Continuing on from the previous commit this moves the processing of DTLS
CCS messages out of the record layer and into the state machine.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Rewrite ssl3_digest_cached_records handling. Only digest cached records
if digest array is NULL: this means it is safe to call
ssl3_digest_cached_records multiple times (subsequent calls are no op).
Remove flag TLS1_FLAGS_KEEP_HANDSHAKE instead only update handshake buffer
if digest array is NULL.
Add additional "keep" parameter to ssl3_digest_cached_records to indicate
if the handshake buffer should be retained after digesting cached records
(needed for TLS 1.2 client authentication).
Reviewed-by: Matt Caswell <matt@openssl.org>
Given the pervasive nature of TLS extensions it is inadvisable to run
OpenSSL without support for them. It also means that maintaining
the OPENSSL_NO_TLSEXT option within the code is very invasive (and probably
not well tested). Therefore it is being removed.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Remove RFC2712 Kerberos support from libssl. This code and the associated
standard is no longer considered fit-for-purpose.
Reviewed-by: Rich Salz <rsalz@openssl.org>
Currently we set change_cipher_spec_ok to 1 before calling
ssl3_get_cert_verify(). This is because this message is optional and if it
is not sent then the next thing we would expect to get is the CCS. However,
although it is optional, we do actually know whether we should be receiving
one in advance. If we have received a client cert then we should expect
a CertificateVerify message. By the time we get to this point we will
already have bombed out if we didn't get a Certificate when we should have
done, so it is safe just to check whether |peer| is NULL or not. If it is
we won't get a CertificateVerify, otherwise we will. Therefore we should
change the logic so that we only attempt to get the CertificateVerify if
we are expecting one, and not allow a CCS in this scenario.
Whilst this is good practice for TLS it is even more important for DTLS.
In DTLS messages can be lost. Therefore we may be in a situation where a
CertificateVerify message does not arrive even though one was sent. In that
case the next message the server will receive will be the CCS. This could
also happen if messages get re-ordered in-flight. In DTLS if
|change_cipher_spec_ok| is not set and a CCS is received it is ignored.
However if |change_cipher_spec_ok| *is* set then a CCS arrival will
immediately move the server into the next epoch. Any messages arriving for
the previous epoch will be ignored. This means that, in this scenario, the
handshake can never complete. The client will attempt to retransmit
missing messages, but the server will ignore them because they are the wrong
epoch. The server meanwhile will still be waiting for the CertificateVerify
which is never going to arrive.
RT#2958
Reviewed-by: Emilia Käsper <emilia@openssl.org>
The certificate already contains the DH parameters in that case.
ssl3_send_server_key_exchange() would fail in that case anyway.
Reviewed-by: Matt Caswell <matt@openssl.org>
Ensure that all functions have their return values checked where
appropriate. This covers all functions defined and called from within
libssl.
Reviewed-by: Richard Levitte <levitte@openssl.org>
NETSCAPE_HANG_BUG is a workaround for a browser bug from many years ago
(2000).
It predates DTLS, so certainly has no place in d1_srvr.c.
In s3_srvr.c it forces the ServerDone to appear in the same record as the
CertificateRequest when doing client auth.
BoringSSL have already made the same commit:
79ae85e4f777f94d91b7be19e8a62016cb55b3c5
Reviewed-by: Tim Hudson <tjh@openssl.org>
I left many "#if 0" lines, usually because I thought we would
probably want to revisit them later, or because they provided
some useful internal documentation tips.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Update master secret calculation to support extended master secret.
TLS 1.2 client authentication adds a complication because we need to
cache the handshake messages. This is simpllified however because
the point at which the handshake hashes are calculated for extended
master secret is identical to that required for TLS 1.2 client
authentication (immediately after client key exchange which is also
immediately before certificate verify).
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
OpenSSL clients would tolerate temporary RSA keys in non-export
ciphersuites. It also had an option SSL_OP_EPHEMERAL_RSA which
enabled this server side. Remove both options as they are a
protocol violation.
Thanks to Karthikeyan Bhargavan for reporting this issue.
(CVE-2015-0204)
Reviewed-by: Matt Caswell <matt@openssl.org>
MS Server gated cryptography is obsolete and dates from the time of export
restrictions on strong encryption and is only used by ancient versions of
MSIE.
