Libssl uses the null cipher in certain situations. It should be
converted to a provided cipher.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10865)
Also Add ability for providers to dynamically exclude cipher algorithms.
Cipher algorithms are only returned from providers if their capable() method is either NULL,
or the method returns 1.
This is mainly required for ciphers that only have hardware implementations.
If there is no hardware support, then the algorithm needs to be not available.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10146)
The AES_GCM specialisation was defined in the common cipher header
providers/implementations/include/prov/ciphercommon_gcm.h, when it
should in fact be in a local providers/implementations/ciphers/
header.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10606)
The AES_CCM specialisation was defined in the common cipher header
providers/implementations/include/prov/ciphercommon_ccm.h, when it
should in fact be in a local providers/implementations/ciphers/
header.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10606)
Aes-ecb mode can be optimized by inverleaving cipher operation on
several blocks and loop unrolling. Interleaving needs one ideal
unrolling factor, here we adopt the same factor with aes-cbc,
which is described as below:
If blocks number > 5, select 5 blocks as one iteration,every
loop, decrease the blocks number by 5.
If 3 < left blocks < 5 select 3 blocks as one iteration, every
loop, decrease the block number by 3.
If left blocks < 3, treat them as tail blocks.
Detailed implementation will have a little adjustment for squeezing
code space.
With this way, for small size such as 16 bytes, the performance is
similar as before, but for big size such as 16k bytes, the performance
improves a lot, even reaches to 100%, for some arches such as A57,
the improvement even exceeds 100%. The following table will list the
encryption performance data on aarch64, take a72 and a57 as examples.
Performance value takes the unit of cycles per byte, takes the format
as comparision of values. List them as below:
A72:
Before optimization After optimization Improve
evp-aes-128-ecb@16 17.26538237 16.82663866 2.61%
evp-aes-128-ecb@64 5.50528499 5.222637557 5.41%
evp-aes-128-ecb@256 2.632700213 1.908442892 37.95%
evp-aes-128-ecb@1024 1.876102047 1.078018868 74.03%
evp-aes-128-ecb@8192 1.6550392 0.853982929 93.80%
evp-aes-128-ecb@16384 1.636871283 0.847623957 93.11%
evp-aes-192-ecb@16 17.73104961 17.09692468 3.71%
evp-aes-192-ecb@64 5.78984398 5.418545192 6.85%
evp-aes-192-ecb@256 2.872005308 2.081815274 37.96%
evp-aes-192-ecb@1024 2.083226672 1.25095642 66.53%
evp-aes-192-ecb@8192 1.831992057 0.995916251 83.95%
evp-aes-192-ecb@16384 1.821590009 0.993820525 83.29%
evp-aes-256-ecb@16 18.0606306 17.96963317 0.51%
evp-aes-256-ecb@64 6.19651997 5.762465812 7.53%
evp-aes-256-ecb@256 3.176991394 2.24642538 41.42%
evp-aes-256-ecb@1024 2.385991919 1.396018192 70.91%
evp-aes-256-ecb@8192 2.147862636 1.142222597 88.04%
evp-aes-256-ecb@16384 2.131361787 1.135944617 87.63%
A57:
Before optimization After optimization Improve
evp-aes-128-ecb@16 18.61045121 18.36456218 1.34%
evp-aes-128-ecb@64 6.438628994 5.467959461 17.75%
evp-aes-128-ecb@256 2.957452881 1.97238604 49.94%
evp-aes-128-ecb@1024 2.117096219 1.099665054 92.52%
evp-aes-128-ecb@8192 1.868385973 0.837440804 123.11%
evp-aes-128-ecb@16384 1.853078526 0.822420027 125.32%
evp-aes-192-ecb@16 19.07021756 18.50018552 3.08%
evp-aes-192-ecb@64 6.672351486 5.696088921 17.14%
evp-aes-192-ecb@256 3.260427769 2.131449916 52.97%
evp-aes-192-ecb@1024 2.410522832 1.250529718 92.76%
evp-aes-192-ecb@8192 2.17921605 0.973225504 123.92%
evp-aes-192-ecb@16384 2.162250997 0.95919871 125.42%
evp-aes-256-ecb@16 19.3008384 19.12743654 0.91%
evp-aes-256-ecb@64 6.992950658 5.92149541 18.09%
evp-aes-256-ecb@256 3.576361743 2.287619504 56.34%
evp-aes-256-ecb@1024 2.726671027 1.381267599 97.40%
evp-aes-256-ecb@8192 2.493583657 1.110959913 124.45%
evp-aes-256-ecb@16384 2.473916816 1.099967073 124.91%
Change-Id: Iccd23d972e0d52d22dc093f4c208f69c9d5a0ca7
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10518)
The idea to have all these things in providers/common was viable as
long as the implementations was spread around their main providers.
This is, however, no longer the case, so we move the common blocks
closer to the source that use them.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10564)
This also adds the missing accessor RSA_get0_pss_params(), so those
parameters can be included in the PKCS#8 data structure without
needing to know the inside of the RSA structure.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10394)
Signed-off-by: Simo Sorce <simo@redhat.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9949)
New name is providers/implementations/include/prov/implementations.h
All inclusions are adapted accordingly.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10088)
From providers/{common,default,legacy}/ to providers/implementations/
However, providers/common/digests/digest_common.c stays where it is,
because it's support code rather than an implementation.
To better support all kinds of implementations with common code, we
add the library providers/libcommon.a. Code that ends up in this
library must be FIPS agnostic.
While we're moving things around, though, we move digestscommon.h
from providers/common/include/internal to providers/common/include/prov,
thereby starting on a provider specific include structure, which
follows the line of thoughts of the recent header file reorganization.
We modify the affected '#include "internal/something.h"' to
'#include "prov/something.h"'.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10088)