Change-Id: Ia94e528a2d55934435de6a2949784c52eb38d82f
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/20621)
The use case is that uppercase .ASM extension may be used on some platforms,
and we were only testing for the lowercase extension.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Dmitry Belyavskiy <beldmit@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/19604)
Flags for ASM implementations of SHA, SHAKE, and KECCAK were only passed to
the FIPS provider and not to the default or legacy provider. This left some
potential for optimization. Pass the correct flags also to these providers.
Signed-off-by: Juergen Christ <jchrist@linux.ibm.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18747)
Rename x86-32 assembly files from .s to .S. While processing the .S file
gcc will use the pre-processor whic will evaluate macros and ifdef. This
is turn will be used to enable the endbr32 opcode based on the __CET__
define.
Signed-off-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18353)
Reviewed-by: Philipp Tomsich <philipp.tomsich@vrull.eu>
Signed-off-by: Henry Brausen <henry.brausen@vrull.eu>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18275)
Update the comment "../md32_common.h" to "crypto/md32_common.h".
CLA: trivial
Signed-off-by: Weiguo Li <liwg06@foxmail.com>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/17670)
Add missing AARCH64_VALID_CALL_TARGET to armv8_rng_probe(). Also add
these to the functions defined by gen_random(), and note that this Perl
sub prints the assembler out directly, not going via the $code xlate
mechanism (and therefore coming before the include of arm_arch.h). So
fix this too.
In KeccakF1600_int, AARCH64_SIGN_LINK_REGISTER functions as
AARCH64_VALID_CALL_TARGET on BTI-only builds, so it needs to come before
the 'adr' line.
Change-Id: If241efe71591c88253a3e36647ced00300c3c1a3
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/17653)
We currently load data byte by byte in order to byteswap it on big
endian. On little endian we can just do 8 byte loads.
A SHAKE128 benchmark runs 10% faster on POWER9 with this patch applied.
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8455)
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16918)
This change adds optional support for
- Armv8.3-A Pointer Authentication (PAuth) and
- Armv8.5-A Branch Target Identification (BTI)
features to the perl scripts.
Both features can be enabled with additional compiler flags.
Unless any of these are enabled explicitly there is no code change at
all.
The extensions are briefly described below. Please read the appropriate
chapters of the Arm Architecture Reference Manual for the complete
specification.
Scope
-----
This change only affects generated assembly code.
Armv8.3-A Pointer Authentication
--------------------------------
Pointer Authentication extension supports the authentication of the
contents of registers before they are used for indirect branching
or load.
PAuth provides a probabilistic method to detect corruption of register
values. PAuth signing instructions generate a Pointer Authentication
Code (PAC) based on the value of a register, a seed and a key.
The generated PAC is inserted into the original value in the register.
A PAuth authentication instruction recomputes the PAC, and if it matches
the PAC in the register, restores its original value. In case of a
mismatch, an architecturally unmapped address is generated instead.
With PAuth, mitigation against ROP (Return-oriented Programming) attacks
can be implemented. This is achieved by signing the contents of the
link-register (LR) before it is pushed to stack. Once LR is popped,
it is authenticated. This way a stack corruption which overwrites the
LR on the stack is detectable.
The PAuth extension adds several new instructions, some of which are not
recognized by older hardware. To support a single codebase for both pre
Armv8.3-A targets and newer ones, only NOP-space instructions are added
by this patch. These instructions are treated as NOPs on hardware
which does not support Armv8.3-A. Furthermore, this patch only considers
cases where LR is saved to the stack and then restored before branching
to its content. There are cases in the code where LR is pushed to stack
but it is not used later. We do not address these cases as they are not
affected by PAuth.
There are two keys available to sign an instruction address: A and B.
PACIASP and PACIBSP only differ in the used keys: A and B, respectively.
The keys are typically managed by the operating system.
