We can do just the quick check if cofactor == 1 as the
fact that the point is on the curve already implies
that order * point = infinity.
Fixes#21833
Reviewed-by: Neil Horman <nhorman@openssl.org>
Reviewed-by: Paul Dale <ppzgs1@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/24816)
This code was added in error and is entirely redundant. It is also an
expensive operation (e.g. see #21833).
Fixes#21834
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/21902)
This mandates following SP 800-56A which, in 5.6.2.4, mandates a comparision
against a newly calculated public key.
Co-authored-by: Randall Steck <rsteck@thinqsoft.com>
Co-authored-by: Mark J. Minnoch <mark@keypair.us>
Co-authored-by: Steve Weymann <steve@keypair.us>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/19510)
Since OPENSSL_malloc() and friends report ERR_R_MALLOC_FAILURE, and
at least handle the file name and line number they are called from,
there's no need to report ERR_R_MALLOC_FAILURE where they are called
directly, or when SSLfatal() and RLAYERfatal() is used, the reason
`ERR_R_MALLOC_FAILURE` is changed to `ERR_R_CRYPTO_LIB`.
There were a number of places where `ERR_R_MALLOC_FAILURE` was reported
even though it was a function from a different sub-system that was
called. Those places are changed to report ERR_R_{lib}_LIB, where
{lib} is the name of that sub-system.
Some of them are tricky to get right, as we have a lot of functions
that belong in the ASN1 sub-system, and all the `sk_` calls or from
the CRYPTO sub-system.
Some extra adaptation was necessary where there were custom OPENSSL_malloc()
wrappers, and some bugs are fixed alongside these changes.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Hugo Landau <hlandau@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19301)
The code is derived from @sftcd's work in PR #17172.
This PR puts the DHKEM algorithms into the provider layer as
KEM algorithms for EC and ECX.
This PR only implements the DHKEM component of HPKE as specified in
RFC 9180.
crypto/hpke/hpke_util.c has been added for fuctions that will
be shared between DHKEM and HPKE.
API's for EVP_PKEY_auth_encapsulate_init() and EVP_PKEY_auth_decapsulate_init()
have been added to support authenticated encapsulation. auth_init() functions
were chosen rather that a EVP_PKEY_KEM_set_auth() interface to support
future algorithms that could possibly need different init functions.
Internal code has been refactored, so that it can be shared between the DHKEM
and other systems. Since DHKEM operates on low level keys it needs to be
able to do low level ECDH and ECXDH calls without converting the keys
back into EVP_PKEY/EVP_PKEY_CTX form. See ossl_ecx_compute_key(),
ossl_ec_public_from_private()
DHKEM requires API's to derive a key using a seed (IKM). This did not sit
well inside the DHKEM itself as dispatch functions. This functionality
fits better inside the EC and ECX keymanagers keygen, since
they are just variations of keygen where the private key is generated
in a different manner. This should mainly be used for testing purposes.
See ossl_ec_generate_key_dhkem().
It supports this by allowing a settable param to be passed to keygen
(See OSSL_PKEY_PARAM_DHKEM_IKM).
The keygen calls code within ec and ecx dhkem implementation to handle this.
See ossl_ecx_dhkem_derive_private() and ossl_ec_dhkem_derive_private().
These 2 functions are also used by the EC/ECX DHKEM implementations to generate
the sender ephemeral keys.
Reviewed-by: Hugo Landau <hlandau@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/19068)
This is reproducible with my error injection patch.
The test vector has been validated on the 1.1.1 branch
but the issue is of course identical in all branches.
