In https://github.com/openssl/openssl/pull/10883, I'd meant to exclude
the perlasm drivers since they aren't opening pipes and do not
particularly need it, but I only noticed x86_64-xlate.pl, so
arm-xlate.pl and ppc-xlate.pl got the change.
That seems to have been fine, so be consistent and also apply the change
to x86_64-xlate.pl. Checking for errors is generally a good idea.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/10930)
If one of the perlasm xlate drivers crashes, OpenSSL's build will
currently swallow the error and silently truncate the output to however
far the driver got. This will hopefully fail to build, but better to
check such things.
Handle this by checking for errors when closing STDOUT (which is a pipe
to the xlate driver).
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10883)
They now generally conform to the following argument sequence:
script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \
$(PROCESSOR) <output file>
However, in the spirit of being able to use these scripts manually,
they also allow for no argument, or for only the flavour, or for only
the output file. This is done by only using the last argument as
output file if it's a file (it has an extension), and only using the
first argument as flavour if it isn't a file (it doesn't have an
extension).
While we're at it, we make all $xlate calls the same, i.e. the $output
argument is always quoted, and we always die on error when trying to
start $xlate.
There's a perl lesson in this, regarding operator priority...
This will always succeed, even when it fails:
open FOO, "something" || die "ERR: $!";
The reason is that '||' has higher priority than list operators (a
function is essentially a list operator and gobbles up everything
following it that isn't lower priority), and since a non-empty string
is always true, so that ends up being exactly the same as:
open FOO, "something";
This, however, will fail if "something" can't be opened:
open FOO, "something" or die "ERR: $!";
The reason is that 'or' has lower priority that list operators,
i.e. it's performed after the 'open' call.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
"Windows friendliness" means a) flipping .thumb and .text directives,
b) always generate Thumb-2 code when asked(*); c) Windows-specific
references to external OPENSSL_armcap_P.
(*) so far *some* modules were compiled as .code 32 even if Thumb-2
was targeted. It works at hardware level because processor can alternate
between the modes with no overhead. But clang --target=arm-windows's
builtin assembler just refuses to compile .code 32...
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8252)
Some of these scripts would recognise an output parameter if it looks
like a file path. That works both in both the classic and new build
schemes. Some fo these scripts would only recognise it if it's a
basename (i.e. no directory component). Those need to be corrected,
as the output parameter in the new build scheme is more likely to
contain a directory component than not.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Most of the assembly uses constants from arm_arch.h, but a few references to
ARMV7_NEON don't. Consistently use the macros everywhere.
Signed-off-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Rich Salz <rsalz@openssl.org>
As some of ARM processors, more specifically Cortex-Mx series, are
Thumb2-only, we need to support Thumb2-only builds even in assembly.
Reviewed-by: Tim Hudson <tjh@openssl.org>
This facilitates "universal" builds, ones that target multiple
architectures, e.g. ARMv5 through ARMv7. See commentary in
Configure for details.
Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Modest improvement coefficients mean that code already had some
parallelism and there was not very much room for improvement. Special
thanks to Ted Krovetz for benchmarking the code with such patience.