To enable generating code for PAuth compile with
-mbranch-protection=<mode>:
- standard or pac-ret: add PACIASP and AUTIASP, also enables BTI
(read below)
- pac-ret+b-key: add PACIBSP and AUTIBSP
Armv8.5-A Branch Target Identification
--------------------------------------
Branch Target Identification features some new instructions which
protect the execution of instructions on guarded pages which are not
intended branch targets.
If Armv8.5-A is supported by the hardware, execution of an instruction
changes the value of PSTATE.BTYPE field. If an indirect branch
lands on a guarded page the target instruction must be one of the
BTI <jc> flavors, or in case of a direct call or jump it can be any
other instruction. If the target instruction is not compatible with the
value of PSTATE.BTYPE a Branch Target Exception is generated.
In short, indirect jumps are compatible with BTI <j> and <jc> while
indirect calls are compatible with BTI <c> and <jc>. Please refer to the
specification for the details.
Armv8.3-A PACIASP and PACIBSP are implicit branch target
identification instructions which are equivalent with BTI c or BTI jc
depending on system register configuration.
BTI is used to mitigate JOP (Jump-oriented Programming) attacks by
limiting the set of instructions which can be jumped to.
BTI requires active linker support to mark the pages with BTI-enabled
code as guarded. For ELF64 files BTI compatibility is recorded in the
.note.gnu.property section. For a shared object or static binary it is
required that all linked units support BTI. This means that even a
single assembly file without the required note section turns-off BTI
for the whole binary or shared object.
The new BTI instructions are treated as NOPs on hardware which does
not support Armv8.5-A or on pages which are not guarded.
To insert this new and optional instruction compile with
-mbranch-protection=standard (also enables PAuth) or +bti.
When targeting a guarded page from a non-guarded page, weaker
compatibility restrictions apply to maintain compatibility between
legacy and new code. For detailed rules please refer to the Arm ARM.
Compiler support
----------------
Compiler support requires understanding '-mbranch-protection=<mode>'
and emitting the appropriate feature macros (__ARM_FEATURE_BTI_DEFAULT
and __ARM_FEATURE_PAC_DEFAULT). The current state is the following:
-------------------------------------------------------
| Compiler | -mbranch-protection | Feature macros |
+----------+---------------------+--------------------+
| clang | 9.0.0 | 11.0.0 |
+----------+---------------------+--------------------+
| gcc | 9 | expected in 10.1+ |
-------------------------------------------------------
Available Platforms
------------------
Arm Fast Model and QEMU support both extensions.
https://developer.arm.com/tools-and-software/simulation-models/fast-modelshttps://www.qemu.org/
Implementation Notes
--------------------
This change adds BTI landing pads even to assembly functions which are
likely to be directly called only. In these cases, landing pads might
be superfluous depending on what code the linker generates.
Code size and performance impact for these cases would be negligible.
Interaction with C code
-----------------------
Pointer Authentication is a per-frame protection while Branch Target
Identification can be turned on and off only for all code pages of a
whole shared object or static binary. Because of these properties if
C/C++ code is compiled without any of the above features but assembly
files support any of them unconditionally there is no incompatibility
between the two.
Useful Links
------------
To fully understand the details of both PAuth and BTI it is advised to
read the related chapters of the Arm Architecture Reference Manual
(Arm ARM):
https://developer.arm.com/documentation/ddi0487/latest/
Additional materials:
"Providing protection for complex software"
https://developer.arm.com/architectures/learn-the-architecture/providing-protection-for-complex-software
Arm Compiler Reference Guide Version 6.14: -mbranch-protection
https://developer.arm.com/documentation/101754/0614/armclang-Reference/armclang-Command-line-Options/-mbranch-protection?lang=en
Arm C Language Extensions (ACLE)
https://developer.arm.com/docs/101028/latest
Addional Notes
--------------
This patch is a copy of the work done by Tamas Petz in boringssl. It
contains the changes from the following commits:
aarch64: support BTI and pointer authentication in assembly
Change-Id: I4335f92e2ccc8e209c7d68a0a79f1acdf3aeb791
URL: https://boringssl-review.googlesource.com/c/boringssl/+/42084
aarch64: Improve conditional compilation
Change-Id: I14902a64e5f403c2b6a117bc9f5fb1a4f4611ebf
URL: https://boringssl-review.googlesource.com/c/boringssl/+/43524
aarch64: Fix name of gnu property note section
Change-Id: I6c432d1c852129e9c273f6469a8b60e3983671ec
URL: https://boringssl-review.googlesource.com/c/boringssl/+/44024
Change-Id: I2d95ebc5e4aeb5610d3b226f9754ee80cf74a9af
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/16674)
Also add hints to SHA256_Init.pod and CHANGES.md how to replace SHA256() etc.