$ ERROR_INJECT=1652710284 ../util/shlib_wrap.sh ./server-test ./corpora/server/4e48da8aecce6b9b58e8e4dbbf0523e6d2dd56dc
140587884632000:error:03078041:bignum routines:bn_expand_internal:malloc failure:crypto/bn/bn_lib.c:282:
140587884632000:error:10103003:elliptic curve routines:ec_key_simple_oct2priv:BN lib:crypto/ec/ec_key.c:662:
140587884632000:error:100DE08E:elliptic curve routines:old_ec_priv_decode:decode error:crypto/ec/ec_ameth.c:464:
140587884632000:error:0D0680A8:asn1 encoding routines:asn1_check_tlen:wrong tag:crypto/asn1/tasn_dec.c:1149:
140587884632000:error:0D07803A:asn1 encoding routines:asn1_item_embed_d2i:nested asn1 error:crypto/asn1/tasn_dec.c:309:Type=X509_ALGOR
140587884632000:error:0D08303A:asn1 encoding routines:asn1_template_noexp_d2i:nested asn1 error:crypto/asn1/tasn_dec.c:646:Field=pkeyalg, Type=PKCS8_PRIV_KEY_INFO
140587884632000:error:0907B00D:PEM routines:PEM_read_bio_PrivateKey:ASN1 lib:crypto/pem/pem_pkey.c:88:
=================================================================
==19676==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 24 byte(s) in 1 object(s) allocated from:
#0 0x7fdd2a6bb09f in __interceptor_malloc ../../../../gcc-trunk/libsanitizer/asan/asan_malloc_linux.cpp:69
#1 0x7fdd2a2fa430 in CRYPTO_zalloc crypto/mem.c:230
#2 0x7fdd2a15df11 in BN_new crypto/bn/bn_lib.c:246
#3 0x7fdd2a15df88 in BN_secure_new crypto/bn/bn_lib.c:257
#4 0x7fdd2a247390 in ec_key_simple_oct2priv crypto/ec/ec_key.c:655
#5 0x7fdd2a241fc5 in d2i_ECPrivateKey crypto/ec/ec_asn1.c:1030
#6 0x7fdd2a23dac5 in old_ec_priv_decode crypto/ec/ec_ameth.c:463
#7 0x7fdd2a109db7 in d2i_PrivateKey crypto/asn1/d2i_pr.c:46
#8 0x7fdd2a33ab16 in PEM_read_bio_PrivateKey crypto/pem/pem_pkey.c:84
#9 0x7fdd2a3330b6 in PEM_read_bio_ECPrivateKey crypto/pem/pem_all.c:151
#10 0x402dba in FuzzerTestOneInput fuzz/server.c:592
#11 0x40370b in testfile fuzz/test-corpus.c:182
#12 0x402846 in main fuzz/test-corpus.c:226
#13 0x7fdd297b9f44 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21f44)
SUMMARY: AddressSanitizer: 24 byte(s) leaked in 1 allocation(s).
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/18366)
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15974)
Using OSSL_STORE is too heavy and breaks things.
There were also needed various fixes mainly for missing proper
handling of the SM2 keys in the OSSL_DECODER.
Fixes#14788
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/15045)
Partial fix for #12964
This adds ossl_ names for the following symbols:
ec_*, ecx_*, ecdh_*, ecdsa_*, sm2_*
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14231)
Adding the EVP_PKEY_param_check_quick() reminded me that there are also
partial checks for public keys as part of SP800-56A for FFC (DH named safe
prime groups) and ECC. The code was mainly already there and just needed
to be plumbed into the validate methods.
Reviewed-by: Tomas Mraz <tomas@openssl.org>
Reviewed-by: Paul Dale <pauli@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14206)
Co-author: Richard Levitte <levitte@openssl.org>
Co-author: Tomas Mraz <tmraz@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/13139)
Because decoders are coupled with keymgmts from the same provider,
ours need to produce provider side keys the same way. Since our
keymgmts create key data with the provider library context, so must
our decoders.
We solve with functions to adjust the library context of decoded keys,
and use them.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/13661)
This includes error reporting for libcrypto sub-libraries in surprising
places.
This was done using util/err-to-raise
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/13318)
Many of the new types introduced by OpenSSL 3.0 have an OSSL_ prefix,
e.g., OSSL_CALLBACK, OSSL_PARAM, OSSL_ALGORITHM, OSSL_SERIALIZER.
The OPENSSL_CTX type stands out a little by using a different prefix.
For consistency reasons, this type is renamed to OSSL_LIB_CTX.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12621)
Automatically rename all instances of _with_libctx() to _ex() as per
our coding style.
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12970)
This was written before the ec key contained a library context,
now that it contains a libctx it can be passed correctly to the callback.
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/12877)
The function returns 1 when the encoding of a decoded EC key used
explicit encoding of the curve parameters.
