The base functionality to implement the keypair encoders doesn't
change much, but this results in a more massive amount of
OSSL_DISPATCH and OSSL_ALGORITHM arrays, to support a fine grained
selection of implementation based on what parts of the keypair
structure (combinations of key parameters, public key and private key)
should be output, the output type ("TEXT", "DER" or "PEM") and the
outermost output structure ("pkcs8", "SubjectPublicKeyInfo", key
type specific structures, ...).
We add support for the generic structure name "type-specific", to
allow selecting that without knowing the exact name of that structure.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13167)
The base functionality to implement the keypair decoders doesn't
change much, but this results in a more massive amount of
OSSL_DISPATCH and OSSL_ALGORITHM arrays, to support a fine grained
selection of implementation based on what parts of the keypair
structure (combinations of key parameters, public key and private key)
should be expected as input, the input type ("DER", "PEM", ...) and the
outermost input structure ("pkcs8", "SubjectPublicKeyInfo", key
type specific structures, ...).
We add support for the generic structure name "type-specific", to
allow selecting that without knowing the exact name of that structure.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13248)
The following internal functions are affected:
ossl_do_blob_header
ossl_do_PVK_header
ossl_b2i
ossl_b2i_bio
This is reflected by moving include/internal/pem.h to include/crypto/pem.h
engines/e_loader_attic gets the source code added to it to have
continued access to those functions.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/13195)
This change makes the naming more consistent, because three different terms
were used for the same thing. (The term libctx was used by far most often.)
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
Many of the new types introduced by OpenSSL 3.0 have an OSSL_ prefix,
e.g., OSSL_CALLBACK, OSSL_PARAM, OSSL_ALGORITHM, OSSL_SERIALIZER.
The OPENSSL_CTX type stands out a little by using a different prefix.
For consistency reasons, this type is renamed to OSSL_LIB_CTX.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
We were getting confused with DHX parameters and encoding them as PKCS3
DH parameters instead.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13050)
The PEM->DER decoder passes the data type of its contents, something
that decoder_process() ignored.
On the other hand, the PEM->DER decoder passed nonsense.
Both issues are fixed here.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13060)
Also adds error output tests on loading key files with unsupported algorithms to 30-test_evp.t
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/13023)
This stops them leaking into other namespaces in a static build.
They remain internal.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13013)
ECX_KEY was not meant for public consumption, it was only to be
accessed indirectly via EVP routines. However, we still need internal
access for our decoders.
This partially reverts 7c664b1f1bFixes#12880
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12956)
This only refactors them for the changed API, there's not yet a
separate DER to PEM encoder and therefore no chaining possibility
yet.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12873)
The encoder implementations were implemented by unnecessarily copying
code into numerous topical source files, making them hard to maintain.
This changes merges all those into two source files, one that encodes
into DER and PEM, the other to text.
Diverse small cleanups are included.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12803)
From this point on, this engine must be specifically specified.
To replace the internal EMBEDDED hack with something unique for the
new module, functions to create application specific OSSL_STORE_INFO
types were added.
Furthermore, the following function had to be exported:
ossl_do_blob_header()
ossl_do_PVK_header()
asn1_d2i_read_bio()
Finally, evp_pkcs82pkey_int() has become public under a new name,
EVP_PKCS82PKEY_with_libctx()
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12587)
The pass phrase prompter that's part of OSSL_ENCODER and OSSL_DECODER
is really a passphrase callback bridge between the diverse forms of
prompters that exist within OpenSSL: pem_password_cb, ui_method and
OSSL_PASSPHRASE_CALLBACK.
This can be generalised, to be re-used by other parts of OpenSSL, and
to thereby allow the users to specify whatever form of pass phrase
callback they need, while being able to pass that on to other APIs
that are called internally, in the form that those APIs demand.
Additionally, we throw in the possibility to cache pass phrases during
a "session" (we leave it to each API to define what a "session" is).
This is useful for any API that implements discovery and therefore may
need to get the same password more than once, such as OSSL_DECODER and
OSSL_STORE.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12512)
This is placed as CORE because the core of libcrypto is the authority
for what is possible to do and what's required to make these abstract
objects work.
In essence, an abstract object is an OSSL_PARAM array with well
defined parameter keys and values:
- an object type, which is a number indicating what kind of
libcrypto structure the object in question can be used with. The
currently possible numbers are defined in <openssl/core_object.h>.
- an object data type, which is a string that indicates more closely
what the contents of the object are.
- the object data, an octet string. The exact encoding used depends
on the context in which it's used. For example, the decoder
sub-system accepts any encoding, as long as there is a decoder
implementation that takes that as input. If central code is to
handle the data directly, DER encoding is assumed. (*)
- an object reference, also an octet string. This octet string is
not the object contents, just a mere reference to a provider-native
object. (**)
- an object description, which is a human readable text string that
can be displayed if some software desires to do so.
The intent is that certain provider-native operations (called X
here) are able to return any sort of object that belong with other
operations, or an object that has no provider support otherwise.
(*) A future extension might be to be able to specify encoding.
(**) The possible mechanisms for dealing with object references are:
- An object loading function in the target operation. The exact
target operation is determined by the object type (for example,
OSSL_OBJECT_PKEY implies that the target operation is a KEYMGMT)
and the implementation to be fetched by its object data type (for
an OSSL_OBJECT_PKEY, that's the KEYMGMT keytype to be fetched).
This loading function is only useful for this if the implementations
that are involved (X and KEYMGMT, for example) are from the same
provider.
- An object exporter function in the operation X implementation.
That exporter function can be used to export the object data in
OSSL_PARAM form that can be imported by a target operation's
import function. This can be used when it's not possible to fetch
the target operation implementation from the same provider.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12512)
This was added for backward compatability.
Added EC_GROUP_new_from_params() that supports explicit curve parameters.
This fixes the 15-test_genec.t TODO.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12604)