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14741)
libimplementations.a was a nice idea, but had a few flaws:
1. The idea to have common code in libimplementations.a and FIPS
sensitive helper functions in libfips.a / libnonfips.a didn't
catch on, and we saw full implementation ending up in them instead
and not appearing in libimplementations.a at all.
2. Because more or less ALL algorithm implementations were included
in libimplementations.a (the idea being that the appropriate
objects from it would be selected automatically by the linker when
building the shared libraries), it's very hard to find only the
implementation source that should go into the FIPS module, with
the result that the FIPS checksum mechanism include source files
that it shouldn't
To mitigate, we drop libimplementations.a, but retain the idea of
collecting implementations in static libraries. With that, we not
have:
libfips.a
Includes all implementations that should become part of the FIPS
provider.
liblegacy.a
Includes all implementations that should become part of the legacy
provider.
libdefault.a
Includes all implementations that should become part of the
default and base providers.
With this, libnonfips.a becomes irrelevant and is dropped.
libcommon.a is retained to include common provider code that can be
used uniformly by all providers.
Fixes#15157
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15171)
These are: keccak_kmac_init(), sha3_final(), sha3_init(), sha3_reset() and
sha3_update().
Reviewed-by: Tim Hudson <tjh@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13417)
This tries to fix the following link errors on aarch64 when using OpenSSL
3.0.0 alpha 6, compiling it with "no-shared" and -fPIC in CFLAGS, then
trying to use the resulting OpenSSL static libraries in the build of
elfutils, which embed libcrypto.a into libdebuginfo.so, which hides all
symbols (except the libdebuginfod ones) by default:
/opt/1A/toolchain/aarch64-v4.0.86/lib/gcc/aarch64-1a-linux-gnu/8.4.1/../../../../aarch64-1a-linux-gnu/bin/ld: /workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-sha1-armv8.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `OPENSSL_armcap_P' which may bind externally can not be used when making a shared object; recompile with -fPIC
/workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-sha1-armv8.o): in function `sha1_block_data_order':
(.text+0x0): dangerous relocation: unsupported relocation
/opt/1A/toolchain/aarch64-v4.0.86/lib/gcc/aarch64-1a-linux-gnu/8.4.1/../../../../aarch64-1a-linux-gnu/bin/ld: /workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-chacha-armv8.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `OPENSSL_armcap_P' which may bind externally can not be used when making a shared object; recompile with -fPIC
/workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-chacha-armv8.o): in function `ChaCha20_ctr32':
(.text+0x6c): dangerous relocation: unsupported relocation
/opt/1A/toolchain/aarch64-v4.0.86/lib/gcc/aarch64-1a-linux-gnu/8.4.1/../../../../aarch64-1a-linux-gnu/bin/ld: /workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-sha256-armv8.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `OPENSSL_armcap_P' which may bind externally can not be used when making a shared object; recompile with -fPIC /workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-sha256-armv8.o): in function `sha256_block_data_order':
(.text+0x0): dangerous relocation: unsupported relocation
/opt/1A/toolchain/aarch64-v4.0.86/lib/gcc/aarch64-1a-linux-gnu/8.4.1/../../../../aarch64-1a-linux-gnu/bin/ld: /workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-sha512-armv8.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `OPENSSL_armcap_P' which may bind externally can not be used when making a shared object; recompile with -fPIC /workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-sha512-armv8.o): in function `sha512_block_data_order':
(.text+0x0): dangerous relocation: unsupported relocation