Reviewed-by: David von Oheimb <david.von.oheimb@siemens.com>
Reviewed-by: Nicola Tuveri <nic.tuv@gmail.com>
(Merged from https://github.com/openssl/openssl/pull/12683)
Creating an EC public key from the private key uses random numbers
internally, which require use of the proper libtx. Therefore we make
sure the libctx is used during this operation.
Fixes#12150
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12159)
Renames some "new_ex" functions to "new_with_libctx" and ensures that we
pass around the libctx AND the propq everywhere.
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/12159)
This macro is used to determine if certain pieces of code should
become part of the FIPS module or not. The old name was confusing.
Fixes#11538
Reviewed-by: Tomas Mraz <tmraz@fedoraproject.org>
(Merged from https://github.com/openssl/openssl/pull/11539)
Note: This PR has not attempted to move the curves into the provider dispatch table.
Mappings between the curve name / nid have been added to the inbuilt curve table.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/11133)
We should never leak the bit length of the secret scalar in the key,
so we always set the `BN_FLG_CONSTTIME` flag on the internal `BIGNUM`
holding the secret scalar.
This is important also because `BN_dup()` (and `BN_copy()`) do not
propagate the `BN_FLG_CONSTTIME` flag from the source `BIGNUM`, and
this brings an extra risk of inadvertently losing the flag, even when
the called specifically set it.
The propagation has been turned on and off a few times in the past
years because in some conditions has shown unintended consequences in
some code paths, so at the moment we can't fix this in the BN layer.
In `EC_KEY_set_private_key()` we can work around the propagation by
manually setting the flag after `BN_dup()` as we know for sure that
inside the EC module the `BN_FLG_CONSTTIME` is always treated
correctly and should not generate unintended consequences.
Setting the `BN_FLG_CONSTTIME` flag alone is never enough, we also have
to preallocate the `BIGNUM` internal buffer to a fixed public size big
enough that operations performed during the processing never trigger
a realloc which would leak the size of the scalar through memory
accesses.
Fixed Length
------------
The order of the large prime subgroup of the curve is our choice for
a fixed public size, as that is generally the upper bound for
generating a private key in EC cryptosystems and should fit all valid
secret scalars.
For preallocating the `BIGNUM` storage we look at the number of "words"
required for the internal representation of the order, and we
preallocate 2 extra "words" in case any of the subsequent processing
might temporarily overflow the order length.
Future work
-----------
A separate commit addresses further hardening of `BN_copy()` (and
indirectly `BN_dup()`).
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10631)
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Shane Lontis <shane.lontis@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/10631)
Use of the low level ECDSA and EC_KEY_METHOD functions has been informally discouraged for a
long time. We now formally deprecate them.
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/10960)
Apart from public and internal header files, there is a third type called
local header files, which are located next to source files in the source
directory. Currently, they have different suffixes like
'*_lcl.h', '*_local.h', or '*_int.h'
This commit changes the different suffixes to '*_local.h' uniformly.
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/9333)
`RSA_free()` and friends are called in case of error from
`RSA_new_method(ENGINE *e)` (or the respective equivalent functions).
For the rest of the description I'll talk about `RSA_*`, but the same
applies for the equivalent `DSA_free()`, `DH_free()`, `EC_KEY_free()`.
If `RSA_new_method()` fails because the engine does not implement the
required method, when `RSA_free(RSA *r)` is called,
`r->meth == NULL` and a segfault happens while checking if
`r->meth->finish` is defined.
This commit fixes this issue by ensuring that `r->meth` is not NULL
before dereferencing it to check for `r->meth->finish`.
Fixes#7102 .
Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Tim Hudson <tjh@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Matthias St. Pierre <Matthias.St.Pierre@ncp-e.com>
Reviewed-by: Paul Dale <paul.dale@oracle.com>
(Merged from https://github.com/openssl/openssl/pull/7121)
Removed e_os.h from all bar three headers (apps/apps.h crypto/bio/bio_lcl.h and
ssl/ssl_locl.h).
Added e_os.h into the files that need it now.
Directly reference internal/nelem.h when required.
Reviewed-by: Andy Polyakov <appro@openssl.org>
Reviewed-by: Richard Levitte <levitte@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/4188)