Reviewed-by: Matt Caswell <matt@openssl.org>
once the ChangeCipherSpec message is received. Previously, the server would
set the flag once at SSL3_ST_SR_CERT_VRFY and again at SSL3_ST_SR_FINISHED.
This would allow a second CCS to arrive and would corrupt the server state.
(Because the first CCS would latch the correct keys and subsequent CCS
messages would have to be encrypted, a MitM attacker cannot exploit this,
though.)
Thanks to Joeri de Ruiter for reporting this issue.
Reviewed-by: Matt Caswell <matt@openssl.org>
DHE is the standard term used by the RFCs and by other TLS
implementations. It's useful to have the internal variables use the
standard terminology.
This patch leaves a synonym SSL_kEDH in place, though, so that older
code can still be built against it, since that has been the
traditional API. SSL_kEDH should probably be deprecated at some
point, though.
ECDHE is the standard term used by the RFCs and by other TLS
implementations. It's useful to have the internal variables use the
standard terminology.
This patch leaves a synonym SSL_kEECDH in place, though, so that older
code can still be built against it, since that has been the
traditional API. SSL_kEECDH should probably be deprecated at some
point, though.
PR: 2808
With DTLS/SCTP the SCTP extension SCTP-AUTH is used to protect DATA and
FORWARD-TSN chunks. The key for this extension is derived from the
master secret and changed with the next ChangeCipherSpec, whenever a new
key has been negotiated. The following Finished then already uses the
new key. Unfortunately, the ChangeCipherSpec and Finished are part of
the same flight as the ClientKeyExchange, which is necessary for the
computation of the new secret. Hence, these messages are sent
immediately following each other, leaving the server very little time to
compute the new secret and pass it to SCTP before the finished arrives.
So the Finished is likely to be discarded by SCTP and a retransmission
becomes necessary. To prevent this issue, the Finished of the client is
still sent with the old key.
(cherry picked from commit 9fb523adce)
This fix ensures that
* A HelloRequest is retransmitted if not responded by a ClientHello
* The HelloRequest "consumes" the sequence number 0. The subsequent
ServerHello uses the sequence number 1.
* The client also expects the sequence number of the ServerHello to
be 1 if a HelloRequest was received earlier.
This patch fixes the RFC violation.
Check for Suite B support using method flags instead of version numbers:
anything supporting TLS 1.2 cipher suites will also support Suite B.
Return an error if an attempt to use DTLS 1.0 is made in Suite B mode.
Add new methods DTLS_*_method() which support both DTLS 1.0 and DTLS 1.2 and
pick the highest version the peer supports during negotiation.
As with SSL/TLS options can change this behaviour specifically
SSL_OP_NO_DTLSv1 and SSL_OP_NO_DTLSv1_2.
Add DTLS1.2 support for cached records when computing handshake macs
instead of the MD5+SHA1 case for DTLS < 1.2 (this is a port of the
equivalent TLS 1.2 code to DTLS).
Add correct flags for DTLS 1.2, update s_server and s_client to handle
DTLS 1.2 methods.
Currently no support for version negotiation: i.e. if client/server selects
DTLS 1.2 it is that or nothing.
Revise DTLS code. There was a *lot* of code duplication in the
DTLS code that generates records. This makes it harder to maintain and
sometimes a TLS update is omitted by accident from the DTLS code.
Specifically almost all of the record generation functions have code like
this:
some_pointer = buffer + HANDSHAKE_HEADER_LENGTH;
... Record creation stuff ...
set_handshake_header(ssl, SSL_MT_SOMETHING, message_len);
...
write_handshake_message(ssl);
Where the "Record creation stuff" is identical between SSL/TLS and DTLS or
in some cases has very minor differences.
By adding a few fields to SSL3_ENC to include the header length, some flags
and function pointers for handshake header setting and handshake writing the
code can cope with both cases.
Note: although this passes "make test" and some simple DTLS tests there may
be some minor differences in the DTLS code that have to be accounted for.
certificate chain instead of an X509 structure.
This makes it easier to enhance code in future and the chain
output functions have access to the CERT_PKEY structure being
used.
signature algorithms extension and correct signature format for
server key exchange.
All ciphersuites should now work on the server but no client support and
no client certificate support yet.
Submitted by: steve@openssl.org
More robust fix and workaround for PR#1949. Don't try to work out if there
is any write pending data as this can be unreliable: always flush.