/opt/1A/toolchain/aarch64-v4.0.86/lib/gcc/aarch64-1a-linux-gnu/8.4.1/../../../../aarch64-1a-linux-gnu/bin/ld: /workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-poly1305-armv8.o): relocation R_AARCH64_ADR_PREL_PG_HI21 against symbol `OPENSSL_armcap_P' which may bind externally can not be used when making a shared object; recompile with -fPIC
/workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-poly1305-armv8.o): in function `poly1305_init':
(.text+0x14): dangerous relocation: unsupported relocation
/workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-poly1305-armv8.o): in function `poly1305_emit_neon':
(.text+0x8e4): relocation truncated to fit: R_AARCH64_CONDBR19 against symbol `poly1305_emit' defined in .text section in /workdir/build/build-pack/build-pack-temporary-static-dependencies/install/lib/libcrypto.a(libcrypto-lib-poly1305-armv8.o)
In poly1305-armv8.pl, hide symbols the same way they are hidden in poly1305-x86_64.pl.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13056)
For example, FreeBSD prepends "FreeBSD" to version string, e.g.,
FreeBSD clang version 11.0.0 (git@github.com:llvm/llvm-project.git llvmorg-11.0.0-rc2-0-g414f32a9e86)
Target: x86_64-unknown-freebsd13.0
Thread model: posix
InstalledDir: /usr/bin
This prevented us from properly detecting AVX support, etc.
CLA: trivial
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Ben Kaduk <kaduk@mit.edu>
(Merged from https://github.com/openssl/openssl/pull/12725)
This moves test/ossl_test_endian.h to include/internal/endian.h and
thereby makes the macros in there our standard way to check endianness
in run-time.
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/12390)
Since pointer in x32 is 4 bytes, add x86_64-support.pl to define
pointer_size and pointer_register based on flavour to support
stuctures like:
struct { void *ptr; int blocks; }
This fixes 90-test_sslapi.t on x32. Verified with
$ ./Configure shared linux-x86_64
$ make
$ make test
and
$ ./Configure shared linux-x32
$ make
$ make test
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10988)
In https://github.com/openssl/openssl/pull/10883, I'd meant to exclude
the perlasm drivers since they aren't opening pipes and do not
particularly need it, but I only noticed x86_64-xlate.pl, so
arm-xlate.pl and ppc-xlate.pl got the change.
That seems to have been fine, so be consistent and also apply the change
to x86_64-xlate.pl. Checking for errors is generally a good idea.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: David Benjamin <davidben@google.com>
(Merged from https://github.com/openssl/openssl/pull/10930)
If one of the perlasm xlate drivers crashes, OpenSSL's build will
currently swallow the error and silently truncate the output to however
far the driver got. This will hopefully fail to build, but better to
check such things.
Handle this by checking for errors when closing STDOUT (which is a pipe
to the xlate driver).
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/10883)
Summary:
U64 is too common name for macro, being in public header sha.h it
conflicts with other projects (WAVM in my case). Moving macro from
public header to the only .c file using it.
CLA: trivial
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10579)
We store a secondary frame pointer info for the debugger
in the red zone.
Fixes#8853
[extended tests]
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9624)
Implementations are now spread across several libraries, so the assembler
related defines need to be applied to all affected libraries and modules.
AES_ASM define was missing from libimplementations.a which disabled AESNI
aarch64 changes were made by xkqian.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10180)
We put almost everything in these internal static libraries:
libcommon Block building code that can be used by all
our implementations, legacy and non-legacy
alike.
libimplementations All non-legacy algorithm implementations and
only them. All the code that ends up here is
agnostic to the definitions of FIPS_MODE.
liblegacy All legacy implementations.
libnonfips Support code for the algorithm implementations.
