Replace flip_endian() by using the little endian specific
BN_bn2lebinpad() and BN_lebin2bn().
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/9511)
This issue was partially addressed by commit
972c87dfc7, which hardened its callee
BN_num_bits_word() to avoid leaking the most-significant word of its
argument via branching and memory access pattern.
The commit message also reported:
> There are a few places where BN_num_bits is called on an input where
> the bit length is also secret. This does *not* fully resolve those
> cases as we still only look at the top word.
BN_num_bits() is called directly or indirectly (e.g., through
BN_num_bytes() or BN_bn2binpad() ) in various parts of the `crypto/ec`
code, notably in all the currently supported implementations of scalar
multiplication (in the generic path through ec_scalar_mul_ladder() as
well as in dedicated methods like ecp_nistp{224,256,521}.c and
ecp_nistz256.c).
Under the right conditions, a motivated SCA attacker could retrieve the
secret bitlength of a secret nonce through this vulnerability,
potentially leading, ultimately, to recover a long-term secret key.
With this commit, exclusively for BIGNUMs that are flagged with
BN_FLG_CONSTTIME, instead of accessing only bn->top, all the limbs of
the BIGNUM are accessed up to bn->dmax and bitwise masking is used to
avoid branching.
Memory access pattern still leaks bn->dmax, the size of the lazily
allocated buffer for representing the BIGNUM, which is inevitable with
the current BIGNUM architecture: reading past bn->dmax would be an
out-of-bound read.
As such, it's the caller responsibility to ensure that bn->dmax does not
leak secret information, by explicitly expanding the internal BIGNUM
buffer to a public value sufficient to avoid any lazy reallocation
while manipulating it: this should be already done at the top level
alongside setting the BN_FLG_CONSTTIME.
Thanks to David Schrammel and Samuel Weiser for reporting this issue
through responsible disclosure.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/9511)
BN_bn2bin() is not constant-time and leaks the number of bits in the
processed BIGNUM.
The specialized methods in ecp_nistp224.c, ecp_nistp256.c and
ecp_nistp521.c internally used BN_bn2bin() to convert scalars into the
internal fixed length representation.
This can leak during ECDSA/ECDH key generation or handling the nonce
while generating an ECDSA signature, when using these implementations.
The amount and risk of leaked information useful for a SCA attack
varies for each of the three curves, as it depends mainly on the
ratio between the bitlength of the curve subgroup order (governing the
size of the secret nonce/key) and the limb size for the internal BIGNUM
representation (which depends on the compilation target architecture).
To fix this, we replace BN_bn2bin() with BN_bn2binpad(), bounding the
output length to the width of the internal representation buffer: this
length is public.
Internally the final implementation of both BN_bn2binpad() and
BN_bn2bin() already has masking in place to avoid leaking bn->top
through memory access patterns.
Memory access pattern still leaks bn->dmax, the size of the lazily
allocated buffer for representing the BIGNUM, which is inevitable with
the current BIGNUM architecture: reading past bn->dmax would be an
out-of-bound read.
As such, it's the caller responsibility to ensure that bn->dmax does not
leak secret information, by explicitly expanding the internal BIGNUM
buffer to a public value sufficient to avoid any lazy reallocation
while manipulating it: this is already done at the top level alongside
setting the BN_FLG_CONSTTIME.
Finally, the internal implementation of BN_bn2binpad() indirectly calls
BN_num_bits() via BN_num_bytes(): the current implementation of
BN_num_bits() can leak information to a SCA attacker, and is addressed
in the next commit.
Thanks to David Schrammel and Samuel Weiser for reporting this issue
through responsible disclosure.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
(Merged from https://github.com/openssl/openssl/pull/9511)
This commit addresses multiple side-channel vulnerabilities present
during RSA key validation.
Private key parameters are re-computed using variable-time functions.
This issue was discovered and reported by the NISEC group at TAU Finland.
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9779)
BUF_MEM_grow() returns the passed length, but also zero on error. If
the passed length was zero, an extra check to see if a returned zero
was an error or not is needed.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9662)
pkey_kdf_ctrl_str() has to do the same kind of special treatment as
pkey_kdf_ctrl() does.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9662)
The EVP_KDF_ definitions are no longer needed, and neither is
EVP_get_kdfbyname()
test/evp_kdf_test.c tried to use a EVP_get_kdfbyname() that was rewritten
to use EVP_KDF_fetch() without ever freeing the resulting KDF method.
It's better to refactor the test to use EVP_KDF_fetch directly.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9662)
Undo the caching scheme, pass through most controls as parameters, except
for SEED and INFO, where we keep supporting adding data through additional
ctrl calls by collecting the data, and only passing it to the EVP_KDF
before calling its derive function.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9662)
This will only be required until everything is moved to providers and a NULL
provider pointer won't be possible.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9662)
We also use this in test_tls13messages to check that the extensions we
expect to see in a CertificateRequest are there.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/9780)
If a TLSv1.3 server configured to respond to the status_request extension
also attempted to send a CertificateRequest then it was incorrectly
inserting a non zero length status_request extension into that message.
The TLSv1.3 RFC does allow that extension in that message but it must
always be zero length.
In fact we should not be sending the extension at all in that message
because we don't support it.
Fixes#9767
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/9780)
The OpenSSL_version_num() function returns at runtime the
OPENSSL_VERSION_NUMBER of the compiled OpenSSL library. This is a
used and useful interface, and should not (at least yet) be
deprecated, we just introduced the new versioning schema, it seems
too early to deprecate the old.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7853)