When a desired algorithm wasn't available, we didn't register anywhere
that an attempt had been made, with the result that next time the same
attempt was made, the whole process would be done again.
To avoid this churn, we register a bit for each operation that has
been queried in the libcrypto provider object, and test it before
trying the same query and method construction loop again.
If course, if the provider has told us not to cache, we don't register
this bit.
Fixes#11814
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11842)
So far, the API level method constructors that are called by
ossl_method_construct_this() were passed the algorithm name string and
the dispatch table and had no access to anything else.
This change gives them access to the full OSSL_ALGORITHM item, thereby
giving them access to the property definition.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10394)
This modifies the treatment of algorithm name strings to allow
multiple names separated with colons.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/8985)
Multiple names per implementation is already supported in the namemap,
but hasn't been used yet. However, as soon as we have multiple names,
we will get an issue with what name should be saved in the method.
The solution is to not save the name itself, but rather the number
it's associated with. This number is supposed to be unique for each
set of names, and we assume that algorithm names are globally unique,
i.e. there can be no name overlap between different algorithm types.
Incidently, it was also found that the 'get' function used by
ossl_construct_method() doesn't need all the parameters it was given;
most of what it needs, it can now get through the data structure given
by the caller of ossl_construct_method(). As a consequence,
ossl_construct_method() itself doesn't need all the parameters it was
given either.
There are some added internal functions that are expected to disappear
as soon as legacy code is removed, such as evp_first_name() and
ossl_namemap_num2name().
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9897)
If ossl_method_store_add() gets called with a method that already exists
(i.e. the store has one with matching provider, nid and properties), that
method should not be stored. We do this check inside ossl_method_store_add()
because it has all the locking required to do so safely.
Fixes#9561
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9650)
Because the operation identity wasn't integrated with the created
methods, the following code would give unexpected results:
EVP_MD *md = EVP_MD_fetch(NULL, "MD5", NULL);
EVP_CIPHER *cipher = EVP_CIPHER_fetch(NULL, "MD5", NULL);
if (md != NULL)
printf("MD5 is a digest\n");
if (cipher != NULL)
printf("MD5 is a cipher\n");
The message is that MD5 is both a digest and a cipher.
Partially fixes#9106
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9109)
Move digest code into the relevant providers (fips, default, legacy).
The headers are temporarily moved to be internal, and will be moved
into providers after all external references are resolved. The deprecated
digest code can not be removed until EVP_PKEY (signing) is supported by
providers. EVP_MD data can also not yet be cleaned up for the same reasons.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8763)
We didn't deal very well with names that didn't have pre-defined NIDs,
as the NID zero travelled through the full process and resulted in an
inaccessible method. By consequence, we need to refactor the method
construction callbacks to rely more on algorithm names.
We must, however, still store the legacy NID with the method, for the
sake of other code that depend on it (for example, CMS).
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8878)
Various core and property related code files used global data. We should
store all of that in an OPENSSL_CTX instead.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8857)
When we attempt to fetch a method with a given NID we will ask the
providers for it if we don't already know about it. During that process
we may be told about other methods with a different NID. We need to
make sure we don't confuse the two.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8541)
Fully assume that the method constructors use reference counting.
Otherwise, we may leak memory, or loose track and do a double free.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8341)
All relevant OSSL_METHOD_CONSTRUCT_METHOD callbacks got the callback
data passed to them, except 'destruct'. There's no reason why it
shouldn't get that pointer passed, so we make a small adjustment.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8341)
This queries the provider for its available functionality (unless a
matching method structured is already cached, in which case that's
used instead), and creates method structure with the help of a passed
constructor. The result is cached if the provider allows it (or if
caching is forced).
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8340)