Fixes#15236
Functions with OSSL_DECODER_, OSSL_ENCODER_, OSSL_STORE_LOADER_,
EVP_KEYEXCH_, EVP_KEM_, EVP_ASYM_CIPHER_, EVP_SIGNATURE_,
EVP_KEYMGMT_, EVP_RAND_, EVP_MAC_, EVP_KDF_, EVP_PKEY_,
EVP_MD_, and EVP_CIPHER_ prefixes are renamed.
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15405)
pointers to provider size algorithm contexts.
Fixes#14284
The gettable_ctx_params methods were confusingly passing a 'provctx' and
a provider context which are completely different objects.
Some objects such as EVP_KDF used 'data' while others such as EVP_MD used 'provctx'.
For libcrypto this 'ctx' is an opaque ptr returned when a providers algorithm
implementation creates an internal context using a new_ctx() method.
Hence the new name 'algctx'.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15275)
Change:
EVP_RAND_gettable_ctx_params -> EVP_RAND_CTX_gettable_params
EVP_RAND_settable_ctx_params -> EVP_RAND_CTX_settable_params
Which brings them in line with the other similar functions for other algorithm
types.
Fixes#14880
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14893)
The following operation types are covered:
EVP_MD, EVP_CIPHER, EVP_MAC, EVP_RAND, EVP_KEYMGMT, EVP_SIGNATURE,
EVP_ASYM_CIPHER, EVP_KEM, EVP_KEYEXCH, EVP_KDF. Also EVP_PKEY.
For EVP_MD and EVP_CIPHER, OBJ_nid2ln() is used as a fallback for
legacy implementations.
For EVP_PKEY, the info field of the EVP_PKEY_ASN1_METHOD is used as a
fallback for legacy implementations.
Fixes#14514
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14656)
This corresponds to the |info| field in EVP_PKEY_ASN1_METHOD, as well
as the generic use of OBJ_nid2ln() as a one line description.
We also add the base functionality to make use of this field.
Fixes#14514
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14656)
We don't want to hold a read lock when calling a user supplied callback.
That callback could do anything so the risk of a deadlock is high.
Instead we collect all the names first inside the read lock, and then
subsequently call the user callback outside the read lock.
Fixes#14225
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14250)
The primary DRBG may be shared across multiple threads and therefore
we must use locking to access it. Previously we were enabling that locking
lazily when we attempted to obtain one of the child DRBGs. Part of the
process of enabling the lock, is to create the lock. But if we create the
lock lazily then it is too late - we may race with other threads where each
thread is independently attempting to enable the locking. This results
in multiple locks being created - only one of which "sticks" and the rest
are leaked.
Instead we enable locking on the primary when we first create it. This is
already locked and therefore we cannot race.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/13660)
This includes error reporting for libcrypto sub-libraries in surprising
places.
This was done using util/err-to-raise
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13318)
Many of the new types introduced by OpenSSL 3.0 have an OSSL_ prefix,
e.g., OSSL_CALLBACK, OSSL_PARAM, OSSL_ALGORITHM, OSSL_SERIALIZER.
The OPENSSL_CTX type stands out a little by using a different prefix.
For consistency reasons, this type is renamed to OSSL_LIB_CTX.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
This is required before the RAND/DRBG framework can be made user mutable.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12904)
The RAND_DRBG API did not fit well into the new provider concept as
implemented by EVP_RAND and EVP_RAND_CTX. The main reason is that the
RAND_DRBG API is a mixture of 'front end' and 'back end' API calls
and some of its API calls are rather low-level. This holds in particular
for the callback mechanism (RAND_DRBG_set_callbacks()) and the RAND_DRBG
type changing mechanism (RAND_DRBG_set()).
Adding a compatibility layer to continue supporting the RAND_DRBG API as
a legacy API for a regular deprecation period turned out to come at the
price of complicating the new provider API unnecessarily. Since the
RAND_DRBG API exists only since version 1.1.1, it was decided by the OMC
to drop it entirely.
Other related changes:
Use RNG instead of DRBG in EVP_RAND documentation. The documentation was
using DRBG in places where it should have been RNG or CSRNG.
Move the RAND_DRBG(7) documentation to EVP_RAND(7).
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/12509)
The strength and max_length DRBG parameters were being cached in the EVP_RAND
layer. This commit removes the caching.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/12321)
The calls to query the DRBG strength, state and maximum output size all used
nested locks. This removes the nesting.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/12321)
The new naming scheme consistently usese the `OSSL_FUNC_` prefix for all
functions which are dispatched between the core and providers.
This change includes in particular all up- and downcalls, i.e., the
dispatched functions passed from core to provider and vice versa.
- OSSL_core_ -> OSSL_FUNC_core_
- OSSL_provider_ -> OSSL_FUNC_core_
For operations and their function dispatch tables, the following convention
is used:
Type | Name (evp_generic_fetch(3)) |
---------------------|-----------------------------------|
operation | OSSL_OP_FOO |
function id | OSSL_FUNC_FOO_FUNCTION_NAME |
function "name" | OSSL_FUNC_foo_function_name |
function typedef | OSSL_FUNC_foo_function_name_fn |
function ptr getter | OSSL_FUNC_foo_function_name |
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12222)
Move the three different DRBGs to the provider.
As part of the move, the DRBG specific data was pulled out of a common
structure and into their own structures. Only these smaller structures are
securely allocated. This saves quite a bit of secure memory:
+-------------------------------+
| DRBG | Bytes | Secure |
+--------------+-------+--------+
| HASH | 376 | 512 |
| HMAC | 168 | 256 |
| CTR | 176 | 256 |
| Common (new) | 320 | 0 |
| Common (old) | 592 | 1024 |
+--------------+-------+--------+
Bytes is the structure size on the X86/64.
Secure is the number of bytes of secure memory used (power of two allocator).
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/11682)