The biggest part in this was to move the key->param builder from EVP
to the DH ASN.1 method, and to implement the KEYMGMT support in the
provider DH.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9394)
A fuller implementation of PARAMS_TEMPLATE as per #9266 but renamed.
This introduces a statis data type which can be used to constructor a
description of a parameter array. It can then be converted into a OSSL_PARAM
array and the allocated storage freed by a single call to OPENSSL_free.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9305)
We introduce a new EVP_KEYEXCH type to represent key exchange algorithms
and refactor the existing code to use it where available.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9266)
The FIPS provider does not have a default OPENSSL_CTX so, where
necessary, we need to ensure we can always access an explicit
OPENSSL_CTX. We remove functions from the FIPS provider that use
the default OPENSSL_CTX, and fixup some places which were using
those removed functions.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9310)
Move the KDF code for CMS DH key agreement into an EVP_KDF object.
There are 2 specifications for X9.42 KDF. This implementation uses DER for
otherinfo which embeds the KDF loop counter inside the DER object.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8898)
We provider internal versions of RAND_bytes() and RAND_priv_bytes() which
have the addition of taking an OPENSSL_CTX as a parameter.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/9193)
CLA: trivial
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/9288)
The maximum key length for rc5 is 2040 bits so we should not attempt to
use keys longer than this.
Issue found by OSS-Fuzz and Guido Vranken.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8834)
SM2 certificate signing request can be created and signed by OpenSSL
now, both in library and apps.
Documentation and test cases are added.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9085)
These variants of BN_CTX_new() and BN_CTX_secure_new() enable passing
an OPENSSL_CTX so that we can access this where needed throughout the
BIGNUM sub library.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/9130)
The existing code used PKCS5 specifications.
SP800-132 adds the following additional constraints for:
- the range of the key length.
- the minimum iteration count (1000 recommended).
- salt length (at least 128 bits).
These additional constraints may cause errors (in scrypt, and
some PKCS5 related test vectors). To disable the new
constraints use the new ctrl string "pkcs5".
For backwards compatability, the checks are only enabled by
default for fips mode.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8868)
Fixes#8923
Found using the openssl cms -resign option.
This uses an alternate path to do the signing which was not adding the required signed attribute
content type. The content type attribute should always exist since it is required is there are
any signed attributes.
As the signing time attribute is always added in code, the content type attribute is also required.
The CMS_si_check_attributes() method adds validity checks for signed and unsigned attributes
e.g. The message digest attribute is a signed attribute that must exist if any signed attributes
exist, it cannot be an unsigned attribute and there must only be one instance containing a single
value.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8944)
Convert EVP_PKEY Parameters to/from binary.
This wraps the low level i2d/d2i calls for DH,DSA and EC key parameters
in a similar way to Public and Private Keys.
The API's can be used by applications (including openssl apps) that only
want to use EVP_PKEY without needing to access low level key API's.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8903)
X963 KDF is used for CMS ec keyagree Recipient Info.
The X963 KDF that is used by CMS EC Key Agreement has been moved
into a EVP_KDF object. This KDF is almost identical to the the SSKDF
hash variant, so it has been implemented inside the SSKDF code with
its own method table.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8902)
This commit adds the SSL_sendfile call, which allows KTLS sockets to
transmit file using zero-copy semantics.
Signed-off-by: Boris Pismenny <borisp@mellanox.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8727)
Various core and property related code files used global data. We should
store all of that in an OPENSSL_CTX instead.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8857)
EVP_MD_fetch() can be given a property query string. However, there
are cases when it won't, for example in implicit fetches. Therefore,
we also need a way to set a global property query string to be used in
all subsequent fetches. This also applies to all future algorithm
fetching functions.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8681)
The three macros EVP_F_AESNI_XTS_INIT_KEY, EVP_F_AES_T4_XTS_INIT_KEY
and EVP_F_AES_XTS_INIT_KEY are affected.
