The RAND_DRBG API did not fit well into the new provider concept as
implemented by EVP_RAND and EVP_RAND_CTX. The main reason is that the
RAND_DRBG API is a mixture of 'front end' and 'back end' API calls
and some of its API calls are rather low-level. This holds in particular
for the callback mechanism (RAND_DRBG_set_callbacks()) and the RAND_DRBG
type changing mechanism (RAND_DRBG_set()).
Adding a compatibility layer to continue supporting the RAND_DRBG API as
a legacy API for a regular deprecation period turned out to come at the
price of complicating the new provider API unnecessarily. Since the
RAND_DRBG API exists only since version 1.1.1, it was decided by the OMC
to drop it entirely.
Other related changes:
Use RNG instead of DRBG in EVP_RAND documentation. The documentation was
using DRBG in places where it should have been RNG or CSRNG.
Move the RAND_DRBG(7) documentation to EVP_RAND(7).
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/12509)
The existing wording didn't capture the reality of the default setup, this new
nomenclature attempts to improve the situation.
Reviewed-by: Mark J. Cox <mark@awe.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12366)
Move the three different DRBGs to the provider.
As part of the move, the DRBG specific data was pulled out of a common
structure and into their own structures. Only these smaller structures are
securely allocated. This saves quite a bit of secure memory:
+-------------------------------+
| DRBG | Bytes | Secure |
+--------------+-------+--------+
| HASH | 376 | 512 |
| HMAC | 168 | 256 |
| CTR | 176 | 256 |
| Common (new) | 320 | 0 |
| Common (old) | 592 | 1024 |
+--------------+-------+--------+
Bytes is the structure size on the X86/64.
Secure is the number of bytes of secure memory used (power of two allocator).
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/11682)
This macro is used to determine if certain pieces of code should
become part of the FIPS module or not. The old name was confusing.
Fixes#11538
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/11539)
Optimize the the AES-based implementation of the CTR_DRBG
construction, see 10.2.1 in [1].
Due to the optimizations, the code may deviate (more) from the
pseudocode in [1], but it is functional equivalence being decisive
for compliance:
"All DRBG mechanisms and algorithms are described in this document
in pseudocode, which is intended to explain functionality.
The pseudocode is not intended to constrain real-world
implementations." [9 in [1]].
The following optimizations are done:
- Replace multiple plain AES encryptions by a single AES-ECB
encryption of a corresponding pre-initialized buffer, where
possible.
This allows platform-specific AES-ECB support to
be used and reduces the overhead of multiple EVP calls.
- Replace the generate operation loop (which is a counter
increment followed by a plain AES encryption) by a
loop which does a plain AES encryption followed by
a counter increment. The latter loop is just a description
of AES-CTR, so we replace it by a single AES-CTR
encryption.
This allows for platform-specific AES-CTR support to be used
and reduces the overhead of multiple EVP calls.
This change, that is, going from a pre- to a post- counter
increment, requires the counter in the internal state
to be kept at "+1" (compared to the pseudocode in [1])
such that it is in the correct state, when a generate
operation is called.
That in turn also requires all other operations to be
changed from pre- to post-increment to keep functional
equivalence.
[1] NIST SP 800-90A Revision 1
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10457)
The callback data allows passing context specific data from the
application of the DRBG to to the entropy callbacks.
This a rather specialized feature which is useful for implementing
known answer tests (KATs) or deterministic signatures (RFC6979),
which require passing a specified entropy and nonce for instantiating
the DRBG.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10950)
These fields are purely application data, and applications don't reach
into the bowels of the FIPS module, so these fields are never used
there.
Fixes#10835
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10837)
Make the include guards consistent by renaming them systematically according
to the naming conventions below
For the public header files (in the 'include/openssl' directory), the guard
names try to match the path specified in the include directives, with
all letters converted to upper case and '/' and '.' replaced by '_'. For the
private header files files, an extra 'OSSL_' is added as prefix.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
Apart from public and internal header files, there is a third type called
local header files, which are located next to source files in the source
directory. Currently, they have different suffixes like
'*_lcl.h', '*_local.h', or '*_int.h'
This commit changes the different suffixes to '*_local.h' uniformly.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)