The pass phrase prompter that's part of OSSL_ENCODER and OSSL_DECODER
is really a passphrase callback bridge between the diverse forms of
prompters that exist within OpenSSL: pem_password_cb, ui_method and
OSSL_PASSPHRASE_CALLBACK.
This can be generalised, to be re-used by other parts of OpenSSL, and
to thereby allow the users to specify whatever form of pass phrase
callback they need, while being able to pass that on to other APIs
that are called internally, in the form that those APIs demand.
Additionally, we throw in the possibility to cache pass phrases during
a "session" (we leave it to each API to define what a "session" is).
This is useful for any API that implements discovery and therefore may
need to get the same password more than once, such as OSSL_DECODER and
OSSL_STORE.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12512)
This is placed as CORE because the core of libcrypto is the authority
for what is possible to do and what's required to make these abstract
objects work.
In essence, an abstract object is an OSSL_PARAM array with well
defined parameter keys and values:
- an object type, which is a number indicating what kind of
libcrypto structure the object in question can be used with. The
currently possible numbers are defined in <openssl/core_object.h>.
- an object data type, which is a string that indicates more closely
what the contents of the object are.
- the object data, an octet string. The exact encoding used depends
on the context in which it's used. For example, the decoder
sub-system accepts any encoding, as long as there is a decoder
implementation that takes that as input. If central code is to
handle the data directly, DER encoding is assumed. (*)
- an object reference, also an octet string. This octet string is
not the object contents, just a mere reference to a provider-native
object. (**)
- an object description, which is a human readable text string that
can be displayed if some software desires to do so.
The intent is that certain provider-native operations (called X
here) are able to return any sort of object that belong with other
operations, or an object that has no provider support otherwise.
(*) A future extension might be to be able to specify encoding.
(**) The possible mechanisms for dealing with object references are:
- An object loading function in the target operation. The exact
target operation is determined by the object type (for example,
OSSL_OBJECT_PKEY implies that the target operation is a KEYMGMT)
and the implementation to be fetched by its object data type (for
an OSSL_OBJECT_PKEY, that's the KEYMGMT keytype to be fetched).
This loading function is only useful for this if the implementations
that are involved (X and KEYMGMT, for example) are from the same
provider.
- An object exporter function in the operation X implementation.
That exporter function can be used to export the object data in
OSSL_PARAM form that can be imported by a target operation's
import function. This can be used when it's not possible to fetch
the target operation implementation from the same provider.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12512)
This was added for backward compatability.
Added EC_GROUP_new_from_params() that supports explicit curve parameters.
This fixes the 15-test_genec.t TODO.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12604)
dsa_algorithmidentifier_encoding(), ecdsa_algorithmidentifier_encoding(),
rsa_algorithmidentifier_encoding() have been replaced with DER writer
functions, so they aren't useful any more.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12693)
Also remove not really to-the-point error message if call fails in apps/cmp.c
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/11808)
PEM_read_bio_PUBKEY_ex() and PEM_read_bio_Parameters_ex() are added to
complete PEM_read_bio_PrivateKey_ex(). They are all refactored to be
wrappers around the same internal function.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12673)
While public keys and private keys use the same type (EVP_PKEY), just
with different contents, callers still need to distinguish between the
two to be able to know what functions to call with them (for example,
to be able to choose between EVP_PKEY_print_private() and
EVP_PKEY_print_public()).
The OSSL_STORE backend knows what it loaded, so it has the capacity to
inform.
Note that the same as usual still applies, that a private key EVP_PKEY
contains the public parts, but not necessarily the other way around.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12673)
Just like d2i_PrivateKey() / d2i_PrivateKey_ex(), there's a need to
associate an EVP_PKEY extracted from a PUBKEY to a library context and
a property query string. Without it, a provider-native EVP_PKEY can
only fetch necessary internal algorithms from the default library
context, even though an application specific context should be used.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12671)
Fixes#12640
The X942-KDF is now indepedent of the CMS code (since it no longer uses CMS_SharedInfo_encode).
Any code related to EVP_PKEY_DH_KDF_X9_42 needs to not be wrapped by !defined(OPENSSL_NO_CMS).
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12642)
The calls are unlikely to fail but better checking their return than not.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12648)
Fixes#12589
The 'type' parameter needed to be propagated to the ffc params during keygen,
so that the simple validation of params done during keygen can handle legacy keys for the default provider.
The fips provider ignores this change and only allows fips186-4 approved sizes.
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/12623)
A config file can change the global default properties. Therefore we
must ensure that the config file is loaded before reading or amending
them.