Built with FIPS_MODE undefined. Any code that
checks that FIPS_MODE isn't defined must end
up in this library.
libfips Support code for the algorithm implementations.
Built with FIPS_MODE defined. Any code that
checks that FIPS_MODE is defined must end up
in this library.
The FIPS provider module is built from providers/fips/*.c and linked
with libimplementations, libcommon and libfips.
The Legacy provider module is built from providers/legacy/*.c and
linked with liblegacy, libcommon and libcrypto.
If module building is disabled, the object files from liblegacy and
libcommon are added to libcrypto and the Legacy provider becomes a
built-in provider.
The Default provider module is built-in, so it ends up being linked
with libimplementations, libcommon and libnonfips. For libcrypto in
form of static library, the object files from those other libraries
are simply being added to libcrypto.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10088)
Apart from public and internal header files, there is a third type called
local header files, which are located next to source files in the source
directory. Currently, they have different suffixes like
'*_lcl.h', '*_local.h', or '*_int.h'
This commit changes the different suffixes to '*_local.h' uniformly.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
Currently, there are two different directories which contain internal
header files of libcrypto which are meant to be shared internally:
While header files in 'include/internal' are intended to be shared
between libcrypto and libssl, the files in 'crypto/include/internal'
are intended to be shared inside libcrypto only.
To make things complicated, the include search path is set up in such
a way that the directive #include "internal/file.h" could refer to
a file in either of these two directoroes. This makes it necessary
in some cases to add a '_int.h' suffix to some files to resolve this
ambiguity:
#include "internal/file.h" # located in 'include/internal'
#include "internal/file_int.h" # located in 'crypto/include/internal'
This commit moves the private crypto headers from
'crypto/include/internal' to 'include/crypto'
As a result, the include directives become unambiguous
#include "internal/file.h" # located in 'include/internal'
#include "crypto/file.h" # located in 'include/crypto'
hence the superfluous '_int.h' suffixes can be stripped.
The files 'store_int.h' and 'store.h' need to be treated specially;
they are joined into a single file.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
They now generally conform to the following argument sequence:
script.pl "$(PERLASM_SCHEME)" [ C preprocessor arguments ... ] \
$(PROCESSOR) <output file>
However, in the spirit of being able to use these scripts manually,
they also allow for no argument, or for only the flavour, or for only
the output file. This is done by only using the last argument as
output file if it's a file (it has an extension), and only using the
first argument as flavour if it isn't a file (it doesn't have an
extension).
While we're at it, we make all $xlate calls the same, i.e. the $output
argument is always quoted, and we always die on error when trying to
start $xlate.
There's a perl lesson in this, regarding operator priority...
This will always succeed, even when it fails:
open FOO, "something" || die "ERR: $!";
The reason is that '||' has higher priority than list operators (a
function is essentially a list operator and gobbles up everything
following it that isn't lower priority), and since a non-empty string
is always true, so that ends up being exactly the same as:
open FOO, "something";
This, however, will fail if "something" can't be opened:
open FOO, "something" or die "ERR: $!";
The reason is that 'or' has lower priority that list operators,
i.e. it's performed after the 'open' call.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
Since the arguments are now generated in the build file templates,
they should be removed from the build.info files.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9884)
Requesting zero bytes from shake previously led to out-of-bounds write
on some platforms.
Signed-off-by: Patrick Steuer <patrick.steuer@de.ibm.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9433)
Modified rev to rev64, because rev only takes integer registers.
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90827
Otherwise, the following error will occur.
Error: operand 1 must be an integer register -- `rev v31.16b,v31.16b'
CLA: trivial
Signed-off-by: Lei Maohui <leimaohui@cn.fujitsu.com>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9151)
CLA: trivial
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/9288)