The DTLSv1_listen code set the state value explicitly to move into init.
Change to use state_set_in_init() instead.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Note that this commit constifies a user callback parameter and therefore
will break compilation for applications using this callback. But unless
they are abusing write access to the buffer, the fix is trivial.
Reviewed-by: Andy Polyakov <appro@openssl.org>
The existing implementation of DTLSv1_listen() is fundamentally flawed. This
function is used in DTLS solutions to listen for new incoming connections
from DTLS clients. A client will send an initial ClientHello. The server
will respond with a HelloVerifyRequest containing a unique cookie. The
client the responds with a second ClientHello - which this time contains the
cookie.
Once the cookie has been verified then DTLSv1_listen() returns to user code,
which is typically expected to continue the handshake with a call to (for
example) SSL_accept().
Whilst listening for incoming ClientHellos, the underlying BIO is usually in
an unconnected state. Therefore ClientHellos can come in from *any* peer.
The arrival of the first ClientHello without the cookie, and the second one
with it, could be interspersed with other intervening messages from
different clients.
The whole purpose of this mechanism is as a defence against DoS attacks. The
idea is to avoid allocating state on the server until the client has
verified that it is capable of receiving messages at the address it claims
to come from. However the existing DTLSv1_listen() implementation completely
fails to do this. It attempts to super-impose itself on the standard state
machine and reuses all of this code. However the standard state machine
expects to operate in a stateful manner with a single client, and this can
cause various problems.
A second more minor issue is that the return codes from this function are
quite confused, with no distinction made between fatal and non-fatal errors.
Most user code treats all errors as non-fatal, and simply retries the call
to DTLSv1_listen().
This commit completely rewrites the implementation of DTLSv1_listen() and
provides a stand alone implementation that does not rely on the existing
state machine. It also provides more consistent return codes.
Reviewed-by: Andy Polyakov <appro@openssl.org>
There are many places (nearly 50) where we malloc and then memset.
Add an OPENSSL_zalloc routine to encapsulate that.
(Missed one conversion; thanks Richard)
Also fixes GH328
Reviewed-by: Richard Levitte <levitte@openssl.org>
Just as with the OPENSSL_malloc calls, consistently use sizeof(*ptr)
for memset and memcpy. Remove needless casts for those functions.
For memset, replace alternative forms of zero with 0.
Reviewed-by: Richard Levitte <levitte@openssl.org>
For a local variable:
TYPE *p;
Allocations like this are "risky":
p = OPENSSL_malloc(sizeof(TYPE));
if the type of p changes, and the malloc call isn't updated, you
could get memory corruption. Instead do this:
p = OPENSSL_malloc(sizeof(*p));
Also fixed a few memset() calls that I noticed while doing this.
Reviewed-by: Richard Levitte <levitte@openssl.org>
After the finale, the "real" final part. :) Do a recursive grep with
"-B1 -w [a-zA-Z0-9_]*_free" to see if any of the preceeding lines are
an "if NULL" check that can be removed.
Reviewed-by: Tim Hudson <tjh@openssl.org>
There were a set of includes in dtls1.h which are now redundant due to the
libssl opaque work. This commit removes those includes, which also has the
effect of resolving one issue preventing building on windows (i.e. the
include of winsock.h)
Reviewed-by: Andy Polyakov <appro@openssl.org>
Change ssl_set_handshake_header from return void to returning int, and
handle error return code appropriately.
Reviewed-by: Richard Levitte <levitte@openssl.org>
Ensure that all functions have their return values checked where
appropriate. This covers all functions defined and called from within
libssl.
Reviewed-by: Richard Levitte <levitte@openssl.org>
The DTLSv1_listen function is intended to be stateless and processes
the initial ClientHello from many peers. It is common for user code to
loop over the call to DTLSv1_listen until a valid ClientHello is received
with an associated cookie. A defect in the implementation of DTLSv1_listen
means that state is preserved in the SSL object from one invokation to the
next that can lead to a segmentation fault. Erorrs processing the initial
ClientHello can trigger this scenario. An example of such an error could
be that a DTLS1.0 only client is attempting to connect to a DTLS1.2 only
server.
CVE-2015-0207
Reviewed-by: Richard Levitte <levitte@openssl.org>
Since commit 741c9959 ("DTLS revision."), we put the wrong protocol
version into our ClientHello for DTLS1_BAD_VER. The old DTLS
code which used ssl->version was replaced by the more generic SSL3 code
which uses ssl->client_version. The Cisco ASA no longer likes our
ClientHello.
RT#3711
Reviewed-by: Rich Salz <rsalz@openssl.org>
and instead use the value provided by the underlying BIO. Also provide some
new DTLS_CTRLs so that the library user can set the mtu without needing to
know this constant. These new DTLS_CTRLs provide the capability to set the
link level mtu to be used (i.e. including this IP/UDP overhead). The previous
DTLS_CTRLs required the library user to subtract this overhead first.
Reviewed-by: Tim Hudson <tjh@openssl.org>
automatically updated, and we should use the one provided instead.
Unfortunately there are a couple of locations where this is not respected.
Reviewed-by: Tim Hudson <tjh@openssl.org>
Add new methods DTLS_*_method() which support both DTLS 1.0 and DTLS 1.2 and
pick the highest version the peer supports during negotiation.
As with SSL/TLS options can change this behaviour specifically
SSL_OP_NO_DTLSv1 and SSL_OP_NO_DTLSv1_2.
Add correct flags for DTLS 1.2, update s_server and s_client to handle
DTLS 1.2 methods.
Currently no support for version negotiation: i.e. if client/server selects
DTLS 1.2 it is that or nothing.
Revise DTLS code. There was a *lot* of code duplication in the
DTLS code that generates records. This makes it harder to maintain and
sometimes a TLS update is omitted by accident from the DTLS code.
Specifically almost all of the record generation functions have code like
this:
some_pointer = buffer + HANDSHAKE_HEADER_LENGTH;
... Record creation stuff ...
set_handshake_header(ssl, SSL_MT_SOMETHING, message_len);
...
write_handshake_message(ssl);
Where the "Record creation stuff" is identical between SSL/TLS and DTLS or
in some cases has very minor differences.
By adding a few fields to SSL3_ENC to include the header length, some flags
and function pointers for handshake header setting and handshake writing the
code can cope with both cases.
Note: although this passes "make test" and some simple DTLS tests there may
be some minor differences in the DTLS code that have to be accounted for.
have a uniform representation for those over all architectures, so a
little bit of hackery is needed.
Contributed by nagendra modadugu <nagendra@cs.stanford.edu>