Fixes#12565
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12567)
If an attempt is made to load a provider and it fails, the fall-back mechanism
should be disabled to prevent the user getting some weird happening. E.g. a
failure to load the FIPS provider should not allow the default to load as a
fall-back.
The OSSL_PROVIDER_try_load() call has been added, to allow a provider to be
loaded without disabling the fall-back mechanism if it fails.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12625)
This KDF is defined in RFC7292 in appendix B. It is widely used in PKCS#12
and should be provided.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12624)
Also, document its unusual semantics of resetting the
cipher list (but preserving other configuration).
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/7274)
Inline the pre-13273237a65d46186b6bea0b51aec90670d4598a versions
of EVP_CIPHER_CTX_iv(), EVP_CIPHER_CTX_original_iv(), and
EVP_CIPHER_CTX_iv_noconst() in evp.h.
These macros are internal-only, used to implement legacy libcrypto
EVP ciphers, with no real provider involvement. Accordingly, just use the
EVP_CIPHER_CTX storage directly and don't try to reach into a provider-side
context.
This does necessitate including evp_local.h in several more files.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
It is superseded by EVP_CIPHER_CTX_get_iv(), is only present on master,
and had only a couple of in-tree callers that are easy to convert.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
The EVP_CIPHER_CTX_iv() family of functions are incompatible with
the libcrypto/provider separation, since the implied API contract
(they are undocumented) involves a pointer into the active cipher
context structure. However, the active IV data in a provider-side
context need not even be in the same address space as libcrypto,
so a replacement API is needed.
The existing functions for accessing the (even the "original") IV had
remained undocumented for quite some time, presumably due to unease
about exposing the internals of the cipher state in such a manner.
Provide more maintainable new APIs for accessing the initial ("oiv") and
current-state ("iv") IV data, that copy the value into a caller-provided
array, eliminating the need to provide a pointer into the internal
cipher context, which accordingly no longer provides the ability to
write to the internal cipher state.
Unfortunately, in order to maintain API compatibility with OpenSSL
1.1.1, the old functionality is still available, but is marked as
deprecated for future removal. This would entail removing the "octet
pointer" parameter access, leaving only the "octet string" parameter
type.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Some modes (e.g., CBC and OFB) update the effective IV with each
block-cipher invocation, making the "IV" stored in the (historically)
EVP_CIPHER_CTX or (current) PROV_CIPHER_CTX distinct from the initial
IV passed in at cipher initialization time. The latter is stored in
the "oiv" (original IV) field, and has historically been accessible
via the EVP_CIPHER_CTX_original_iv() API. The "effective IV" has
also historically been accessible, via both EVP_CIPHER_CTX_iv()
and EVP_CIPHER_CTX_iv_noconst(), the latter of which allows for
*write* access to the internal cipher state. This is particularly
problematic given that provider-internal cipher state need not, in
general, even be accessible from the same address space as libcrypto,
so these APIs are not sustainable in the long term. However, it still
remains necessary to provide access to the contents of the "IV state"
(e.g., when serializing cipher state for in-kernel TLS); a subsequent
reinitialization of a cipher context using the "IV state" as the
input IV will be able to resume processing of data in a compatible
manner.
This problem was introduced in commit
089cb623be, which effectively caused
all IV queries to return the "original IV", removing access to the
current IV state of the cipher.
These functions for accessing the (even the "original") IV had remained
undocumented for quite some time, presumably due to unease about
exposing the internals of the cipher state in such a manner.
Note that this also as a side effect "fixes" some "bugs" where things
had been referring to the 'iv' field that should have been using the
'oiv' field. It also fixes the EVP_CTRL_GET_IV cipher control,
which was clearly intended to expose the non-original IV, for
use exporting the cipher state into the kernel for kTLS.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/12233)
Similiar to ecdh this supports the legacy kdf inside the provider dh key exchange.
The supporting EVP_PKEY_CTX macros have been changed into mehtods and moved into dh_ctrl.c
New kdfs such as SSKDF should be done as a seperate pass after doing the derive.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12575)
The KDF bridge is now done provider side so the old EVP_PKEY_METHODS for
this are no longer required.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12573)
Some KDF implementations were available before the current EVP_KDF API.
They were used via EVP_PKEY_derive. There exists a bridge between the old
API and the EVP_KDF API however this bridge itself uses a legacy
EVP_PKEY_METHOD. This commit implements a provider side bridge without
having to use any legacy code.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12573)
The default and legacy providers currently return 1 for status and self test checks.