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8682)
than the update call. The means an earlier error return at the cost of some
duplicated code.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/8625)
This configuration module supports a configuration structure pretty
much like the engine configuration module, i.e. something like this:
openssl_conf = openssl_init
[openssl_init]
providers = provider_section
[provider_section]
# Configure the provider named "foo"
foo = foo_section
# Configure the provider named "bar"
bar = bar_section
[foo_section]
# Override name given in the provider section
identity = myfoo
# The exact path of the module. This is platform specific
module_path = /opt/openssl/modules/foo.so
# Whether it should be automatically activated. Value is unimportant
activate = whatever
# Anything else goes as well, and becomes parameters that the
# provider can get
what = 1
# sub-sections will be followed as well
ever = ever_section
[ever_section]
cookie = monster
All the configurations in a provider section and its sub-sections
become parameters for the provider to get, i.e. the "foo" provider
will be able to get values for the following keys (with associated
values shown):
identity => myfoo
module_path => /opt/openssl/modules/foo.so
activate => whatever
what => 1
ever.cookie => monster
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8549)
Provider parameters are parameters set by the core that the provider
can retrieve. The primary use it to support making OpenSSL
configuration data available to the provider.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/8549)
Limit the number of AES blocks in a data unit to 2^20 or less.
This corresponds to the mandates in IEEE Std 1619-2018 and NIST SP 800-38E.
Note: that this is a change from IEEE Std 1619-2007 which only recommended
this limit.
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
(Merged from https://github.com/openssl/openssl/pull/8627)
OpenSSL will come with a set of well known providers, some of which
need to be accessible from the start. These are typically built in
providers, or providers that will work as fallbacks.
We do this when creating a new provider store, which means that this
will happen in every library context, regardless of if it's the global
default one, or an explicitely created one.
We keep the data about the known providers we want to make accessible
this way in crypto/provider_predefined.h, which may become generated.
For now, though, we make it simple and edited manually.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8480)
To ensure that old applications aren't left without any provider, and
at the same time not forcing any default provider on applications that
know how to deal with them, we device the concept of fallback
providers, which are automatically activated if no other provider is
already activated.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8480)
in INSTALL, Configure, crypto/build.info, include/openssl/crmferr.h,
crypto/err/, include/openssl/err.h, and (to be updated:) util/libcrypto.num
Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7646)
Adding a provider means creating an internal provier object and adding
it to the store. This allows the addition of built in providers, be it
in the OpenSSL libraries or in any application.
"Loading" a provider is defined broadly. A built in provider is already
"loaded" in essence and only needs activating, while a provider in a
dynamically loadable module requires actually loading the module itself.
In this API, "loading" a provider does both.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8287)
The OSSL_PROVIDER is the core object involved in loading a provider
module, initialize a provider and do the initial communication of
provider wide and core wide dispatch tables.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/8287)
SSH's KDF is defined in RFC 4253 in Section 7.2
Signed-off-by: Simo Sorce <simo@redhat.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/7290)
This commit adds a dedicated function in `EC_METHOD` to access a modular
field inversion implementation suitable for the specifics of the
implemented curve, featuring SCA countermeasures.
The new pointer is defined as:
`int (*field_inv)(const EC_GROUP*, BIGNUM *r, const BIGNUM *a, BN_CTX*)`
and computes the multiplicative inverse of `a` in the underlying field,
storing the result in `r`.
Three implementations are included, each including specific SCA
countermeasures:
- `ec_GFp_simple_field_inv()`, featuring SCA hardening through
blinding.
- `ec_GFp_mont_field_inv()`, featuring SCA hardening through Fermat's
Little Theorem (FLT) inversion.
- `ec_GF2m_simple_field_inv()`, that uses `BN_GF2m_mod_inv()` which
already features SCA hardening through blinding.
From a security point of view, this also helps addressing a leakage
previously affecting conversions from projective to affine coordinates.
This commit also adds a new error reason code (i.e.,
`EC_R_CANNOT_INVERT`) to improve consistency between the three
implementations as all of them could fail for the same reason but
through different code paths resulting in inconsistent error stack
states.
Co-authored-by: Nicola Tuveri <nic.tuv@gmail.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/8254)