Added test to show the 3 different stages the self test can be run (for installation, loading and on demand).
For the fips provider:
- If the on demand self test fails, then any subsequent fetches should also fail. To implement this the
cached algorithms are flushed on failure.
- getting the self test callback in the fips provider is a bit complicated since the callback hangs off the core
libctx (as it is set by the application) not the actual fips library context. Also the callback can be set at
any time not just during the OSSL_provider_init() so it is calculated each time before doing any self test.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11752)
-Added EVP_SignFinal_with_libctx() and EVP_VerifyFinal_with_libctx()
-Renamed EVP_DigestSignInit_ex() and EVP_DigestVerifyInit_with_libctx() to
EVP_DigestSignInit_with_libctx() and EVP_DigestVerifyInit_with_libctx()
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11884)
-Public PKCS7 methods that create a PKCS7 object now have variants that also add a libctx and propq.
This includes PKCS7_new_with_libctx(), PKCS7_sign_with_libctx() and PKCS7_encrypt_with_libctx()
-Added SMIME_read_PKCS7_ex() so that a created PKCS7 object can be passed to the read.
-d2i_PKCS7_bio() has been modified so that after it loads the PKCS7 object it then resolves any subobjects that require
the libctx/propq (such as objects containing X509 certificates).
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11884)
Added SMIME_write_ASN1_with_libctx() since it fetches rand internally.
Added SMIME_read_CMS_ex() so that a created object (CMS_ContentInfo) can be passed to the read.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11884)
This should only be called during (or right after) using d2iXXX on a object that contains embedded certificate(s)
that require a non default library context. X509_new_with_libctx() should be used if possible.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11884)
-Public CMS methods that create a CMS_ContentInfo object now have variants that also add a libctx and propq.
This includes CMS_ContentInfo_new_with_libctx(), CMS_sign_with_libctx(), CMS_data_create_with_libctx(),
CMS_digest_create_with_libctx(), CMS_EncryptedData_encrypt_with_libctx(), CMS_EnvelopedData_create_with_libctx().
-Added CMS_ReceiptRequest_create0_with_libctx().
-Added SMIME_read_CMS_ex() so that a new CMS_ContentInfo object (created using CMS_ContentInfo_new_with_libctx()) can
be passed to the read.
-d2i_CMS_bio() has been modified so that after it loads the CMS_ContentInfo() it then resolves any subobjects that require
the libctx/propq (such as objects containing X509 certificates).
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11884)
Changed many tests so they also test fips (and removed 'availablein = default' from some tests).
Seperated the monolithic evppkey.txt file into smaller maintainable groups.
Changed the availablein option so it must be first - this then skips the entire test before any fetching happens.
Changed the code so that all the OPENSSL_NO_XXXX tests are done in code via methods such as is_cipher_disabled(alg),
before the fetch happens.
Added missing libctx's found by adding a libctx to test_evp.
Broke up large data files for cipher, kdf's and mac's into smaller pieces so they no longer need 'AvailableIn = default'
Added missing algorithm aliases for cipher/digests to the providers.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12236)
The RAND_DRBG API did not fit well into the new provider concept as
implemented by EVP_RAND and EVP_RAND_CTX. The main reason is that the
RAND_DRBG API is a mixture of 'front end' and 'back end' API calls
and some of its API calls are rather low-level. This holds in particular
for the callback mechanism (RAND_DRBG_set_callbacks()) and the RAND_DRBG
type changing mechanism (RAND_DRBG_set()).
Adding a compatibility layer to continue supporting the RAND_DRBG API as
a legacy API for a regular deprecation period turned out to come at the
price of complicating the new provider API unnecessarily. Since the
RAND_DRBG API exists only since version 1.1.1, it was decided by the OMC
to drop it entirely.
Other related changes:
Use RNG instead of DRBG in EVP_RAND documentation. The documentation was
using DRBG in places where it should have been RNG or CSRNG.
Move the RAND_DRBG(7) documentation to EVP_RAND(7).
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/12509)
Fly-by fix is to move crypto/include/internal/pem_int.h to
include/internal/pem.h.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12574)
We have a key in test/recipes/30-test_evp_data/evppkey.txt with bad
PSS parameters (RSA-PSS-BAD), which is supposed to trigger signature
computation faults. However, if this key needs to be exported to the
RSA provider implementation, the result would be an earlier error,
giving the computation that's supposed to be checked n chance to even
be reached.
Either way, the legacy to provider export is no place to validate the
values of the key.
We also ensure that the provider implementation can handle and detect
signed (negative) saltlen values.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12583)